mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-23 19:46:39 +08:00
### What problem does this PR solve? The OpenAI-compatible chat endpoint (`/chats_openai/<chat_id>/chat/completions`) was not returning accurate token usage in streaming responses. The token counts were either missing or inaccurate because the underlying LLM API responses weren't being properly parsed for usage data. This PR adds proper token counting using tiktoken (cl100k_base encoding) as a fallback when the LLM API doesn't provide usage data in streaming chunks. This ensures clients always receive token usage information in the response, which is essential for billing and quota management. **Changes:** - Add tiktoken-based token counting for streaming responses in OpenAI-compatible endpoint - Ensure `usage` field is always populated in the final streaming chunk - Add unit tests for token usage calculation Fixes #7850 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
1329 lines
54 KiB
Python
1329 lines
54 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import json
|
|
import copy
|
|
import re
|
|
import time
|
|
|
|
import os
|
|
import tempfile
|
|
import logging
|
|
|
|
from quart import Response, jsonify, request
|
|
|
|
from common.token_utils import num_tokens_from_string
|
|
|
|
from agent.canvas import Canvas
|
|
from api.db.db_models import APIToken
|
|
from api.db.services.api_service import API4ConversationService
|
|
from api.db.services.canvas_service import UserCanvasService, completion_openai
|
|
from api.db.services.canvas_service import completion as agent_completion
|
|
from api.db.services.conversation_service import ConversationService
|
|
from api.db.services.conversation_service import async_iframe_completion as iframe_completion
|
|
from api.db.services.conversation_service import async_completion as rag_completion
|
|
from api.db.services.dialog_service import DialogService, async_ask, async_chat, gen_mindmap
|
|
from api.db.services.document_service import DocumentService
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from common.metadata_utils import apply_meta_data_filter, convert_conditions, meta_filter
|
|
from api.db.services.search_service import SearchService
|
|
from api.db.services.user_service import TenantService,UserTenantService
|
|
from common.misc_utils import get_uuid
|
|
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, \
|
|
get_result, get_request_json, server_error_response, token_required, validate_request
|
|
from rag.app.tag import label_question
|
|
from rag.prompts.template import load_prompt
|
|
from rag.prompts.generator import cross_languages, keyword_extraction, chunks_format
|
|
from common.constants import RetCode, LLMType, StatusEnum
|
|
from common import settings
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
async def create(tenant_id, chat_id):
|
|
req = await get_request_json()
|
|
req["dialog_id"] = chat_id
|
|
dia = DialogService.query(tenant_id=tenant_id, id=req["dialog_id"], status=StatusEnum.VALID.value)
|
|
if not dia:
|
|
return get_error_data_result(message="You do not own the assistant.")
|
|
conv = {
|
|
"id": get_uuid(),
|
|
"dialog_id": req["dialog_id"],
|
|
"name": req.get("name", "New session"),
|
|
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
|
|
"user_id": req.get("user_id", ""),
|
|
"reference": [],
|
|
}
|
|
if not conv.get("name"):
|
|
return get_error_data_result(message="`name` can not be empty.")
|
|
ConversationService.save(**conv)
|
|
e, conv = ConversationService.get_by_id(conv["id"])
|
|
if not e:
|
|
return get_error_data_result(message="Fail to create a session!")
|
|
conv = conv.to_dict()
|
|
conv["messages"] = conv.pop("message")
|
|
conv["chat_id"] = conv.pop("dialog_id")
|
|
del conv["reference"]
|
|
return get_result(data=conv)
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
async def create_agent_session(tenant_id, agent_id):
|
|
user_id = request.args.get("user_id", tenant_id)
|
|
e, cvs = UserCanvasService.get_by_id(agent_id)
|
|
if not e:
|
|
return get_error_data_result("Agent not found.")
|
|
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
|
return get_error_data_result("You cannot access the agent.")
|
|
if not isinstance(cvs.dsl, str):
|
|
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
|
|
|
|
session_id = get_uuid()
|
|
canvas = Canvas(cvs.dsl, tenant_id, agent_id, canvas_id=cvs.id)
|
|
canvas.reset()
|
|
|
|
cvs.dsl = json.loads(str(canvas))
|
|
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id,
|
|
"message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
|
API4ConversationService.save(**conv)
|
|
conv["agent_id"] = conv.pop("dialog_id")
|
|
return get_result(data=conv)
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions/<session_id>", methods=["PUT"]) # noqa: F821
|
|
@token_required
|
|
async def update(tenant_id, chat_id, session_id):
|
|
req = await get_request_json()
|
|
req["dialog_id"] = chat_id
|
|
conv_id = session_id
|
|
conv = ConversationService.query(id=conv_id, dialog_id=chat_id)
|
|
if not conv:
|
|
return get_error_data_result(message="Session does not exist")
|
|
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message="You do not own the session")
|
|
if "message" in req or "messages" in req:
|
|
return get_error_data_result(message="`message` can not be change")
|
|
if "reference" in req:
|
|
return get_error_data_result(message="`reference` can not be change")
|
|
if "name" in req and not req.get("name"):
|
|
return get_error_data_result(message="`name` can not be empty.")
|
|
if not ConversationService.update_by_id(conv_id, req):
|
|
return get_error_data_result(message="Session updates error")
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/completions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
async def chat_completion(tenant_id, chat_id):
|
|
req = await get_request_json()
|
|
if not req:
|
|
req = {"question": ""}
|
|
if not req.get("session_id"):
|
|
req["question"] = ""
|
|
dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
|
|
if not dia:
|
|
return get_error_data_result(f"You don't own the chat {chat_id}")
|
|
dia = dia[0]
|
|
if req.get("session_id"):
|
|
if not ConversationService.query(id=req["session_id"], dialog_id=chat_id):
|
|
return get_error_data_result(f"You don't own the session {req['session_id']}")
|
|
|
|
metadata_condition = req.get("metadata_condition") or {}
|
|
if metadata_condition and not isinstance(metadata_condition, dict):
|
|
return get_error_data_result(message="metadata_condition must be an object.")
