mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-24 03:56:37 +08:00
### What problem does this PR solve? This PR introduces automatic table orientation detection and correction within the PDF parser. This ensures that tables in PDFs are correctly oriented before structure recognition, improving overall parsing accuracy. ### Type of change - [x] New Feature (non-breaking change which adds functionality) - [x] Documentation Update
1769 lines
70 KiB
Python
1769 lines
70 KiB
Python
#
|
||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
import asyncio
|
||
import logging
|
||
import math
|
||
import os
|
||
import random
|
||
import re
|
||
import sys
|
||
import threading
|
||
from collections import Counter, defaultdict
|
||
from copy import deepcopy
|
||
from io import BytesIO
|
||
from timeit import default_timer as timer
|
||
|
||
import numpy as np
|
||
import pdfplumber
|
||
import xgboost as xgb
|
||
from huggingface_hub import snapshot_download
|
||
from PIL import Image
|
||
from pypdf import PdfReader as pdf2_read
|
||
from sklearn.cluster import KMeans
|
||
from sklearn.metrics import silhouette_score
|
||
|
||
from common.file_utils import get_project_base_directory
|
||
from common.misc_utils import pip_install_torch
|
||
from deepdoc.vision import OCR, AscendLayoutRecognizer, LayoutRecognizer, Recognizer, TableStructureRecognizer
|
||
from rag.nlp import rag_tokenizer
|
||
from rag.prompts.generator import vision_llm_describe_prompt
|
||
from common import settings
|
||
|
||
|
||
|
||
from common.misc_utils import thread_pool_exec
|
||
|
||
LOCK_KEY_pdfplumber = "global_shared_lock_pdfplumber"
|
||
if LOCK_KEY_pdfplumber not in sys.modules:
|
||
sys.modules[LOCK_KEY_pdfplumber] = threading.Lock()
|
||
|
||
|
||
class RAGFlowPdfParser:
|
||
def __init__(self, **kwargs):
|
||
"""
|
||
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
||
|
||
For Linux:
|
||
export HF_ENDPOINT=https://hf-mirror.com
|
||
|
||
For Windows:
|
||
Good luck
|
||
^_-
|
||
|
||
"""
|
||
|
||
self.ocr = OCR()
|
||
self.parallel_limiter = None
|
||
if settings.PARALLEL_DEVICES > 1:
|
||
self.parallel_limiter = [asyncio.Semaphore(1) for _ in range(settings.PARALLEL_DEVICES)]
|
||
|
||
layout_recognizer_type = os.getenv("LAYOUT_RECOGNIZER_TYPE", "onnx").lower()
|
||
if layout_recognizer_type not in ["onnx", "ascend"]:
|
||
raise RuntimeError("Unsupported layout recognizer type.")
|
||
|
||
if hasattr(self, "model_speciess"):
|
||
recognizer_domain = "layout." + self.model_speciess
|
||
else:
|
||
recognizer_domain = "layout"
|
||
|
||
if layout_recognizer_type == "ascend":
|
||
logging.debug("Using Ascend LayoutRecognizer")
|
||
self.layouter = AscendLayoutRecognizer(recognizer_domain)
|
||
else: # onnx
|
||
logging.debug("Using Onnx LayoutRecognizer")
|
||
self.layouter = LayoutRecognizer(recognizer_domain)
|
||
self.tbl_det = TableStructureRecognizer()
|
||
|
||
self.updown_cnt_mdl = xgb.Booster()
|
||
try:
|
||
pip_install_torch()
|
||
import torch.cuda
|
||
|
||
if torch.cuda.is_available():
|
||
self.updown_cnt_mdl.set_param({"device": "cuda"})
|
||
except Exception:
|
||
logging.info("No torch found.")
|
||
try:
|
||
model_dir = os.path.join(get_project_base_directory(), "rag/res/deepdoc")
|
||
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
|
||
except Exception:
|
||
model_dir = snapshot_download(repo_id="InfiniFlow/text_concat_xgb_v1.0", local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), local_dir_use_symlinks=False)
|
||
self.updown_cnt_mdl.load_model(os.path.join(model_dir, "updown_concat_xgb.model"))
|
||
|
||
self.page_from = 0
|
||
self.column_num = 1
|
||
|
||
def __char_width(self, c):
|
||
return (c["x1"] - c["x0"]) // max(len(c["text"]), 1)
|
||
|
||
def __height(self, c):
|
||
return c["bottom"] - c["top"]
|
||
|
||
def _x_dis(self, a, b):
|
||
return min(abs(a["x1"] - b["x0"]), abs(a["x0"] - b["x1"]), abs(a["x0"] + a["x1"] - b["x0"] - b["x1"]) / 2)
|
||
|
||
def _y_dis(self, a, b):
|
||
return (b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
|
||
|
||
def _match_proj(self, b):
|
||
proj_patt = [
|
||
r"第[零一二三四五六七八九十百]+章",
|
||
r"第[零一二三四五六七八九十百]+[条节]",
|
||
r"[零一二三四五六七八九十百]+[、是 ]",
|
||
r"[\((][零一二三四五六七八九十百]+[)\)]",
|
||
r"[\((][0-9]+[)\)]",
|
||
r"[0-9]+(、|\.[ ]|)|\.[^0-9./a-zA-Z_%><-]{4,})",
|
||
r"[0-9]+\.[0-9.]+(、|\.[ ])",
|
||
r"[⚫•➢①② ]",
|
||
]
|
||
return any([re.match(p, b["text"]) for p in proj_patt])
|
||
|
||
def _updown_concat_features(self, up, down):
|
||
w = max(self.__char_width(up), self.__char_width(down))
|
||
h = max(self.__height(up), self.__height(down))
|
||
y_dis = self._y_dis(up, down)
|
||
LEN = 6
|
||
tks_down = rag_tokenizer.tokenize(down["text"][:LEN]).split()
|
||
tks_up = rag_tokenizer.tokenize(up["text"][-LEN:]).split()
|
||
tks_all = up["text"][-LEN:].strip() + (" " if re.match(r"[a-zA-Z0-9]+", up["text"][-1] + down["text"][0]) else "") + down["text"][:LEN].strip()
|
||
tks_all = rag_tokenizer.tokenize(tks_all).split()
|
||
fea = [
|
||
up.get("R", -1) == down.get("R", -1),
|
||
y_dis / h,
|
||
down["page_number"] - up["page_number"],
|
||
up["layout_type"] == down["layout_type"],
|
||
up["layout_type"] == "text",
|
||
down["layout_type"] == "text",
|
||
up["layout_type"] == "table",
|
||
down["layout_type"] == "table",
|
||
True if re.search(r"([。?!;!?;+))]|[a-z]\.)$", up["text"]) else False,
|
||
True if re.search(r"[,:‘“、0-9(+-]$", up["text"]) else False,
|
||
True if re.search(r"(^.?[/,?;:\],。;:’”?!》】)-])", down["text"]) else False,
|
||
True if re.match(r"[\((][^\(\)()]+[)\)]$", up["text"]) else False,
|
||
True if re.search(r"[,,][^。.]+$", up["text"]) else False,
|
||
True if re.search(r"[,,][^。.]+$", up["text"]) else False,
|
||
True if re.search(r"[\((][^\))]+$", up["text"]) and re.search(r"[\))]", down["text"]) else False,
|
||
self._match_proj(down),
|
||
True if re.match(r"[A-Z]", down["text"]) else False,
|
||
True if re.match(r"[A-Z]", up["text"][-1]) else False,
|
||
True if re.match(r"[a-z0-9]", up["text"][-1]) else False,
|
||
True if re.match(r"[0-9.%,-]+$", down["text"]) else False,
|
||
up["text"].strip()[-2:] == down["text"].strip()[-2:] if len(up["text"].strip()) > 1 and len(down["text"].strip()) > 1 else False,
|
||
up["x0"] > down["x1"],
|
||
abs(self.__height(up) - self.__height(down)) / min(self.__height(up), self.__height(down)),
|
||
self._x_dis(up, down) / max(w, 0.000001),
|
||
(len(up["text"]) - len(down["text"])) / max(len(up["text"]), len(down["text"])),
|
||
len(tks_all) - len(tks_up) - len(tks_down),
|
||
len(tks_down) - len(tks_up),
|
||
tks_down[-1] == tks_up[-1] if tks_down and tks_up else False,
|
||
max(down["in_row"], up["in_row"]),
|
||
abs(down["in_row"] - up["in_row"]),
|
||
len(tks_down) == 1 and rag_tokenizer.tag(tks_down[0]).find("n") >= 0,
|
||
len(tks_up) == 1 and rag_tokenizer.tag(tks_up[0]).find("n") >= 0,
|
||
]
|
||
return fea
|
||
|
||
@staticmethod
|
||
def sort_X_by_page(arr, threshold):
|
||
# sort using y1 first and then x1
|
||
arr = sorted(arr, key=lambda r: (r["page_number"], r["x0"], r["top"]))
|
||
for i in range(len(arr) - 1):
|
||
for j in range(i, -1, -1):
|
||
# restore the order using th
|
||
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threshold and arr[j + 1]["top"] < arr[j]["top"] and arr[j + 1]["page_number"] == arr[j]["page_number"]:
|
||
tmp = arr[j]
|
||
arr[j] = arr[j + 1]
|
||
arr[j + 1] = tmp
|
||
return arr
|
||
|
||
def _has_color(self, o):
|
||
if o.get("ncs", "") == "DeviceGray":
|
||
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and o["non_stroking_color"][0] == 1:
|
||
if re.match(r"[a-zT_\[\]\(\)-]+", o.get("text", "")):
|
||
return False
|
||
return True
|
||
|
||
def _evaluate_table_orientation(self, table_img, sample_ratio=0.3):
|
||
"""
|
||
Evaluate the best rotation orientation for a table image.
