mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 12:32:30 +08:00
## 🚀 Firecrawl Integration for RAGFlow This PR implements the Firecrawl integration for RAGFlow as requested in issue https://github.com/firecrawl/firecrawl/issues/2167 ### ✅ Features Implemented - **Data Source Integration**: Firecrawl appears as a selectable data source in RAGFlow - **Configuration Management**: Users can input Firecrawl API keys through RAGFlow's interface - **Web Scraping**: Supports single URL scraping, website crawling, and batch processing - **Content Processing**: Converts scraped content to RAGFlow's document format with chunking - **Error Handling**: Comprehensive error handling for rate limits, failed requests, and malformed content - **UI Components**: Complete UI schema and workflow components for RAGFlow integration ### 📁 Files Added - `intergrations/firecrawl/` - Complete integration package - `intergrations/firecrawl/integration.py` - RAGFlow integration entry point - `intergrations/firecrawl/firecrawl_connector.py` - API communication - `intergrations/firecrawl/firecrawl_config.py` - Configuration management - `intergrations/firecrawl/firecrawl_processor.py` - Content processing - `intergrations/firecrawl/firecrawl_ui.py` - UI components - `intergrations/firecrawl/ragflow_integration.py` - Main integration class - `intergrations/firecrawl/README.md` - Complete documentation - `intergrations/firecrawl/example_usage.py` - Usage examples ### 🧪 Testing The integration has been thoroughly tested with: - Configuration validation - Connection testing - Content processing and chunking - UI component rendering - Error handling scenarios ### 📋 Acceptance Criteria Met - ✅ Integration appears as selectable data source in RAGFlow's data source options - ✅ Users can input Firecrawl API keys through RAGFlow's configuration interface - ✅ Successfully scrapes content from provided URLs and imports into RAGFlow's document store - ✅ Handles common edge cases (rate limits, failed requests, malformed content) - ✅ Includes basic documentation and README updates - ✅ Code follows RAGFlow's existing patterns and coding standards ### �� Related Issue https://github.com/firecrawl/firecrawl/issues/2167 --------- Co-authored-by: AB <aj@Ajays-MacBook-Air.local>
276 lines
9.5 KiB
Python
276 lines
9.5 KiB
Python
"""
|
|
Content processor for converting Firecrawl output to RAGFlow document format.
|
|
"""
|
|
|
|
import re
|
|
import hashlib
|
|
from typing import List, Dict, Any
|
|
from dataclasses import dataclass
|
|
import logging
|
|
from datetime import datetime
|
|
|
|
from firecrawl_connector import ScrapedContent
|
|
|
|
|
|
@dataclass
|
|
class RAGFlowDocument:
|
|
"""Represents a document in RAGFlow format."""
|
|
|
|
id: str
|
|
title: str
|
|
content: str
|
|
source_url: str
|
|
metadata: Dict[str, Any]
|
|
created_at: datetime
|
|
updated_at: datetime
|
|
content_type: str = "text"
|
|
language: str = "en"
|
|
chunk_size: int = 1000
|
|
chunk_overlap: int = 200
|
|
|
|
|
|
class FirecrawlProcessor:
|
|
"""Processes Firecrawl content for RAGFlow integration."""
|
|
|
|
def __init__(self):
|
|
"""Initialize the processor."""
|
|
self.logger = logging.getLogger(__name__)
|
|
|
|
def generate_document_id(self, url: str, content: str) -> str:
|
|
"""Generate a unique document ID."""
|
|
# Create a hash based on URL and content
|
|
content_hash = hashlib.md5(f"{url}:{content[:100]}".encode()).hexdigest()
|
|
return f"firecrawl_{content_hash}"
|
|
|
|
def clean_content(self, content: str) -> str:
|
|
"""Clean and normalize content."""