|
|
|
|
if metadata_condition and req.get("question"):
|
|
metas = DocumentService.get_meta_by_kbs(dia.kb_ids or [])
|
|
filtered_doc_ids = meta_filter(
|
|
metas,
|
|
convert_conditions(metadata_condition),
|
|
metadata_condition.get("logic", "and"),
|
|
)
|
|
if metadata_condition.get("conditions") and not filtered_doc_ids:
|
|
filtered_doc_ids = ["-999"]
|
|
|
|
if filtered_doc_ids:
|
|
req["doc_ids"] = ",".join(filtered_doc_ids)
|
|
else:
|
|
req.pop("doc_ids", None)
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(rag_completion(tenant_id, chat_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
|
|
return resp
|
|
else:
|
|
answer = None
|
|
async for ans in rag_completion(tenant_id, chat_id, **req):
|
|
answer = ans
|
|
break
|
|
return get_result(data=answer)
|
|
|
|
|
|
@manager.route("/chats_openai/<chat_id>/chat/completions", methods=["POST"]) # noqa: F821
|
|
@validate_request("model", "messages") # noqa: F821
|
|
@token_required
|
|
async def chat_completion_openai_like(tenant_id, chat_id):
|
|
"""
|
|
OpenAI-like chat completion API that simulates the behavior of OpenAI's completions endpoint.
|
|
|
|
This function allows users to interact with a model and receive responses based on a series of historical messages.
|
|
If `stream` is set to True (by default), the response will be streamed in chunks, mimicking the OpenAI-style API.
|
|
Set `stream` to False explicitly, the response will be returned in a single complete answer.
|
|
|
|
Reference:
|
|
|
|
- If `stream` is True, the final answer and reference information will appear in the **last chunk** of the stream.
|
|
- If `stream` is False, the reference will be included in `choices[0].message.reference`.
|
|
|
|
Example usage:
|
|
|
|
curl -X POST https://ragflow_address.com/api/v1/chats_openai/<chat_id>/chat/completions \
|
|
-H "Content-Type: application/json" \
|
|
-H "Authorization: Bearer $RAGFLOW_API_KEY" \
|
|
-d '{
|
|
"model": "model",
|
|
"messages": [{"role": "user", "content": "Say this is a test!"}],
|
|
"stream": true
|
|
}'
|
|
|
|
Alternatively, you can use Python's `OpenAI` client:
|
|
|
|
from openai import OpenAI
|
|
|
|
model = "model"
|
|
client = OpenAI(api_key="ragflow-api-key", base_url=f"http://ragflow_address/api/v1/chats_openai/<chat_id>")
|
|
|
|
stream = True
|
|
reference = True
|
|
|
|
completion = client.chat.completions.create(
|
|
model=model,
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Who are you?"},
|
|
{"role": "assistant", "content": "I am an AI assistant named..."},
|
|
{"role": "user", "content": "Can you tell me how to install neovim"},
|
|
],
|
|
stream=stream,
|
|
extra_body={
|
|
"reference": reference,
|
|
"metadata_condition": {
|
|
"logic": "and",
|
|
"conditions": [
|
|
{
|
|
"name": "author",
|
|
"comparison_operator": "is",
|
|
"value": "bob"
|
|
}
|
|
]
|
|
}
|
|
}
|
|
)
|
|
|
|
if stream:
|
|
for chunk in completion:
|
|
print(chunk)
|
|
if reference and chunk.choices[0].finish_reason == "stop":
|
|
print(f"Reference:\n{chunk.choices[0].delta.reference}")
|
|
print(f"Final content:\n{chunk.choices[0].delta.final_content}")
|
|
else:
|
|
print(completion.choices[0].message.content)
|
|
if reference:
|
|
print(completion.choices[0].message.reference)
|
|
"""
|
|
req = await get_request_json()
|
|
|
|
extra_body = req.get("extra_body") or {}
|
|
if extra_body and not isinstance(extra_body, dict):
|
|
return get_error_data_result("extra_body must be an object.")
|
|
|
|
need_reference = bool(extra_body.get("reference", False))
|
|
|
|
messages = req.get("messages", [])
|
|
# To prevent empty [] input
|
|
if len(messages) < 1:
|
|
return get_error_data_result("You have to provide messages.")
|
|
if messages[-1]["role"] != "user":
|
|
return get_error_data_result("The last content of this conversation is not from user.")
|
|
|
|
prompt = messages[-1]["content"]
|
|
# Treat context tokens as reasoning tokens
|
|
context_token_used = sum(num_tokens_from_string(message["content"]) for message in messages)
|
|
|
|
dia = DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value)
|
|
if not dia:
|
|
return get_error_data_result(f"You don't own the chat {chat_id}")
|
|
dia = dia[0]
|
|
|
|
metadata_condition = extra_body.get("metadata_condition") or {}
|
|
if metadata_condition and not isinstance(metadata_condition, dict):
|
|
return get_error_data_result(message="metadata_condition must be an object.")