|
||
|
||
Tests 4 rotation angles (0°, 90°, 180°, 270°) and uses OCR
|
||
confidence scores to determine the best orientation.
|
||
|
||
Args:
|
||
table_img: PIL Image object of the table region
|
||
sample_ratio: Sampling ratio for quick evaluation
|
||
|
||
Returns:
|
||
tuple: (best_angle, best_img, confidence_scores)
|
||
- best_angle: Best rotation angle (0, 90, 180, 270)
|
||
- best_img: Image rotated to best orientation
|
||
- confidence_scores: Dict of scores for each angle
|
||
"""
|
||
|
||
rotations = [
|
||
(0, "original"),
|
||
(90, "rotate_90"), # clockwise 90°
|
||
(180, "rotate_180"), # 180°
|
||
(270, "rotate_270"), # clockwise 270° (counter-clockwise 90°)
|
||
]
|
||
|
||
results = {}
|
||
best_score = -1
|
||
best_angle = 0
|
||
best_img = table_img
|
||
|
||
for angle, name in rotations:
|
||
# Rotate image
|
||
if angle == 0:
|
||
rotated_img = table_img
|
||
else:
|
||
# PIL's rotate is counter-clockwise, use negative angle for clockwise
|
||
rotated_img = table_img.rotate(-angle, expand=True)
|
||
|
||
# Convert to numpy array for OCR
|
||
img_array = np.array(rotated_img)
|
||
|
||
# Perform OCR detection and recognition
|
||
try:
|
||
ocr_results = self.ocr(img_array)
|
||
|
||
if ocr_results:
|
||
# Calculate average confidence
|
||
scores = [conf for _, (_, conf) in ocr_results]
|
||
avg_score = sum(scores) / len(scores) if scores else 0
|
||
total_regions = len(scores)
|
||
|
||
# Combined score: considers both average confidence and number of regions
|
||
# More regions + higher confidence = better orientation
|
||
combined_score = avg_score * (1 + 0.1 * min(total_regions, 50) / 50)
|
||
else:
|
||
avg_score = 0
|
||
total_regions = 0
|
||
combined_score = 0
|
||
|
||
except Exception as e:
|
||
logging.warning(f"OCR failed for angle {angle}: {e}")
|
||
avg_score = 0
|
||
total_regions = 0
|
||
combined_score = 0
|
||
|
||
results[angle] = {"avg_confidence": avg_score, "total_regions": total_regions, "combined_score": combined_score}
|
||
|
||
logging.debug(f"Table orientation {angle}°: avg_conf={avg_score:.4f}, regions={total_regions}, combined={combined_score:.4f}")
|
||
|
||
if combined_score > best_score:
|
||
best_score = combined_score
|
||
best_angle = angle
|
||
best_img = rotated_img
|
||
|
||
logging.info(f"Best table orientation: {best_angle}° (score={best_score:.4f})")
|
||
|
||
return best_angle, best_img, results
|
||
|
||
def _table_transformer_job(self, ZM, auto_rotate=True):
|
||
"""
|
||
Process table structure recognition.
|
||
|
||
When auto_rotate=True, the complete workflow:
|
||
1. Evaluate table orientation and select the best rotation angle
|
||
2. Use rotated image for table structure recognition (TSR)
|
||
3. Re-OCR the rotated image
|
||
4. Match new OCR results with TSR cell coordinates
|
||
|
||
Args:
|
||
ZM: Zoom factor
|
||
auto_rotate: Whether to enable auto orientation correction
|
||
"""
|
||
logging.debug("Table processing...")
|
||
imgs, pos = [], []
|
||
tbcnt = [0]
|
||
MARGIN = 10
|
||
self.tb_cpns = []
|
||
self.table_rotations = {} # Store rotation info for each table
|
||
self.rotated_table_imgs = {} # Store rotated table images
|
||
|
||
assert len(self.page_layout) == len(self.page_images)
|
||
|
||
# Collect layout info for all tables
|
||
table_layouts = [] # [(page, table_layout, left, top, right, bott), ...]