|
|
if not content:
|
|
return ""
|
|
|
|
# Remove excessive whitespace
|
|
content = re.sub(r'\s+', ' ', content)
|
|
|
|
# Remove HTML tags if present
|
|
content = re.sub(r'<[^>]+>', '', content)
|
|
|
|
# Remove special characters that might cause issues
|
|
content = re.sub(r'[^\w\s\.\,\!\?\;\:\-\(\)\[\]\"\']', '', content)
|
|
|
|
return content.strip()
|
|
|
|
def extract_title(self, content: ScrapedContent) -> str:
|
|
"""Extract title from scraped content."""
|
|
if content.title:
|
|
return content.title
|
|
|
|
if content.metadata and content.metadata.get("title"):
|
|
return content.metadata["title"]
|
|
|
|
# Extract title from markdown if available
|
|
if content.markdown:
|
|
title_match = re.search(r'^#\s+(.+)$', content.markdown, re.MULTILINE)
|
|
if title_match:
|
|
return title_match.group(1).strip()
|
|
|
|
# Fallback to URL
|
|
return content.url.split('/')[-1] or content.url
|
|
|
|
def extract_description(self, content: ScrapedContent) -> str:
|
|
"""Extract description from scraped content."""
|
|
if content.description:
|
|
return content.description
|
|
|
|
if content.metadata and content.metadata.get("description"):
|
|
return content.metadata["description"]
|
|
|
|
# Extract first paragraph from markdown
|
|
if content.markdown:
|
|
# Remove headers and get first paragraph
|
|
text = re.sub(r'^#+\s+.*$', '', content.markdown, flags=re.MULTILINE)
|
|
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()]
|
|
if paragraphs:
|
|
return paragraphs[0][:200] + "..." if len(paragraphs[0]) > 200 else paragraphs[0]
|
|
|
|
return ""
|
|
|
|
def extract_language(self, content: ScrapedContent) -> str:
|
|
"""Extract language from content metadata."""
|
|
if content.metadata and content.metadata.get("language"):
|
|
return content.metadata["language"]
|
|
|
|
# Simple language detection based on common words
|
|
if content.markdown:
|
|
text = content.markdown.lower()
|
|
if any(word in text for word in ["the", "and", "or", "but", "in", "on", "at"]):
|
|
return "en"
|
|
elif any(word in text for word in ["le", "la", "les", "de", "du", "des"]):
|
|
return "fr"
|
|
elif any(word in text for word in ["der", "die", "das", "und", "oder"]):
|
|
return "de"
|
|
elif any(word in text for word in ["el", "la", "los", "las", "de", "del"]):
|
|
return "es"
|
|
|
|
return "en" # Default to English
|
|
|
|
def create_metadata(self, content: ScrapedContent) -> Dict[str, Any]:
|
|
"""Create comprehensive metadata for RAGFlow document."""
|
|
metadata = {
|
|
"source": "firecrawl",
|
|
"url": content.url,
|
|
"domain": self.extract_domain(content.url),
|
|
"scraped_at": datetime.utcnow().isoformat(),
|
|
"status_code": content.status_code,
|
|
"content_length": len(content.markdown or ""),
|
|
"has_html": bool(content.html),
|
|
"has_markdown": bool(content.markdown)
|
|
}
|
|
|
|
# Add original metadata if available
|
|
if content.metadata:
|
|
metadata.update({
|
|
"original_title": content.metadata.get("title"),
|
|
"original_description": content.metadata.get("description"),
|
|
"original_language": content.metadata.get("language"),
|
|
"original_keywords": content.metadata.get("keywords"),
|
|
"original_robots": content.metadata.get("robots"),
|
|
"og_title": content.metadata.get("ogTitle"),
|
|
"og_description": content.metadata.get("ogDescription"),
|
|
"og_image": content.metadata.get("ogImage"),
|
|
"og_url": content.metadata.get("ogUrl")
|
|
})
|
|
|
|
return metadata
|
|
|
|
def extract_domain(self, url: str) -> str:
|
|
"""Extract domain from URL."""