|
|
|
|
doc_ids_str = None
|
|
if metadata_condition:
|
|
metas = DocumentService.get_meta_by_kbs(dia.kb_ids or [])
|
|
filtered_doc_ids = meta_filter(
|
|
metas,
|
|
convert_conditions(metadata_condition),
|
|
metadata_condition.get("logic", "and"),
|
|
)
|
|
if metadata_condition.get("conditions") and not filtered_doc_ids:
|
|
filtered_doc_ids = ["-999"]
|
|
doc_ids_str = ",".join(filtered_doc_ids) if filtered_doc_ids else None
|
|
|
|
# Filter system and non-sense assistant messages
|
|
msg = []
|
|
for m in messages:
|
|
if m["role"] == "system":
|
|
continue
|
|
if m["role"] == "assistant" and not msg:
|
|
continue
|
|
msg.append(m)
|
|
|
|
# tools = get_tools()
|
|
# toolcall_session = SimpleFunctionCallServer()
|
|
tools = None
|
|
toolcall_session = None
|
|
|
|
if req.get("stream", True):
|
|
# The value for the usage field on all chunks except for the last one will be null.
|
|
# The usage field on the last chunk contains token usage statistics for the entire request.
|
|
# The choices field on the last chunk will always be an empty array [].
|
|
async def streamed_response_generator(chat_id, dia, msg):
|
|
token_used = 0
|
|
last_ans = {}
|
|
full_content = ""
|
|
full_reasoning = ""
|
|
final_answer = None
|
|
final_reference = None
|
|
in_think = False
|
|
response = {
|
|
"id": f"chatcmpl-{chat_id}",
|
|
"choices": [
|
|
{
|
|
"delta": {
|
|
"content": "",
|
|
"role": "assistant",
|
|
"function_call": None,
|
|
"tool_calls": None,
|
|
"reasoning_content": "",
|
|
},
|
|
"finish_reason": None,
|
|
"index": 0,
|
|
"logprobs": None,
|
|
}
|
|
],
|
|
"created": int(time.time()),
|
|
"model": "model",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "",
|
|
"usage": None,
|
|
}
|
|
|
|
try:
|
|
chat_kwargs = {"toolcall_session": toolcall_session, "tools": tools, "quote": need_reference}
|
|
if doc_ids_str:
|
|
chat_kwargs["doc_ids"] = doc_ids_str
|
|
async for ans in async_chat(dia, msg, True, **chat_kwargs):
|
|
last_ans = ans
|
|
if ans.get("final"):
|
|
if ans.get("answer"):
|
|
full_content = ans["answer"]
|
|
final_answer = ans.get("answer") or full_content
|
|
final_reference = ans.get("reference", {})
|
|
continue
|
|
if ans.get("start_to_think"):
|
|
in_think = True
|
|
continue
|
|
if ans.get("end_to_think"):
|
|
in_think = False
|
|
continue
|
|
delta = ans.get("answer") or ""
|
|
if not delta:
|
|
continue
|
|
token_used += num_tokens_from_string(delta)
|
|
if in_think:
|
|
full_reasoning += delta
|
|
response["choices"][0]["delta"]["reasoning_content"] = delta
|
|
response["choices"][0]["delta"]["content"] = None
|
|
else:
|
|
full_content += delta
|
|
response["choices"][0]["delta"]["content"] = delta
|
|
response["choices"][0]["delta"]["reasoning_content"] = None
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
except Exception as e:
|
|
response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
|
|
# The last chunk
|
|
response["choices"][0]["delta"]["content"] = None
|
|
response["choices"][0]["delta"]["reasoning_content"] = None
|
|
response["choices"][0]["finish_reason"] = "stop"
|
|
prompt_tokens = num_tokens_from_string(prompt)
|
|
response["usage"] = {"prompt_tokens": prompt_tokens, "completion_tokens": token_used, "total_tokens": prompt_tokens + token_used}
|
|
if need_reference:
|
|
reference_payload = final_reference if final_reference is not None else last_ans.get("reference", [])
|
|
response["choices"][0]["delta"]["reference"] = chunks_format(reference_payload)
|
|
response["choices"][0]["delta"]["final_content"] = final_answer if final_answer is not None else full_content
|
|
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
|
|
yield "data:[DONE]\n\n"
|
|
|
|
resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
else:
|
|
answer = None
|
|
chat_kwargs = {"toolcall_session": toolcall_session, "tools": tools, "quote": need_reference}
|
|
if doc_ids_str:
|
|
chat_kwargs["doc_ids"] = doc_ids_str
|
|
async for ans in async_chat(dia, msg, False, **chat_kwargs):
|
|
# focus answer content only
|
|
answer = ans
|
|
break
|
|
content = answer["answer"]
|
|
|
|
response = {
|
|
"id": f"chatcmpl-{chat_id}",
|
|
"object": "chat.completion",
|
|
"created": int(time.time()),
|
|
"model": req.get("model", ""),
|
|
"usage": {
|
|
"prompt_tokens": num_tokens_from_string(prompt),
|
|
"completion_tokens": num_tokens_from_string(content),
|
|
"total_tokens": num_tokens_from_string(prompt) + num_tokens_from_string(content),
|
|
"completion_tokens_details": {
|
|
"reasoning_tokens": context_token_used,
|
|
"accepted_prediction_tokens": num_tokens_from_string(content),
|
|
"rejected_prediction_tokens": 0, # 0 for simplicity
|
|
},
|
|
},
|
|
"choices": [
|
|
{
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": content,
|
|
},
|
|
"logprobs": None,
|
|
"finish_reason": "stop",
|
|
"index": 0,
|
|
}
|
|
],
|
|
}
|
|
if need_reference:
|
|
response["choices"][0]["message"]["reference"] = chunks_format(answer.get("reference", {}))
|
|
|
|
return jsonify(response)
|
|
|
|
|
|
@manager.route("/agents_openai/<agent_id>/chat/completions", methods=["POST"]) # noqa: F821
|
|
@validate_request("model", "messages") # noqa: F821
|
|
@token_required
|
|
async def agents_completion_openai_compatibility(tenant_id, agent_id):
|
|
req = await get_request_json()
|
|
messages = req.get("messages", [])
|
|
if not messages:
|
|
return get_error_data_result("You must provide at least one message.")