|
||
|
||
table_index = 0
|
||
for p, tbls in enumerate(self.page_layout): # for page
|
||
tbls = [f for f in tbls if f["type"] == "table"]
|
||
tbcnt.append(len(tbls))
|
||
if not tbls:
|
||
continue
|
||
for tb in tbls: # for table
|
||
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, tb["x1"] + MARGIN, tb["bottom"] + MARGIN
|
||
left *= ZM
|
||
top *= ZM
|
||
right *= ZM
|
||
bott *= ZM
|
||
pos.append((left, top, p, table_index)) # Add page and table_index
|
||
|
||
# Record table layout info
|
||
table_layouts.append({"page": p, "table_index": table_index, "layout": tb, "coords": (left, top, right, bott)})
|
||
|
||
# Crop table image
|
||
table_img = self.page_images[p].crop((left, top, right, bott))
|
||
|
||
if auto_rotate:
|
||
# Evaluate table orientation
|
||
logging.debug(f"Evaluating orientation for table {table_index} on page {p}")
|
||
best_angle, rotated_img, rotation_scores = self._evaluate_table_orientation(table_img)
|
||
|
||
# Store rotation info
|
||
self.table_rotations[table_index] = {
|
||
"page": p,
|
||
"original_pos": (left, top, right, bott),
|
||
"best_angle": best_angle,
|
||
"scores": rotation_scores,
|
||
"rotated_size": rotated_img.size, # (width, height)
|
||
}
|
||
|
||
# Store the rotated image
|
||
self.rotated_table_imgs[table_index] = rotated_img
|
||
imgs.append(rotated_img)
|
||
|
||
if best_angle != 0:
|
||
logging.info(f"Table {table_index} on page {p}: rotated {best_angle}° for better recognition")
|
||
else:
|
||
imgs.append(table_img)
|
||
self.table_rotations[table_index] = {"page": p, "original_pos": (left, top, right, bott), "best_angle": 0, "scores": {}, "rotated_size": table_img.size}
|
||
self.rotated_table_imgs[table_index] = table_img
|
||
|
||
table_index += 1
|
||
|
||
assert len(self.page_images) == len(tbcnt) - 1
|
||
if not imgs:
|
||
return
|
||
|
||
# Perform table structure recognition (TSR)
|
||
recos = self.tbl_det(imgs)
|
||
|
||
# If tables were rotated, re-OCR the rotated images and replace table boxes
|
||
if auto_rotate:
|
||
self._ocr_rotated_tables(ZM, table_layouts, recos, tbcnt)
|
||
|
||
# Process TSR results (keep original logic but handle rotated coordinates)
|
||
tbcnt = np.cumsum(tbcnt)
|
||
for i in range(len(tbcnt) - 1): # for page
|
||
pg = []
|
||
for j, tb_items in enumerate(recos[tbcnt[i] : tbcnt[i + 1]]): # for table
|
||
poss = pos[tbcnt[i] : tbcnt[i + 1]]
|
||
for it in tb_items: # for table components
|
||
# TSR coordinates are relative to rotated image, need to record
|
||
it["x0_rotated"] = it["x0"]
|
||
it["x1_rotated"] = it["x1"]
|
||
it["top_rotated"] = it["top"]
|
||
it["bottom_rotated"] = it["bottom"]
|
||
|
||
# For rotated tables, coordinate transformation to page space requires rotation
|
||
# Since we already re-OCR'd on rotated image, keep simple processing here
|
||
it["pn"] = poss[j][2] # page number
|
||
it["layoutno"] = j
|
||
it["table_index"] = poss[j][3] # table index
|
||
pg.append(it)
|
||
self.tb_cpns.extend(pg)
|
||
|
||
def gather(kwd, fzy=10, ption=0.6):
|
||
eles = Recognizer.sort_Y_firstly([r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
|
||
eles = Recognizer.layouts_cleanup(self.boxes, eles, 5, ption)
|
||
return Recognizer.sort_Y_firstly(eles, 0)
|
||
|
||
# add R,H,C,SP tag to boxes within table layout
|
||
headers = gather(r".*header$")
|
||
rows = gather(r".* (row|header)")
|
||
spans = gather(r".*spanning")
|
||
clmns = sorted([r for r in self.tb_cpns if re.match(r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0_rotated"] if "x0_rotated" in x else x["x0"]))
|
||
clmns = Recognizer.layouts_cleanup(self.boxes, clmns, 5, 0.5)
|
||
|
||
for b in self.boxes:
|
||
if b.get("layout_type", "") != "table":
|
||
continue
|
||
ii = Recognizer.find_overlapped_with_threshold(b, rows, thr=0.3)
|
||
if ii is not None:
|
||
b["R"] = ii
|
||
b["R_top"] = rows[ii]["top"]
|
||
b["R_bott"] = rows[ii]["bottom"]
|
||
|
||
ii = Recognizer.find_overlapped_with_threshold(b, headers, thr=0.3)
|
||
if ii is not None:
|
||
b["H_top"] = headers[ii]["top"]
|
||
b["H_bott"] = headers[ii]["bottom"]
|
||
b["H_left"] = headers[ii]["x0"]
|
||
b["H_right"] = headers[ii]["x1"]
|
||
b["H"] = ii
|
||
|
||
ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
|
||
if ii is not None:
|
||
b["C"] = ii
|
||
b["C_left"] = clmns[ii]["x0"]
|
||
b["C_right"] = clmns[ii]["x1"]
|
||
|
||
ii = Recognizer.find_overlapped_with_threshold(b, spans, thr=0.3)
|
||
if ii is not None:
|
||
b["H_top"] = spans[ii]["top"]
|
||
b["H_bott"] = spans[ii]["bottom"]
|
||
b["H_left"] = spans[ii]["x0"]
|
||
b["H_right"] = spans[ii]["x1"]
|
||
b["SP"] = ii
|
||
|
||
def _ocr_rotated_tables(self, ZM, table_layouts, tsr_results, tbcnt):
|
||
"""
|
||
Re-OCR rotated table images and update self.boxes.
|
||
|
||
Args:
|
||
ZM: Zoom factor
|
||
table_layouts: List of table layout info
|
||
tsr_results: TSR recognition results
|
||
tbcnt: Cumulative table count per page
|
||
"""
|
||
tbcnt = np.cumsum(tbcnt)
|
||
|
||
for tbl_info in table_layouts:
|
||
table_index = tbl_info["table_index"]
|
||
page = tbl_info["page"]
|
||
layout = tbl_info["layout"]
|
||
left, top, right, bott = tbl_info["coords"]
|
||
|
||
rotation_info = self.table_rotations.get(table_index, {})
|
||
best_angle = rotation_info.get("best_angle", 0)
|
||
|
||
# Get the rotated table image
|
||
rotated_img = self.rotated_table_imgs.get(table_index)
|
||
if rotated_img is None:
|
||
continue
|
||
|
||
# If table was rotated, re-OCR the rotated image
|
||
if best_angle != 0:
|
||
logging.info(f"Re-OCR table {table_index} on page {page} with rotation {best_angle}°")
|
||
|
||
# Perform OCR on rotated image
|
||
img_array = np.array(rotated_img)
|
||
ocr_results = self.ocr(img_array)
|
||
|
||
if not ocr_results:
|
||
logging.warning(f"No OCR results for rotated table {table_index}")
|
||
continue
|
||
|
||
# Remove original text boxes from this table region in self.boxes
|
||
# Table region is defined by layout's x0, top, x1, bottom
|
||
table_x0 = layout["x0"]
|
||
table_top = layout["top"]
|
||
table_x1 = layout["x1"]
|
||
table_bottom = layout["bottom"]
|
||
|
||
# Filter out original boxes within the table region
|
||
original_box_count = len(self.boxes)
|
||
self.boxes = [
|
||
b
|
||
for b in self.boxes
|
||
if not (
|
||
b.get("page_number") == page + self.page_from
|
||
and b.get("layout_type") == "table"
|
||
and b["x0"] >= table_x0 - 5
|
||
and b["x1"] <= table_x1 + 5
|
||
and b["top"] >= table_top - 5