|
|
try:
|
|
from urllib.parse import urlparse
|
|
return urlparse(url).netloc
|
|
except Exception:
|
|
return ""
|
|
|
|
def process_content(self, content: ScrapedContent) -> RAGFlowDocument:
|
|
"""Process scraped content into RAGFlow document format."""
|
|
if content.error:
|
|
raise ValueError(f"Content has error: {content.error}")
|
|
|
|
# Determine primary content
|
|
primary_content = content.markdown or content.html or ""
|
|
if not primary_content:
|
|
raise ValueError("No content available to process")
|
|
|
|
# Clean content
|
|
cleaned_content = self.clean_content(primary_content)
|
|
|
|
# Extract metadata
|
|
title = self.extract_title(content)
|
|
language = self.extract_language(content)
|
|
metadata = self.create_metadata(content)
|
|
|
|
# Generate document ID
|
|
doc_id = self.generate_document_id(content.url, cleaned_content)
|
|
|
|
# Create RAGFlow document
|
|
document = RAGFlowDocument(
|
|
id=doc_id,
|
|
title=title,
|
|
content=cleaned_content,
|
|
source_url=content.url,
|
|
metadata=metadata,
|
|
created_at=datetime.utcnow(),
|
|
updated_at=datetime.utcnow(),
|
|
content_type="text",
|
|
language=language
|
|
)
|
|
|
|
return document
|
|
|
|
def process_batch(self, contents: List[ScrapedContent]) -> List[RAGFlowDocument]:
|
|
"""Process multiple scraped contents into RAGFlow documents."""
|
|
documents = []
|
|
|
|
for content in contents:
|
|
try:
|
|
document = self.process_content(content)
|
|
documents.append(document)
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to process content from {content.url}: {e}")
|
|
continue
|
|
|
|
return documents
|
|
|
|
def chunk_content(self, document: RAGFlowDocument,
|
|
chunk_size: int = 1000,
|
|
chunk_overlap: int = 200) -> List[Dict[str, Any]]:
|
|
"""Chunk document content for RAG processing."""
|
|
content = document.content
|
|
chunks = []
|
|
|
|
if len(content) <= chunk_size:
|
|
return [{
|
|
"id": f"{document.id}_chunk_0",
|
|
"content": content,
|
|
"metadata": {
|
|
**document.metadata,
|
|
"chunk_index": 0,
|
|
"total_chunks": 1
|
|
}
|
|
}]
|
|
|
|
# Split content into chunks
|
|
start = 0
|
|
chunk_index = 0
|
|
|
|
while start < len(content):
|
|
end = start + chunk_size
|
|
|
|
# Try to break at sentence boundary
|
|
if end < len(content):
|
|
# Look for sentence endings
|
|
sentence_end = content.rfind('.', start, end)
|
|
if sentence_end > start + chunk_size // 2:
|
|
end = sentence_end + 1
|
|
|
|
chunk_content = content[start:end].strip()
|
|
|
|
if chunk_content:
|
|
chunks.append({
|
|
"id": f"{document.id}_chunk_{chunk_index}",
|
|
"content": chunk_content,
|
|
"metadata": {
|
|
**document.metadata,
|
|
"chunk_index": chunk_index,
|
|
"total_chunks": len(chunks) + 1, # Will be updated
|
|
"chunk_start": start,
|
|
"chunk_end": end
|
|
}
|
|
})
|
|
chunk_index += 1
|
|
|
|
# Move start position with overlap
|
|
start = end - chunk_overlap
|
|
if start >= len(content):
|
|
break
|
|
|
|
# Update total chunks count
|
|
for chunk in chunks:
|
|
chunk["metadata"]["total_chunks"] = len(chunks)
|
|
|
|
return chunks
|
|
|
|
def validate_document(self, document: RAGFlowDocument) -> bool:
|
|
"""Validate RAGFlow document."""
|
|
if not document.id:
|
|
return False
|
|
|
|
if not document.title:
|
|
return False
|
|
|
|
if not document.content:
|
|
return False
|
|
|
|
if not document.source_url:
|
|
return False
|
|
|
|
return True
|