|
|
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
|
return get_error_data_result(f"You don't own the agent {agent_id}")
|
|
|
|
filtered_messages = [m for m in messages if m["role"] in ["user", "assistant"]]
|
|
prompt_tokens = sum(num_tokens_from_string(m["content"]) for m in filtered_messages)
|
|
if not filtered_messages:
|
|
return jsonify(
|
|
get_data_openai(
|
|
id=agent_id,
|
|
content="No valid messages found (user or assistant).",
|
|
finish_reason="stop",
|
|
model=req.get("model", ""),
|
|
completion_tokens=num_tokens_from_string("No valid messages found (user or assistant)."),
|
|
prompt_tokens=prompt_tokens,
|
|
)
|
|
)
|
|
|
|
question = next((m["content"] for m in reversed(messages) if m["role"] == "user"), "")
|
|
|
|
stream = req.pop("stream", False)
|
|
if stream:
|
|
resp = Response(
|
|
completion_openai(
|
|
tenant_id,
|
|
agent_id,
|
|
question,
|
|
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
|
|
stream=True,
|
|
**req,
|
|
),
|
|
mimetype="text/event-stream",
|
|
)
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
else:
|
|
# For non-streaming, just return the response directly
|
|
async for response in completion_openai(
|
|
tenant_id,
|
|
agent_id,
|
|
question,
|
|
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
|
|
stream=False,
|
|
**req,
|
|
):
|
|
return jsonify(response)
|
|
|
|
return None
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/completions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
async def agent_completions(tenant_id, agent_id):
|
|
req = await get_request_json()
|
|
return_trace = bool(req.get("return_trace", False))
|
|
|
|
if req.get("stream", True):
|
|
|
|
async def generate():
|
|
trace_items = []
|
|
async for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
|
if isinstance(answer, str):
|
|
try:
|
|
ans = json.loads(answer[5:]) # remove "data:"
|
|
except Exception:
|
|
continue
|
|
|
|
event = ans.get("event")
|
|
if event == "node_finished":
|
|
if return_trace:
|
|
data = ans.get("data", {})
|
|
trace_items.append(
|
|
{
|
|
"component_id": data.get("component_id"),
|
|
"trace": [copy.deepcopy(data)],
|
|
}
|
|
)
|
|
ans.setdefault("data", {})["trace"] = trace_items
|
|
answer = "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
|
|
yield answer
|
|
|
|
if event not in ["message", "message_end"]:
|
|
continue
|
|
|
|
yield answer
|
|
|
|
yield "data:[DONE]\n\n"
|
|
|
|
resp = Response(generate(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
full_content = ""
|
|
reference = {}
|
|
final_ans = ""
|
|
trace_items = []
|
|
async for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
|
try:
|
|
ans = json.loads(answer[5:])
|
|
|
|
if ans["event"] == "message":
|
|
full_content += ans["data"]["content"]
|
|
|
|
if ans.get("data", {}).get("reference", None):
|
|
reference.update(ans["data"]["reference"])
|
|
|
|
if return_trace and ans.get("event") == "node_finished":
|
|
data = ans.get("data", {})
|
|
trace_items.append(
|
|
{
|
|
"component_id": data.get("component_id"),
|
|
"trace": [copy.deepcopy(data)],
|
|
}
|
|
)
|
|
|
|
final_ans = ans
|
|
except Exception as e:
|
|
return get_result(data=f"**ERROR**: {str(e)}")
|
|
final_ans["data"]["content"] = full_content
|
|
final_ans["data"]["reference"] = reference
|
|
if return_trace and final_ans:
|
|
final_ans["data"]["trace"] = trace_items
|
|
return get_result(data=final_ans)
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
|
|
@token_required
|
|
async def list_session(tenant_id, chat_id):
|
|
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message=f"You don't own the assistant {chat_id}.")
|
|
id = request.args.get("id")
|
|
name = request.args.get("name")
|
|
page_number = int(request.args.get("page", 1))
|
|
items_per_page = int(request.args.get("page_size", 30))
|
|
orderby = request.args.get("orderby", "create_time")
|
|
user_id = request.args.get("user_id")
|
|
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
|
|
desc = False
|
|
else:
|
|
desc = True
|
|
convs = ConversationService.get_list(chat_id, page_number, items_per_page, orderby, desc, id, name, user_id)
|
|
if not convs:
|
|
return get_result(data=[])
|
|
for conv in convs:
|
|
conv["messages"] = conv.pop("message")
|
|
infos = conv["messages"]
|
|
for info in infos:
|
|
if "prompt" in info:
|
|
info.pop("prompt")
|
|
conv["chat_id"] = conv.pop("dialog_id")
|
|
ref_messages = conv["reference"]
|
|
if ref_messages:
|
|
messages = conv["messages"]
|
|
message_num = 0
|
|
ref_num = 0
|
|
while message_num < len(messages) and ref_num < len(ref_messages):
|
|
if messages[message_num]["role"] != "user":
|
|
chunk_list = []
|
|
if "chunks" in ref_messages[ref_num]:
|
|
chunks = ref_messages[ref_num]["chunks"]
|
|
for chunk in chunks:
|
|
new_chunk = {
|
|
"id": chunk.get("chunk_id", chunk.get("id")),
|
|
"content": chunk.get("content_with_weight", chunk.get("content")),
|
|
"document_id": chunk.get("doc_id", chunk.get("document_id")),
|
|
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
|
|
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
|
|
"image_id": chunk.get("image_id", chunk.get("img_id")),
|
|
"positions": chunk.get("positions", chunk.get("position_int")),
|
|
}
|
|
|
|
chunk_list.append(new_chunk)
|
|
messages[message_num]["reference"] = chunk_list
|
|
ref_num += 1
|
|
message_num += 1
|
|
del conv["reference"]
|
|
return get_result(data=convs)
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["GET"]) # noqa: F821
|
|
@token_required
|
|
async def list_agent_session(tenant_id, agent_id):
|
|
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
|
|
return get_error_data_result(message=f"You don't own the agent {agent_id}.")