|
||
and b["bottom"] <= table_bottom + 5
|
||
)
|
||
]
|
||
removed_count = original_box_count - len(self.boxes)
|
||
logging.debug(f"Removed {removed_count} original boxes from table {table_index}")
|
||
|
||
# Add new OCR results to self.boxes
|
||
# OCR coordinates are relative to rotated image, need to preserve
|
||
rotated_width, rotated_height = rotated_img.size
|
||
|
||
for bbox, (text, conf) in ocr_results:
|
||
if conf < 0.5: # Filter low confidence results
|
||
continue
|
||
|
||
# bbox format: [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
|
||
x_coords = [p[0] for p in bbox]
|
||
y_coords = [p[1] for p in bbox]
|
||
|
||
# Coordinates in rotated image
|
||
box_x0 = min(x_coords) / ZM
|
||
box_x1 = max(x_coords) / ZM
|
||
box_top = min(y_coords) / ZM
|
||
box_bottom = max(y_coords) / ZM
|
||
|
||
# Create new box, mark as from rotated table
|
||
new_box = {
|
||
"text": text,
|
||
"x0": box_x0 + table_x0, # Coordinates relative to page
|
||
"x1": box_x1 + table_x0,
|
||
"top": box_top + table_top + self.page_cum_height[page],
|
||
"bottom": box_bottom + table_top + self.page_cum_height[page],
|
||
"page_number": page + self.page_from,
|
||
"layout_type": "table",
|
||
"layoutno": f"table-{table_index}",
|
||
"_rotated": True,
|
||
"_rotation_angle": best_angle,
|
||
"_table_index": table_index,
|
||
# Save original coordinates in rotated image for table reconstruction
|
||
"_rotated_x0": box_x0,
|
||
"_rotated_x1": box_x1,
|
||
"_rotated_top": box_top,
|
||
"_rotated_bottom": box_bottom,
|
||
}
|
||
self.boxes.append(new_box)
|
||
|
||
logging.info(f"Added {len(ocr_results)} OCR results from rotated table {table_index}")
|
||
|
||
def __ocr(self, pagenum, img, chars, ZM=3, device_id: int | None = None):
|
||
start = timer()
|
||
bxs = self.ocr.detect(np.array(img), device_id)
|
||
logging.info(f"__ocr detecting boxes of a image cost ({timer() - start}s)")
|
||
|
||
start = timer()
|
||
if not bxs:
|
||
self.boxes.append([])
|
||
return
|
||
bxs = [(line[0], line[1][0]) for line in bxs]
|
||
bxs = Recognizer.sort_Y_firstly(
|
||
[
|
||
{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM, "top": b[0][1] / ZM, "text": "", "txt": t, "bottom": b[-1][1] / ZM, "chars": [], "page_number": pagenum}
|
||
for b, t in bxs
|
||
if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]
|
||
],
|
||
self.mean_height[pagenum - 1] / 3,
|
||
)
|
||
|
||
# merge chars in the same rect
|
||
for c in chars:
|
||
ii = Recognizer.find_overlapped(c, bxs)
|
||
if ii is None:
|
||
self.lefted_chars.append(c)
|
||
continue
|
||
ch = c["bottom"] - c["top"]
|
||
bh = bxs[ii]["bottom"] - bxs[ii]["top"]
|
||
if abs(ch - bh) / max(ch, bh) >= 0.7 and c["text"] != " ":
|
||
self.lefted_chars.append(c)
|
||
continue
|
||
bxs[ii]["chars"].append(c)
|
||
|
||
for b in bxs:
|
||
if not b["chars"]:
|
||
del b["chars"]
|
||
continue
|
||
m_ht = np.mean([c["height"] for c in b["chars"]])
|
||
for c in Recognizer.sort_Y_firstly(b["chars"], m_ht):
|
||
if c["text"] == " " and b["text"]:
|
||
if re.match(r"[0-9a-zA-Zа-яА-Я,.?;:!%%]", b["text"][-1]):
|
||
b["text"] += " "
|
||
else:
|
||
b["text"] += c["text"]
|
||
del b["chars"]
|
||
|
||
logging.info(f"__ocr sorting {len(chars)} chars cost {timer() - start}s")
|
||
start = timer()
|
||
boxes_to_reg = []
|
||
img_np = np.array(img)
|
||
for b in bxs:
|
||
if not b["text"]:
|
||
left, right, top, bott = b["x0"] * ZM, b["x1"] * ZM, b["top"] * ZM, b["bottom"] * ZM
|
||
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
|
||
boxes_to_reg.append(b)
|
||
del b["txt"]
|
||
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg], device_id)
|
||
for i in range(len(boxes_to_reg)):
|
||
boxes_to_reg[i]["text"] = texts[i]
|
||
del boxes_to_reg[i]["box_image"]
|
||
logging.info(f"__ocr recognize {len(bxs)} boxes cost {timer() - start}s")
|
||
bxs = [b for b in bxs if b["text"]]
|
||
if self.mean_height[pagenum - 1] == 0:
|
||
self.mean_height[pagenum - 1] = np.median([b["bottom"] - b["top"] for b in bxs])
|
||
self.boxes.append(bxs)
|
||
|
||
def _layouts_rec(self, ZM, drop=True):
|
||
assert len(self.page_images) == len(self.boxes)
|
||
self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM, drop=drop)
|
||
# cumlative Y
|
||
for i in range(len(self.boxes)):
|
||
self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||
self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
|
||
|
||
def _assign_column(self, boxes, zoomin=3):
|
||
if not boxes:
|
||
return boxes
|
||
if all("col_id" in b for b in boxes):
|
||
return boxes
|
||
|
||
by_page = defaultdict(list)
|
||
for b in boxes:
|
||
by_page[b["page_number"]].append(b)
|
||
|
||
page_cols = {}
|
||
|
||
for pg, bxs in by_page.items():
|
||
if not bxs:
|
||
page_cols[pg] = 1
|
||
continue
|
||
|
||
x0s_raw = np.array([b["x0"] for b in bxs], dtype=float)
|
||
|
||
min_x0 = np.min(x0s_raw)
|
||
max_x1 = np.max([b["x1"] for b in bxs])
|
||
width = max_x1 - min_x0
|
||
|
||
INDENT_TOL = width * 0.12
|
||
x0s = []
|
||
for x in x0s_raw:
|
||
if abs(x - min_x0) < INDENT_TOL:
|
||
x0s.append([min_x0])
|
||
else:
|
||
x0s.append([x])
|
||
x0s = np.array(x0s, dtype=float)
|
||
|
||
max_try = min(4, len(bxs))
|
||
if max_try < 2:
|
||
max_try = 1
|
||
best_k = 1
|
||
best_score = -1
|
||
|
||
for k in range(1, max_try + 1):
|
||
km = KMeans(n_clusters=k, n_init="auto")
|
||
labels = km.fit_predict(x0s)
|
||
|
||
centers = np.sort(km.cluster_centers_.flatten())
|
||
if len(centers) > 1:
|
||
try:
|
||
score = silhouette_score(x0s, labels)
|
||
except ValueError:
|
||
continue
|
||
else:
|
||
score = 0
|
||
if score > best_score:
|
||
best_score = score
|
||
best_k = k
|
||
|
||
page_cols[pg] = best_k
|
||
logging.info(f"[Page {pg}] best_score={best_score:.2f}, best_k={best_k}")
|
||
|
||
global_cols = Counter(page_cols.values()).most_common(1)[0][0]
|
||
logging.info(f"Global column_num decided by majority: {global_cols}")
|
||
|
||
for pg, bxs in by_page.items():
|
||
if not bxs:
|
||
continue
|
||
k = page_cols[pg]
|
||
if len(bxs) < k:
|
||
k = 1
|
||
x0s = np.array([[b["x0"]] for b in bxs], dtype=float)
|
||
km = KMeans(n_clusters=k, n_init="auto")
|
||
labels = km.fit_predict(x0s)
|
||
|
||
centers = km.cluster_centers_.flatten()
|
||
order = np.argsort(centers)
|
||
|
||
remap = {orig: new for new, orig in enumerate(order)}
|
||
|
||
for b, lb in zip(bxs, labels):
|
||
b["col_id"] = remap[lb]
|
||
|
||
grouped = defaultdict(list)
|
||
for b in bxs:
|
||