|
|
id = request.args.get("id")
|
|
user_id = request.args.get("user_id")
|
|
page_number = int(request.args.get("page", 1))
|
|
items_per_page = int(request.args.get("page_size", 30))
|
|
orderby = request.args.get("orderby", "update_time")
|
|
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
|
|
desc = False
|
|
else:
|
|
desc = True
|
|
# dsl defaults to True in all cases except for False and false
|
|
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
|
|
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id,
|
|
user_id, include_dsl)
|
|
if not convs:
|
|
return get_result(data=[])
|
|
for conv in convs:
|
|
conv["messages"] = conv.pop("message")
|
|
infos = conv["messages"]
|
|
for info in infos:
|
|
if "prompt" in info:
|
|
info.pop("prompt")
|
|
conv["agent_id"] = conv.pop("dialog_id")
|
|
# Fix for session listing endpoint
|
|
if conv["reference"]:
|
|
messages = conv["messages"]
|
|
message_num = 0
|
|
chunk_num = 0
|
|
# Ensure reference is a list type to prevent KeyError
|
|
if not isinstance(conv["reference"], list):
|
|
conv["reference"] = []
|
|
while message_num < len(messages):
|
|
if message_num != 0 and messages[message_num]["role"] != "user":
|
|
chunk_list = []
|
|
# Add boundary and type checks to prevent KeyError
|
|
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(
|
|
conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
|
|
chunks = conv["reference"][chunk_num]["chunks"]
|
|
for chunk in chunks:
|
|
# Ensure chunk is a dictionary before calling get method
|
|
if not isinstance(chunk, dict):
|
|
continue
|
|
new_chunk = {
|
|
"id": chunk.get("chunk_id", chunk.get("id")),
|
|
"content": chunk.get("content_with_weight", chunk.get("content")),
|
|
"document_id": chunk.get("doc_id", chunk.get("document_id")),
|
|
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
|
|
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
|
|
"image_id": chunk.get("image_id", chunk.get("img_id")),
|
|
"positions": chunk.get("positions", chunk.get("position_int")),
|
|
}
|
|
chunk_list.append(new_chunk)
|
|
chunk_num += 1
|
|
messages[message_num]["reference"] = chunk_list
|
|
message_num += 1
|
|
del conv["reference"]
|
|
return get_result(data=convs)
|
|
|
|
|
|
@manager.route("/chats/<chat_id>/sessions", methods=["DELETE"]) # noqa: F821
|
|
@token_required
|
|
async def delete(tenant_id, chat_id):
|
|
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
|
return get_error_data_result(message="You don't own the chat")
|
|
|
|
errors = []
|
|
success_count = 0
|
|
req = await get_request_json()
|
|
convs = ConversationService.query(dialog_id=chat_id)
|
|
if not req:
|
|
ids = None
|
|
else:
|
|
ids = req.get("ids")
|
|
|
|
if not ids:
|
|
conv_list = []
|
|
for conv in convs:
|
|
conv_list.append(conv.id)
|
|
else:
|
|
conv_list = ids
|
|
|
|
unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
|
|
conv_list = unique_conv_ids
|
|
|
|
for id in conv_list:
|
|
conv = ConversationService.query(id=id, dialog_id=chat_id)
|
|
if not conv:
|
|
errors.append(f"The chat doesn't own the session {id}")
|
|
continue
|
|
ConversationService.delete_by_id(id)
|
|
success_count += 1
|
|
|
|
if errors:
|
|
if success_count > 0:
|
|
return get_result(data={"success_count": success_count, "errors": errors},
|
|
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
|
else:
|
|
return get_error_data_result(message="; ".join(errors))
|
|
|
|
if duplicate_messages:
|
|
if success_count > 0:
|
|
return get_result(
|
|
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
|
|
data={"success_count": success_count, "errors": duplicate_messages})
|
|
else:
|
|
return get_error_data_result(message=";".join(duplicate_messages))
|
|
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/agents/<agent_id>/sessions", methods=["DELETE"]) # noqa: F821
|
|
@token_required
|
|
async def delete_agent_session(tenant_id, agent_id):
|
|
errors = []
|
|
success_count = 0
|
|
req = await get_request_json()
|
|
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
|
|
if not cvs:
|
|
return get_error_data_result(f"You don't own the agent {agent_id}")
|
|
|
|
convs = API4ConversationService.query(dialog_id=agent_id)
|
|
if not convs:
|
|
return get_error_data_result(f"Agent {agent_id} has no sessions")
|
|
|
|
if not req:
|
|
ids = None
|
|
else:
|
|
ids = req.get("ids")
|
|
|
|
if not ids:
|
|
conv_list = []
|
|
for conv in convs:
|
|
conv_list.append(conv.id)
|
|
else:
|
|
conv_list = ids
|
|
|
|
unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
|
|
conv_list = unique_conv_ids
|
|
|
|
for session_id in conv_list:
|
|
conv = API4ConversationService.query(id=session_id, dialog_id=agent_id)
|
|
if not conv:
|
|
errors.append(f"The agent doesn't own the session {session_id}")
|
|
continue
|
|
API4ConversationService.delete_by_id(session_id)
|
|
success_count += 1
|
|
|
|
if errors:
|
|
if success_count > 0:
|
|
return get_result(data={"success_count": success_count, "errors": errors},
|
|
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
|
else:
|
|
return get_error_data_result(message="; ".join(errors))
|
|
|
|
if duplicate_messages:
|
|
if success_count > 0:
|
|
return get_result(
|
|
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
|
|
data={"success_count": success_count, "errors": duplicate_messages})
|
|
else:
|
|
return get_error_data_result(message=";".join(duplicate_messages))
|
|
|
|
return get_result()
|
|
|
|
|
|
@manager.route("/sessions/ask", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
async def ask_about(tenant_id):
|
|
req = await get_request_json()
|
|
if not req.get("question"):
|
|
return get_error_data_result("`question` is required.")