grouped[b["col_id"]].append(b)
|
||
|
||
return boxes
|
||
|
||
def _text_merge(self, zoomin=3):
|
||
# merge adjusted boxes
|
||
bxs = self._assign_column(self.boxes, zoomin)
|
||
|
||
def end_with(b, txt):
|
||
txt = txt.strip()
|
||
tt = b.get("text", "").strip()
|
||
return tt and tt.find(txt) == len(tt) - len(txt)
|
||
|
||
def start_with(b, txts):
|
||
tt = b.get("text", "").strip()
|
||
return tt and any([tt.find(t.strip()) == 0 for t in txts])
|
||
|
||
# horizontally merge adjacent box with the same layout
|
||
i = 0
|
||
while i < len(bxs) - 1:
|
||
b = bxs[i]
|
||
b_ = bxs[i + 1]
|
||
|
||
if b["page_number"] != b_["page_number"] or b.get("col_id") != b_.get("col_id"):
|
||
i += 1
|
||
continue
|
||
|
||
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
|
||
i += 1
|
||
continue
|
||
|
||
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
|
||
# merge
|
||
bxs[i]["x1"] = b_["x1"]
|
||
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
|
||
bxs[i]["bottom"] = (b["bottom"] + b_["bottom"]) / 2
|
||
bxs[i]["text"] += b_["text"]
|
||
bxs.pop(i + 1)
|
||
continue
|
||
i += 1
|
||
self.boxes = bxs
|
||
|
||
def _naive_vertical_merge(self, zoomin=3):
|
||
# bxs = self._assign_column(self.boxes, zoomin)
|
||
bxs = self.boxes
|
||
|
||
grouped = defaultdict(list)
|
||
for b in bxs:
|
||
# grouped[(b["page_number"], b.get("col_id", 0))].append(b)
|
||
grouped[(b["page_number"], "x")].append(b)
|
||
|
||
merged_boxes = []
|
||
for (pg, col), bxs in grouped.items():
|
||
bxs = sorted(bxs, key=lambda x: (x["top"], x["x0"]))
|
||
if not bxs:
|
||
continue
|
||
|
||
mh = self.mean_height[pg - 1] if self.mean_height else np.median([b["bottom"] - b["top"] for b in bxs]) or 10
|
||
|
||
i = 0
|
||
while i + 1 < len(bxs):
|
||
b = bxs[i]
|
||
b_ = bxs[i + 1]
|
||
|
||
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
|
||
bxs.pop(i)
|
||
continue
|
||
|
||
if not b["text"].strip():
|
||
bxs.pop(i)
|
||
continue
|
||
|
||
if not b["text"].strip() or b.get("layoutno") != b_.get("layoutno"):
|
||
i += 1
|
||
continue
|
||
|
||
if b_["top"] - b["bottom"] > mh * 1.5:
|
||
i += 1
|
||
continue
|
||
|
||
overlap = max(0, min(b["x1"], b_["x1"]) - max(b["x0"], b_["x0"]))
|
||
if overlap / max(1, min(b["x1"] - b["x0"], b_["x1"] - b_["x0"])) < 0.3:
|
||
i += 1
|
||
continue
|
||
|
||
concatting_feats = [
|
||
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
|
||
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
|
||
b_["text"].strip() and b_["text"].strip()[0] in "。;?!?”)),,、:",
|
||
]
|
||
# features for not concating
|
||
feats = [
|
||
b.get("layoutno", 0) != b_.get("layoutno", 0),
|
||
b["text"].strip()[-1] in "。?!?",
|
||
self.is_english and b["text"].strip()[-1] in ".!?",
|
||
b["page_number"] == b_["page_number"] and b_["top"] - b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
|
||
b["page_number"] < b_["page_number"] and abs(b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4,
|
||
]
|
||
# split features
|
||
detach_feats = [b["x1"] < b_["x0"], b["x0"] > b_["x1"]]
|
||
if (any(feats) and not any(concatting_feats)) or any(detach_feats):
|
||
logging.debug(
|
||
"{} {} {} {}".format(
|
||
b["text"],
|
||
b_["text"],
|
||
any(feats),
|
||
any(concatting_feats),
|
||
)
|
||
)
|
||
i += 1
|
||
continue
|
||
|
||
b["text"] = (b["text"].rstrip() + " " + b_["text"].lstrip()).strip()
|
||
b["bottom"] = b_["bottom"]
|
||
b["x0"] = min(b["x0"], b_["x0"])
|
||
b["x1"] = max(b["x1"], b_["x1"])
|
||
bxs.pop(i + 1)
|
||
|
||
merged_boxes.extend(bxs)
|
||
|
||
# self.boxes = sorted(merged_boxes, key=lambda x: (x["page_number"], x.get("col_id", 0), x["top"]))
|
||
self.boxes = merged_boxes
|
||
|
||
def _final_reading_order_merge(self, zoomin=3):
|
||
if not self.boxes:
|
||
return
|
||
|
||
self.boxes = self._assign_column(self.boxes, zoomin=zoomin)
|
||
|
||
pages = defaultdict(lambda: defaultdict(list))
|
||
for b in self.boxes:
|
||
pg = b["page_number"]
|
||
col = b.get("col_id", 0)
|
||
pages[pg][col].append(b)
|
||
|
||
for pg in pages:
|
||
for col in pages[pg]:
|
||
pages[pg][col].sort(key=lambda x: (x["top"], x["x0"]))
|
||
|
||
new_boxes = []
|
||
for pg in sorted(pages.keys()):
|
||
for col in sorted(pages[pg].keys()):
|
||
new_boxes.extend(pages[pg][col])
|
||
|
||
self.boxes = new_boxes
|
||
|
||
def _concat_downward(self, concat_between_pages=True):
|
||
self.boxes = Recognizer.sort_Y_firstly(self.boxes, 0)
|
||
return
|
||
|
||
# count boxes in the same row as a feature
|
||
for i in range(len(self.boxes)):
|
||
mh = self.mean_height[self.boxes[i]["page_number"] - 1]
|
||
self.boxes[i]["in_row"] = 0
|
||
j = max(0, i - 12)
|
||
while j < min(i + 12, len(self.boxes)):
|
||
if j == i:
|
||
j += 1
|
||
continue
|
||
ydis = self._y_dis(self.boxes[i], self.boxes[j]) / mh
|
||
if abs(ydis) < 1:
|
||
self.boxes[i]["in_row"] += 1
|
||
elif ydis > 0:
|
||
break
|
||
j += 1
|
||
|
||
# concat between rows
|
||
boxes = deepcopy(self.boxes)
|
||
blocks = []
|
||
while boxes:
|
||
chunks = []
|
||
|
||
def dfs(up, dp):
|
||
chunks.append(up)
|
||
i = dp
|
||
while i < min(dp + 12, len(boxes)):
|
||
ydis = self._y_dis(up, boxes[i])
|
||
smpg = up["page_number"] == boxes[i]["page_number"]
|
||
mh = self.mean_height[up["page_number"] - 1]
|
||
mw = self.mean_width[up["page_number"] - 1]
|
||
if smpg and ydis > mh * 4:
|
||
break
|
||
if not smpg and ydis > mh * 16:
|
||
break
|
||
down = boxes[i]
|
||
if not concat_between_pages and down["page_number"] > up["page_number"]:
|
||
break
|
||
|
||
if up.get("R", "") != down.get("R", "") and up["text"][-1] != ",":
|
||
i += 1
|
||
continue
|
||
|
||
if re.match(r"[0-9]{2,3}/[0-9]{3}$", up["text"]) or re.match(r"[0-9]{2,3}/[0-9]{3}$", down["text"]) or not down["text"].strip():
|
||
i += 1
|
||
continue
|
||
|
||
if not down["text"].strip() or not up["text"].strip():
|
||
i += 1
|
||
continue
|
||
|
||
if up["x1"] < down["x0"] - 10 * mw or up["x0"] > down["x1"] + 10 * mw:
|
||
i += 1
|
||
continue
|
||
|
||
if i - dp < 5 and up.get("layout_type") == "text":
|
||
if up.get("layoutno", "1") == down.get("layoutno", "2"):
|
||
dfs(down, i + 1)
|
||
boxes.pop(i)
|
||
return
|
||
i += 1
|
||
continue
|
||
|
||
fea = self._updown_concat_features(up, down)
|
||
if self.updown_cnt_mdl.predict(xgb.DMatrix([fea]))[0] <= 0.5:
|
||
i += 1
|
||
continue
|
||
dfs(down, i + 1)
|
||
boxes.pop(i)
|
||
return
|
||
|
||
dfs(boxes[0], 1)
|
||
boxes.pop(0)
|
||
if chunks:
|
||
blocks.append(chunks)
|
||
|
||
# concat within each block
|
||
boxes = []
|
||
for b in blocks:
|
||
if len(b) == 1:
|
||
boxes.append(b[0])
|
||
continue
|
||
t = b[0]
|
||
for c in b[1:]:
|
||
t["text"] = t["text"].strip()
|
||
c["text"] = c["text"].strip()
|
||
if not c["text"]:
|
||
continue
|
||
if t["text"] and re.match(r"[0-9\.a-zA-Z]+$", t["text"][-1] + c["text"][-1]):
|
||
t["text"] += " "
|
||
t["text"] += c["text"]
|
||
t["x0"] = min(t["x0"], c["x0"])
|
||
t["x1"] = max(t["x1"], c["x1"])
|
||
t["page_number"] = min(t["page_number"], c["page_number"])
|
||
t["bottom"] = c["bottom"]
|
||
if not t["layout_type"] and c["layout_type"]:
|
||
t["layout_type"] = c["layout_type"]
|
||
boxes.append(t)
|
||
|
||
self.boxes = Recognizer.sort_Y_firstly(boxes, 0)
|
||
|
||
def _filter_forpages(self):
|
||
if not self.boxes:
|
||
return
|
||
findit = False
|
||
i = 0
|
||
while i < len(self.boxes):
|
||
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
|
||
i += 1
|
||
continue
|
||
findit = True
|
||
eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip())
|
||
self.boxes.pop(i)
|
||
if i >= len(self.boxes):
|
||
break
|
||
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
|
||
while not prefix:
|
||
self.boxes.pop(i)
|
||
if i >= len(self.boxes):
|
||
break
|
||
prefix = self.boxes[i]["text"].strip()[:3] if not eng else " ".join(self.boxes[i]["text"].strip().split()[:2])
|
||
self.boxes.pop(i)
|
||
if i >= len(self.boxes) or not prefix:
|
||
break
|
||
for j in range(i, min(i + 128, len(self.boxes))):
|
||
if not re.match(prefix, self.boxes[j]["text"]):
|
||
continue
|
||
for k in range(i, j):
|
||
self.boxes.pop(i)
|
||
break
|
||
if findit:
|
||
return
|
||
|
||
page_dirty = [0] * len(self.page_images)
|
||
for b in self.boxes:
|
||
if re.search(r"(··|··|··)", b["text"]):
|
||
page_dirty[b["page_number"] - 1] += 1
|
||
page_dirty = set([i + 1 for i, t in enumerate(page_dirty) if t > 3])
|
||
if not page_dirty:
|
||
return
|
||
i = 0
|
||
while i < len(self.boxes):
|
||
if self.boxes[i]["page_number"] in page_dirty:
|
||
self.boxes.pop(i)
|
||
continue
|
||
i += 1
|
||
|
||
def _merge_with_same_bullet(self):
|
||
i = 0
|
||
while i + 1 < len(self.boxes):
|
||
b = self.boxes[i]
|
||
b_ = self.boxes[i + 1]
|
||
if not b["text"].strip():
|
||
self.boxes.pop(i)
|
||
continue
|
||
if not b_["text"].strip():
|
||
self.boxes.pop(i + 1)
|
||
continue
|
||
|
||
if (
|
||
b["text"].strip()[0] != b_["text"].strip()[0]
|
||
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm")
|
||
or rag_tokenizer.is_chinese(b["text"].strip()[0])
|
||
or b["top"] > b_["bottom"]
|
||
):
|
||
i += 1
|
||
continue
|
||
b_["text"] = b["text"] + "\n" + b_["text"]
|
||
b_["x0"] = min(b["x0"], b_["x0"])
|
||
b_["x1"] = max(b["x1"], b_["x1"])
|
||
b_["top"] = b["top"]
|
||
self.boxes.pop(i)
|
||
|
||
def _extract_table_figure(self, need_image, ZM, return_html, need_position, separate_tables_figures=False):
|
||
tables = {}
|
||
figures = {}
|
||
# extract figure and table boxes
|
||
i = 0
|
||
lst_lout_no = ""
|
||
nomerge_lout_no = []
|
||
while i < len(self.boxes):
|
||
if "layoutno" not in self.boxes[i]:
|
||
i += 1
|
||
continue
|
||
lout_no = str(self.boxes[i]["page_number"]) + "-" + str(self.boxes[i]["layoutno"])
|
||
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption", "title", "figure caption", "reference"]:
|
||
nomerge_lout_no.append(lst_lout_no)
|
||
if self.boxes[i]["layout_type"] == "table":
|
||
if re.match(r"(数据|资料|图表)*来源[:: ]", self.boxes[i]["text"]):
|
||
self.boxes.pop(i)
|
||
continue
|
||
if lout_no not in tables:
|
||
tables[lout_no] = []
|
||
tables[lout_no].append(self.boxes[i])
|
||
self.boxes.pop(i)
|
||
lst_lout_no = lout_no
|
||
continue
|
||
if need_image and self.boxes[i]["layout_type"] == "figure":
|
||
if re.match(r"(数据|资料|图表)*来源[:: ]", self.boxes[i]["text"]):
|
||
self.boxes.pop(i)
|
||
continue
|
||
if lout_no not in figures:
|
||
figures[lout_no] = []
|
||
figures[lout_no].append(self.boxes[i])
|
||
self.boxes.pop(i)
|
||
lst_lout_no = lout_no
|
||
continue
|
||
i += 1
|
||
|
||
# merge table on different pages
|
||
nomerge_lout_no = set(nomerge_lout_no)
|
||
tbls = sorted([(k, bxs) for k, bxs in tables.items()], key=lambda x: (x[1][0]["top"], x[1][0]["x0"]))
|
||
|
||
i = len(tbls) - 1
|
||
while i - 1 >= 0:
|
||
k0, bxs0 = tbls[i - 1]
|
||
k, bxs = tbls[i]
|
||
i -= 1
|
||
if k0 in nomerge_lout_no:
|
||
continue
|
||
if bxs[0]["page_number"] == bxs0[0]["page_number"]:
|
||
continue
|
||
if bxs[0]["page_number"] - bxs0[0]["page_number"] > 1:
|
||
continue
|
||
mh = self.mean_height[bxs[0]["page_number"] - 1]
|
||
if self._y_dis(bxs0[-1], bxs[0]) > mh * 23:
|
||
continue
|
||
tables[k0].extend(tables[k])
|
||
del tables[k]
|
||
|
||
def x_overlapped(a, b):
|
||
return not any([a["x1"] < b["x0"], a["x0"] > b["x1"]])
|
||
|
||
# find captions and pop out
|
||
i = 0
|
||
while i < len(self.boxes):
|
||
c = self.boxes[i]
|
||
# mh = self.mean_height[c["page_number"]-1]
|
||
if not TableStructureRecognizer.is_caption(c):
|
||
i += 1
|
||
continue
|
||
|
||
# find the nearest layouts
|
||
def nearest(tbls):
|
||
nonlocal c
|
||
mink = ""
|
||
minv = 1000000000
|
||
for k, bxs in tbls.items():
|
||
for b in bxs:
|
||
if b.get("layout_type", "").find("caption") >= 0:
|
||
continue
|
||
y_dis = self._y_dis(c, b)
|
||
x_dis = self._x_dis(c, b) if not x_overlapped(c, b) else 0
|
||
dis = y_dis * y_dis + x_dis * x_dis
|
||
if dis < minv:
|
||
mink = k
|
||
minv = dis
|
||
return mink, minv
|
||
|
||
tk, tv = nearest(tables)
|
||
fk, fv = nearest(figures)
|
||
# if min(tv, fv) > 2000:
|
||
# i += 1
|
||
# continue
|
||
if tv < fv and tk:
|
||
tables[tk].insert(0, c)
|
||
logging.debug("TABLE:" + self.boxes[i]["text"] + "; Cap: " + tk)
|
||
elif fk:
|
||
figures[fk].insert(0, c)
|
||
logging.debug("FIGURE:" + self.boxes[i]["text"] + "; Cap: " + tk)
|
||
self.boxes.pop(i)
|
||
|
||
def cropout(bxs, ltype, poss):
|
||
nonlocal ZM
|
||
pn = set([b["page_number"] - 1 for b in bxs])
|
||
if len(pn) < 2:
|
||
pn = list(pn)[0]
|
||
ht = self.page_cum_height[pn]
|
||
b = {"x0": np.min([b["x0"] for b in bxs]), "top": np.min([b["top"] for b in bxs]) - ht, "x1": np.max([b["x1"] for b in bxs]), "bottom": np.max([b["bottom"] for b in bxs]) - ht}
|
||
louts = [layout for layout in self.page_layout[pn] if layout["type"] == ltype]
|
||
ii = Recognizer.find_overlapped(b, louts, naive=True)
|
||
if ii is not None:
|
||
b = louts[ii]
|
||
else:
|
||