|
|
if not req.get("dataset_ids"):
|
|
return get_error_data_result("`dataset_ids` is required.")
|
|
if not isinstance(req.get("dataset_ids"), list):
|
|
return get_error_data_result("`dataset_ids` should be a list.")
|
|
req["kb_ids"] = req.pop("dataset_ids")
|
|
for kb_id in req["kb_ids"]:
|
|
if not KnowledgebaseService.accessible(kb_id, tenant_id):
|
|
return get_error_data_result(f"You don't own the dataset {kb_id}.")
|
|
kbs = KnowledgebaseService.query(id=kb_id)
|
|
kb = kbs[0]
|
|
if kb.chunk_num == 0:
|
|
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
|
|
uid = tenant_id
|
|
|
|
async def stream():
|
|
nonlocal req, uid
|
|
try:
|
|
async for ans in async_ask(req["question"], req["kb_ids"], uid):
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
except Exception as e:
|
|
yield "data:" + json.dumps(
|
|
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
|
ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
|
|
@manager.route("/sessions/related_questions", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
async def related_questions(tenant_id):
|
|
req = await get_request_json()
|
|
if not req.get("question"):
|
|
return get_error_data_result("`question` is required.")
|
|
question = req["question"]
|
|
industry = req.get("industry", "")
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
|
prompt = """
|
|
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
|
|
Instructions:
|
|
- Based on the keywords provided by the user, generate 5-10 related search terms.
|
|
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
|
|
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
|
|
- Keep the term length between 2-4 words, concise and clear.
|
|
- DO NOT translate, use the language of the original keywords.
|
|
"""
|
|
if industry:
|
|
prompt += f" - Ensure all search terms are relevant to the industry: {industry}.\n"
|
|
prompt += """
|
|
### Example:
|
|
Keywords: Chinese football
|
|
Related search terms:
|
|
1. Current status of Chinese football
|
|
2. Reform of Chinese football
|
|
3. Youth training of Chinese football
|
|
4. Chinese football in the Asian Cup
|
|
5. Chinese football in the World Cup
|
|
|
|
Reason:
|
|
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
|
|
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
|
|
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
|
|
|
|
"""
|
|
ans = await chat_mdl.async_chat(
|
|
prompt,
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": f"""
|
|
Keywords: {question}
|
|
Related search terms:
|
|
""",
|
|
}
|
|
],
|
|
{"temperature": 0.9},
|
|
)
|
|
return get_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|
|
|
|
|
|
@manager.route("/chatbots/<dialog_id>/completions", methods=["POST"]) # noqa: F821
|
|
async def chatbot_completions(dialog_id):
|
|
req = await get_request_json()
|
|
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
if "quote" not in req:
|
|
req["quote"] = False
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(iframe_completion(dialog_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
async for answer in iframe_completion(dialog_id, **req):
|
|
return get_result(data=answer)
|
|
|
|
return None
|
|
|
|
@manager.route("/chatbots/<dialog_id>/info", methods=["GET"]) # noqa: F821
|
|
async def chatbots_inputs(dialog_id):
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
e, dialog = DialogService.get_by_id(dialog_id)
|
|
if not e:
|
|
return get_error_data_result(f"Can't find dialog by ID: {dialog_id}")
|
|
|
|
return get_result(
|
|
data={
|
|
"title": dialog.name,
|
|
"avatar": dialog.icon,
|
|
"prologue": dialog.prompt_config.get("prologue", ""),
|
|
"has_tavily_key": bool(dialog.prompt_config.get("tavily_api_key", "").strip()),
|
|
}
|
|
)
|
|
|
|
|
|
@manager.route("/agentbots/<agent_id>/completions", methods=["POST"]) # noqa: F821
|
|
async def agent_bot_completions(agent_id):
|
|
req = await get_request_json()
|
|
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
if req.get("stream", True):
|
|
resp = Response(agent_completion(objs[0].tenant_id, agent_id, **req), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
async for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
|
|
return get_result(data=answer)
|
|
|
|
return None
|
|
|
|
@manager.route("/agentbots/<agent_id>/inputs", methods=["GET"]) # noqa: F821
|
|
async def begin_inputs(agent_id):
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
e, cvs = UserCanvasService.get_by_id(agent_id)
|
|
if not e:
|
|
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
|
|
|
|
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id, canvas_id=cvs.id)
|
|
return get_result(
|
|
data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"),
|
|
"prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
|
|
|
|
|
|
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
|
|
@validate_request("question", "kb_ids")
|
|
async def ask_about_embedded():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
req = await get_request_json()
|
|
uid = objs[0].tenant_id
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_config = {}
|
|
if search_id:
|
|
if search_app := SearchService.get_detail(search_id):
|
|
search_config = search_app.get("search_config", {})
|
|
|
|
async def stream():
|
|
nonlocal req, uid
|
|
try:
|
|
async for ans in async_ask(req["question"], req["kb_ids"], uid, search_config=search_config):
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
|
except Exception as e:
|
|
yield "data:" + json.dumps(
|
|
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
|
ensure_ascii=False) + "\n\n"
|
|
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
|
|
|
resp = Response(stream(), mimetype="text/event-stream")
|
|
resp.headers.add_header("Cache-control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
|
return resp
|
|
|
|
|
|
@manager.route("/searchbots/retrieval_test", methods=["POST"]) # noqa: F821
|
|
@validate_request("kb_id", "question")
|
|
async def retrieval_test_embedded():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
req = await get_request_json()
|
|
page = int(req.get("page", 1))
|
|
size = int(req.get("size", 30))
|
|
question = req["question"]
|
|
kb_ids = req["kb_id"]
|
|
if isinstance(kb_ids, str):
|
|
kb_ids = [kb_ids]
|
|
if not kb_ids:
|
|
return get_json_result(data=False, message='Please specify dataset firstly.',
|
|
code=RetCode.DATA_ERROR)
|
|
doc_ids = req.get("doc_ids", [])
|
|
similarity_threshold = float(req.get("similarity_threshold", 0.0))
|
|
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
|
use_kg = req.get("use_kg", False)
|
|
top = int(req.get("top_k", 1024))
|
|
langs = req.get("cross_languages", [])
|
|
rerank_id = req.get("rerank_id", "")
|
|
tenant_id = objs[0].tenant_id
|
|
if not tenant_id:
|
|
return get_error_data_result(message="permission denined.")