logging.warning(f"Missing layout match: {pn + 1},%s" % (bxs[0].get("layoutno", "")))
|
||
|
||
left, top, right, bott = b["x0"], b["top"], b["x1"], b["bottom"]
|
||
if right < left:
|
||
right = left + 1
|
||
poss.append((pn + self.page_from, left, right, top, bott))
|
||
return self.page_images[pn].crop((left * ZM, top * ZM, right * ZM, bott * ZM))
|
||
pn = {}
|
||
for b in bxs:
|
||
p = b["page_number"] - 1
|
||
if p not in pn:
|
||
pn[p] = []
|
||
pn[p].append(b)
|
||
pn = sorted(pn.items(), key=lambda x: x[0])
|
||
imgs = [cropout(arr, ltype, poss) for p, arr in pn]
|
||
pic = Image.new("RGB", (int(np.max([i.size[0] for i in imgs])), int(np.sum([m.size[1] for m in imgs]))), (245, 245, 245))
|
||
height = 0
|
||
for img in imgs:
|
||
pic.paste(img, (0, int(height)))
|
||
height += img.size[1]
|
||
return pic
|
||
|
||
res = []
|
||
positions = []
|
||
figure_results = []
|
||
figure_positions = []
|
||
# crop figure out and add caption
|
||
for k, bxs in figures.items():
|
||
txt = "\n".join([b["text"] for b in bxs])
|
||
if not txt:
|
||
continue
|
||
|
||
poss = []
|
||
|
||
if separate_tables_figures:
|
||
figure_results.append((cropout(bxs, "figure", poss), [txt]))
|
||
figure_positions.append(poss)
|
||
else:
|
||
res.append((cropout(bxs, "figure", poss), [txt]))
|
||
positions.append(poss)
|
||
|
||
for k, bxs in tables.items():
|
||
if not bxs:
|
||
continue
|
||
bxs = Recognizer.sort_Y_firstly(bxs, np.mean([(b["bottom"] - b["top"]) / 2 for b in bxs]))
|
||
|
||
poss = []
|
||
|
||
res.append((cropout(bxs, "table", poss), self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
|
||
positions.append(poss)
|
||
|
||
if separate_tables_figures:
|
||
assert len(positions) + len(figure_positions) == len(res) + len(figure_results)
|
||
if need_position:
|
||
return list(zip(res, positions)), list(zip(figure_results, figure_positions))
|
||
else:
|
||
return res, figure_results
|
||
else:
|
||
assert len(positions) == len(res)
|
||
if need_position:
|
||
return list(zip(res, positions))
|
||
else:
|
||
return res
|
||
|
||
def proj_match(self, line):
|
||
if len(line) <= 2:
|
||
return
|
||
if re.match(r"[0-9 ().,%%+/-]+$", line):
|
||
return False
|
||
for p, j in [
|
||
(r"第[零一二三四五六七八九十百]+章", 1),
|
||
(r"第[零一二三四五六七八九十百]+[条节]", 2),
|
||
(r"[零一二三四五六七八九十百]+[、 ]", 3),
|
||
(r"[\((][零一二三四五六七八九十百]+[)\)]", 4),
|
||
(r"[0-9]+(、|\.[ ]|\.[^0-9])", 5),
|
||
(r"[0-9]+\.[0-9]+(、|[. ]|[^0-9])", 6),
|
||
(r"[0-9]+\.[0-9]+\.[0-9]+(、|[ ]|[^0-9])", 7),
|
||
(r"[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+(、|[ ]|[^0-9])", 8),
|
||
(r".{,48}[::??]$", 9),
|
||
(r"[0-9]+)", 10),
|
||
(r"[\((][0-9]+[)\)]", 11),
|
||
(r"[零一二三四五六七八九十百]+是", 12),
|
||
(r"[⚫•➢✓]", 12),
|
||
]:
|
||
if re.match(p, line):
|
||
return j
|
||
return
|
||
|
||
def _line_tag(self, bx, ZM):
|
||
pn = [bx["page_number"]]
|
||
top = bx["top"] - self.page_cum_height[pn[0] - 1]
|
||
bott = bx["bottom"] - self.page_cum_height[pn[0] - 1]
|
||
page_images_cnt = len(self.page_images)
|
||
if pn[-1] - 1 >= page_images_cnt:
|
||
return ""
|
||
while bott * ZM > self.page_images[pn[-1] - 1].size[1]:
|
||
bott -= self.page_images[pn[-1] - 1].size[1] / ZM
|
||
pn.append(pn[-1] + 1)
|
||
if pn[-1] - 1 >= page_images_cnt:
|
||
return ""
|
||
|
||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##".format("-".join([str(p) for p in pn]), bx["x0"], bx["x1"], top, bott)
|
||
|
||
def __filterout_scraps(self, boxes, ZM):
|
||
def width(b):
|
||
return b["x1"] - b["x0"]
|
||
|
||
def height(b):
|
||
return b["bottom"] - b["top"]
|
||
|
||
def usefull(b):
|
||
if b.get("layout_type"):
|
||
return True
|
||
if width(b) > self.page_images[b["page_number"] - 1].size[0] / ZM / 3:
|
||
return True
|
||
if b["bottom"] - b["top"] > self.mean_height[b["page_number"] - 1]:
|
||
return True
|
||
return False
|
||
|
||
res = []
|
||
while boxes:
|
||
lines = []
|
||
widths = []
|
||
pw = self.page_images[boxes[0]["page_number"] - 1].size[0] / ZM
|
||
mh = self.mean_height[boxes[0]["page_number"] - 1]
|
||
mj = self.proj_match(boxes[0]["text"]) or boxes[0].get("layout_type", "") == "title"
|
||
|
||
def dfs(line, st):
|
||
nonlocal mh, pw, lines, widths
|
||
lines.append(line)
|
||
widths.append(width(line))
|
||
mmj = self.proj_match(line["text"]) or line.get("layout_type", "") == "title"
|
||
for i in range(st + 1, min(st + 20, len(boxes))):
|
||
if (boxes[i]["page_number"] - line["page_number"]) > 0:
|
||
break
|
||
if not mmj and self._y_dis(line, boxes[i]) >= 3 * mh and height(line) < 1.5 * mh:
|
||
break
|
||
|
||
if not usefull(boxes[i]):
|
||
continue
|
||
if mmj or (self._x_dis(boxes[i], line) < pw / 10):
|
||
# and abs(width(boxes[i])-width_mean)/max(width(boxes[i]),width_mean)<0.5):
|
||
# concat following
|
||
dfs(boxes[i], i)
|
||
boxes.pop(i)
|
||
break
|
||
|
||
try:
|
||
if usefull(boxes[0]):
|
||
dfs(boxes[0], 0)
|
||
else:
|
||
logging.debug("WASTE: " + boxes[0]["text"])
|
||
except Exception:
|
||
pass
|
||
boxes.pop(0)
|
||
mw = np.mean(widths)
|
||
if mj or mw / pw >= 0.35 or mw > 200:
|
||
res.append("\n".join([c["text"] + self._line_tag(c, ZM) for c in lines]))
|
||
else:
|
||
logging.debug("REMOVED: " + "<<".join([c["text"] for c in lines]))
|
||
|
||
return "\n\n".join(res)
|
||
|
||
@staticmethod
|
||
def total_page_number(fnm, binary=None):
|
||
try:
|
||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||
pdf = pdfplumber.open(fnm) if not binary else pdfplumber.open(BytesIO(binary))
|
||
total_page = len(pdf.pages)
|
||
pdf.close()
|
||
return total_page
|
||
except Exception:
|
||
logging.exception("total_page_number")
|
||
|
||
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
|
||
self.lefted_chars = []
|
||
self.mean_height = []
|
||
self.mean_width = []
|
||
self.boxes = []
|
||
self.garbages = {}
|
||
self.page_cum_height = [0]
|
||
self.page_layout = []
|
||
self.page_from = page_from
|
||
start = timer()
|
||
try:
|
||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||
with pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm)) as pdf:
|
||
self.pdf = pdf
|
||
self.page_images = [p.to_image(resolution=72 * zoomin, antialias=True).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
|
||
|
||
try:
|
||
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
|
||
except Exception as e:
|
||
logging.warning(f"Failed to extract characters for pages {page_from}-{page_to}: {str(e)}")
|
||
self.page_chars = [[] for _ in range(page_to - page_from)] # If failed to extract, using empty list instead.