|
|
|
|
async def _retrieval():
|
|
nonlocal similarity_threshold, vector_similarity_weight, top, rerank_id
|
|
local_doc_ids = list(doc_ids) if doc_ids else []
|
|
tenant_ids = []
|
|
_question = question
|
|
|
|
meta_data_filter = {}
|
|
chat_mdl = None
|
|
if req.get("search_id", ""):
|
|
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
|
|
meta_data_filter = search_config.get("meta_data_filter", {})
|
|
if meta_data_filter.get("method") in ["auto", "semi_auto"]:
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
|
|
# Apply search_config settings if not explicitly provided in request
|
|
if not req.get("similarity_threshold"):
|
|
similarity_threshold = float(search_config.get("similarity_threshold", similarity_threshold))
|
|
if not req.get("vector_similarity_weight"):
|
|
vector_similarity_weight = float(search_config.get("vector_similarity_weight", vector_similarity_weight))
|
|
if not req.get("top_k"):
|
|
top = int(search_config.get("top_k", top))
|
|
if not req.get("rerank_id"):
|
|
rerank_id = search_config.get("rerank_id", "")
|
|
else:
|
|
meta_data_filter = req.get("meta_data_filter") or {}
|
|
if meta_data_filter.get("method") in ["auto", "semi_auto"]:
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
|
|
|
if meta_data_filter:
|
|
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
|
local_doc_ids = await apply_meta_data_filter(meta_data_filter, metas, _question, chat_mdl, local_doc_ids)
|
|
|
|
tenants = UserTenantService.query(user_id=tenant_id)
|
|
for kb_id in kb_ids:
|
|
for tenant in tenants:
|
|
if KnowledgebaseService.query(tenant_id=tenant.tenant_id, id=kb_id):
|
|
tenant_ids.append(tenant.tenant_id)
|
|
break
|
|
else:
|
|
return get_json_result(data=False, message="Only owner of dataset authorized for this operation.",
|
|
code=RetCode.OPERATING_ERROR)
|
|
|
|
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
|
if not e:
|
|
return get_error_data_result(message="Knowledgebase not found!")
|
|
|
|
if langs:
|
|
_question = await cross_languages(kb.tenant_id, None, _question, langs)
|
|
|
|
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
|
|
|
rerank_mdl = None
|
|
if rerank_id:
|
|
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK.value, llm_name=rerank_id)
|
|
|
|
if req.get("keyword", False):
|
|
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
|
_question += await keyword_extraction(chat_mdl, _question)
|
|
|
|
labels = label_question(_question, [kb])
|
|
ranks = await settings.retriever.retrieval(
|
|
_question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top,
|
|
local_doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
|
|
)
|
|
if use_kg:
|
|
ck = await settings.kg_retriever.retrieval(_question, tenant_ids, kb_ids, embd_mdl,
|
|
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
|
if ck["content_with_weight"]:
|
|
ranks["chunks"].insert(0, ck)
|
|
|
|
for c in ranks["chunks"]:
|
|
c.pop("vector", None)
|
|
ranks["labels"] = labels
|
|
|
|
return get_json_result(data=ranks)
|
|
|
|
try:
|
|
return await _retrieval()
|
|
except Exception as e:
|
|
if str(e).find("not_found") > 0:
|
|
return get_json_result(data=False, message="No chunk found! Check the chunk status please!",
|
|
code=RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/searchbots/related_questions", methods=["POST"]) # noqa: F821
|
|
@validate_request("question")
|
|
async def related_questions_embedded():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
req = await get_request_json()
|
|
tenant_id = objs[0].tenant_id
|
|
if not tenant_id:
|
|
return get_error_data_result(message="permission denined.")
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_config = {}
|
|
if search_id:
|
|
if search_app := SearchService.get_detail(search_id):
|
|
search_config = search_app.get("search_config", {})
|
|
|
|
question = req["question"]
|
|
|
|
chat_id = search_config.get("chat_id", "")
|
|
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_id)
|
|
|
|
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
|
|
prompt = load_prompt("related_question")
|
|
ans = await chat_mdl.async_chat(
|
|
prompt,
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": f"""
|
|
Keywords: {question}
|
|
Related search terms:
|
|
""",
|
|
}
|
|
],
|
|
gen_conf,
|
|
)
|
|
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|
|
|
|
|
|
@manager.route("/searchbots/detail", methods=["GET"]) # noqa: F821
|
|
async def detail_share_embedded():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
search_id = request.args["search_id"]
|
|
tenant_id = objs[0].tenant_id
|
|
if not tenant_id:
|
|
return get_error_data_result(message="permission denined.")
|
|
try:
|
|
tenants = UserTenantService.query(user_id=tenant_id)
|
|
for tenant in tenants:
|
|
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
|
|
break
|
|
else:
|
|
return get_json_result(data=False, message="Has no permission for this operation.",
|
|
code=RetCode.OPERATING_ERROR)
|
|
|
|
search = SearchService.get_detail(search_id)
|
|
if not search:
|
|
return get_error_data_result(message="Can't find this Search App!")
|
|
return get_json_result(data=search)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/searchbots/mindmap", methods=["POST"]) # noqa: F821
|
|
@validate_request("question", "kb_ids")
|
|
async def mindmap():
|
|
token = request.headers.get("Authorization").split()
|
|
if len(token) != 2:
|
|
return get_error_data_result(message='Authorization is not valid!"')
|
|
token = token[1]
|
|
objs = APIToken.query(beta=token)
|
|
if not objs:
|
|
return get_error_data_result(message='Authentication error: API key is invalid!"')
|
|
|
|
tenant_id = objs[0].tenant_id
|
|
req = await get_request_json()
|
|
|
|
search_id = req.get("search_id", "")
|
|
search_app = SearchService.get_detail(search_id) if search_id else {}
|
|
|
|
mind_map =await gen_mindmap(req["question"], req["kb_ids"], tenant_id, search_app.get("search_config", {}))
|
|
if "error" in mind_map:
|
|
return server_error_response(Exception(mind_map["error"]))
|
|
return get_json_result(data=mind_map)
|
|
|
|
@manager.route("/sequence2txt", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
async def sequence2txt(tenant_id):
|
|
req = await request.form
|
|
stream_mode = req.get("stream", "false").lower() == "true"
|
|
files = await request.files
|
|
if "file" not in files:
|
|
return get_error_data_result(message="Missing 'file' in multipart form-data")
|
|
|
|
uploaded = files["file"]
|
|
|
|
ALLOWED_EXTS = {
|
|
".wav", ".mp3", ".m4a", ".aac",
|
|
".flac", ".ogg", ".webm",
|
|
".opus", ".wma"
|
|
}
|
|
|
|
filename = uploaded.filename or ""
|
|
suffix = os.path.splitext(filename)[-1].lower()
|
|
if suffix not in ALLOWED_EXTS:
|
|
return get_error_data_result(message=
|
|
f"Unsupported audio format: {suffix}. "
|
|
f"Allowed: {', '.join(sorted(ALLOWED_EXTS))}"
|
|
)
|
|
fd, temp_audio_path = tempfile.mkstemp(suffix=suffix)
|
|
os.close(fd)
|
|
await uploaded.save(temp_audio_path)
|
|
|
|
tenants = TenantService.get_info_by(tenant_id)
|
|
if not tenants:
|
|
return get_error_data_result(message="Tenant not found!")
|
|
|
|
asr_id = tenants[0]["asr_id"]
|
|
if not asr_id:
|
|
return get_error_data_result(message="No default ASR model is set")
|
|
|
|
asr_mdl=LLMBundle(tenants[0]["tenant_id"], LLMType.SPEECH2TEXT, asr_id)
|
|
if not stream_mode:
|
|
text = asr_mdl.transcription(temp_audio_path)
|
|
try:
|
|
os.remove(temp_audio_path)
|
|
except Exception as e:
|
|
logging.error(f"Failed to remove temp audio file: {str(e)}")
|
|
return get_json_result(data={"text": text})
|
|
async def event_stream():
|
|
try:
|
|
for evt in asr_mdl.stream_transcription(temp_audio_path):
|
|
yield f"data: {json.dumps(evt, ensure_ascii=False)}\n\n"
|
|
except Exception as e:
|
|
err = {"event": "error", "text": str(e)}
|
|
yield f"data: {json.dumps(err, ensure_ascii=False)}\n\n"
|
|
finally:
|
|
try:
|
|
os.remove(temp_audio_path)
|
|
except Exception as e:
|
|
logging.error(f"Failed to remove temp audio file: {str(e)}")
|
|
|
|
return Response(event_stream(), content_type="text/event-stream")
|
|
|
|
@manager.route("/tts", methods=["POST"]) # noqa: F821
|
|
@token_required
|
|
async def tts(tenant_id):
|
|
req = await get_request_json()
|
|
text = req["text"]
|
|
|
|
tenants = TenantService.get_info_by(tenant_id)
|
|
if not tenants:
|
|
return get_error_data_result(message="Tenant not found!")
|
|
|
|
tts_id = tenants[0]["tts_id"]
|
|
if not tts_id:
|
|
return get_error_data_result(message="No default TTS model is set")
|
|
|
|
tts_mdl = LLMBundle(tenants[0]["tenant_id"], LLMType.TTS, tts_id)
|
|
|
|
def stream_audio():
|
|
try:
|
|
for txt in re.split(r"[,。/《》?;:!\n\r:;]+", text):
|
|
for chunk in tts_mdl.tts(txt):
|
|
yield chunk
|
|
except Exception as e:
|
|
yield ("data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e)}}, ensure_ascii=False)).encode("utf-8")
|
|
|
|
resp = Response(stream_audio(), mimetype="audio/mpeg")
|
|
resp.headers.add_header("Cache-Control", "no-cache")
|
|
resp.headers.add_header("Connection", "keep-alive")
|
|
resp.headers.add_header("X-Accel-Buffering", "no")
|
|
|
|
return resp |