|
||
|
||
self.total_page = len(self.pdf.pages)
|
||
|
||
except Exception as e:
|
||
logging.exception(f"RAGFlowPdfParser __images__, exception: {e}")
|
||
logging.info(f"__images__ dedupe_chars cost {timer() - start}s")
|
||
|
||
self.outlines = []
|
||
try:
|
||
with pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm)) as pdf:
|
||
self.pdf = pdf
|
||
|
||
outlines = self.pdf.outline
|
||
|
||
def dfs(arr, depth):
|
||
for a in arr:
|
||
if isinstance(a, dict):
|
||
self.outlines.append((a["/Title"], depth))
|
||
continue
|
||
dfs(a, depth + 1)
|
||
|
||
dfs(outlines, 0)
|
||
|
||
except Exception as e:
|
||
logging.warning(f"Outlines exception: {e}")
|
||
|
||
if not self.outlines:
|
||
logging.warning("Miss outlines")
|
||
|
||
logging.debug("Images converted.")
|
||
self.is_english = [
|
||
re.search(r"[ a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i])))))
|
||
for i in range(len(self.page_chars))
|
||
]
|
||
if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2:
|
||
self.is_english = True
|
||
else:
|
||
self.is_english = False
|
||
|
||
async def __img_ocr(i, id, img, chars, limiter):
|
||
j = 0
|
||
while j + 1 < len(chars):
|
||
if (
|
||
chars[j]["text"]
|
||
and chars[j + 1]["text"]
|
||
and re.match(r"[0-9a-zA-Z,.:;!%]+", chars[j]["text"] + chars[j + 1]["text"])
|
||
and chars[j + 1]["x0"] - chars[j]["x1"] >= min(chars[j + 1]["width"], chars[j]["width"]) / 2
|
||
):
|
||
chars[j]["text"] += " "
|
||
j += 1
|
||
|
||
if limiter:
|
||
async with limiter:
|
||
await thread_pool_exec(self.__ocr, i + 1, img, chars, zoomin, id)
|
||
else:
|
||
self.__ocr(i + 1, img, chars, zoomin, id)
|
||
|
||
if callback and i % 6 == 5:
|
||
callback((i + 1) * 0.6 / len(self.page_images))
|
||
|
||
async def __img_ocr_launcher():
|
||
def __ocr_preprocess():
|
||
chars = self.page_chars[i] if not self.is_english else []
|
||
self.mean_height.append(np.median(sorted([c["height"] for c in chars])) if chars else 0)
|
||
self.mean_width.append(np.median(sorted([c["width"] for c in chars])) if chars else 8)
|
||
self.page_cum_height.append(img.size[1] / zoomin)
|
||
return chars
|
||
|
||
if self.parallel_limiter:
|
||
tasks = []
|
||
|
||
for i, img in enumerate(self.page_images):
|
||
chars = __ocr_preprocess()
|
||
|
||
semaphore = self.parallel_limiter[i % settings.PARALLEL_DEVICES]
|
||
|
||
async def wrapper(i=i, img=img, chars=chars, semaphore=semaphore):
|
||
await __img_ocr(
|
||
i,
|
||
i % settings.PARALLEL_DEVICES,
|
||
img,
|
||
chars,
|
||
semaphore,
|
||
)
|
||
|
||
tasks.append(asyncio.create_task(wrapper()))
|
||
await asyncio.sleep(0)
|
||
|
||
try:
|
||
await asyncio.gather(*tasks, return_exceptions=False)
|
||
except Exception as e:
|
||
logging.error(f"Error in OCR: {e}")
|
||
for t in tasks:
|
||
t.cancel()
|
||
await asyncio.gather(*tasks, return_exceptions=True)
|
||
raise
|
||
|
||
else:
|
||
for i, img in enumerate(self.page_images):
|
||
chars = __ocr_preprocess()
|
||
await __img_ocr(i, 0, img, chars, None)
|
||
|
||
start = timer()
|
||
|
||
asyncio.run(__img_ocr_launcher())
|
||
|
||
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
|
||
|
||
if not self.is_english and not any([c for c in self.page_chars]) and self.boxes:
|
||
bxes = [b for bxs in self.boxes for b in bxs]
|
||
self.is_english = re.search(r"[ \na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
|
||
|
||
logging.debug(f"Is it English: {self.is_english}")
|
||
|
||
self.page_cum_height = np.cumsum(self.page_cum_height)
|
||
assert len(self.page_cum_height) == len(self.page_images) + 1
|
||
if len(self.boxes) == 0 and zoomin < 9:
|
||
self.__images__(fnm, zoomin * 3, page_from, page_to, callback)
|
||
|
||
def __call__(self, fnm, need_image=True, zoomin=3, return_html=False, auto_rotate_tables=None):
|
||
"""
|
||
Parse a PDF file.
|
||
|
||
Args:
|
||
fnm: PDF file path or binary content
|
||
need_image: Whether to extract images
|
||
zoomin: Zoom factor
|
||
return_html: Whether to return tables in HTML format
|
||
auto_rotate_tables: Whether to enable auto orientation correction for tables.
|
||
None: Use TABLE_AUTO_ROTATE env var setting (default: True)
|
||
True: Enable auto orientation correction
|
||
False: Disable auto orientation correction
|
||
"""
|
||
if auto_rotate_tables is None:
|
||
auto_rotate_tables = os.getenv("TABLE_AUTO_ROTATE", "true").lower() in ("true", "1", "yes")
|
||
|
||
self.__images__(fnm, zoomin)
|
||
self._layouts_rec(zoomin)
|
||
self._table_transformer_job(zoomin, auto_rotate=auto_rotate_tables)
|
||
self._text_merge()
|
||
self._concat_downward()
|
||
self._filter_forpages()
|
||
tbls = self._extract_table_figure(need_image, zoomin, return_html, False)
|
||
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
|
||
|
||
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
|
||
start = timer()
|
||
self.__images__(fnm, zoomin, callback=callback)
|
||
if callback:
|
||
callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start))
|
||
|
||
start = timer()
|
||
self._layouts_rec(zoomin)
|
||
if callback:
|
||
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
|
||
|
||
# Read table auto-rotation setting from environment variable
|
||
auto_rotate_tables = os.getenv("TABLE_AUTO_ROTATE", "true").lower() in ("true", "1", "yes")
|
||
|
||
start = timer()
|
||
self._table_transformer_job(zoomin, auto_rotate=auto_rotate_tables)
|
||
if callback:
|
||
callback(0.83, "Table analysis ({:.2f}s)".format(timer() - start))
|
||
|
||
start = timer()
|
||
self._text_merge()
|
||
self._concat_downward()
|
||
self._naive_vertical_merge(zoomin)
|
||
if callback:
|
||
callback(0.92, "Text merged ({:.2f}s)".format(timer() - start))
|
||
|
||
start = timer()
|
||
tbls, figs = self._extract_table_figure(True, zoomin, True, True, True)
|
||
|
||
def insert_table_figures(tbls_or_figs, layout_type):
|
||
def min_rectangle_distance(rect1, rect2):
|
||
pn1, left1, right1, top1, bottom1 = rect1
|
||
pn2, left2, right2, top2, bottom2 = rect2
|
||
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
|
||
return 0
|
||
if right1 < left2:
|
||
dx = left2 - right1
|
||
elif right2 < left1:
|
||
dx = left1 - right2
|
||
else:
|
||
dx = 0
|
||
if bottom1 < top2:
|
||
dy = top2 - bottom1
|
||
elif bottom2 < top1:
|
||
dy = top1 - bottom2
|
||
else:
|
||
dy = 0
|
||
return math.sqrt(dx * dx + dy * dy) # + (pn2-pn1)*10000
|
||
|
||
for (img, txt), poss in tbls_or_figs:
|
||
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
|
||
dists = [
|
||
(min_rectangle_distance((pn, left, right, top + self.page_cum_height[pn], bott + self.page_cum_height[pn]), rect), i) for i, rect in bboxes for pn, left, right, top, bott in poss
|
||
]
|
||
min_i = np.argmin(dists, axis=0)[0]
|
||
min_i, rect = bboxes[dists[min_i][-1]]
|
||
if isinstance(txt, list):
|
||
txt = "\n".join(txt)
|
||
pn, left, right, top, bott = poss[0]
|
||
if self.boxes[min_i]["bottom"] < top + self.page_cum_height[pn]:
|
||
min_i += 1
|
||
self.boxes.insert(
|
||
min_i,
|
||
{
|
||
"page_number": pn + 1,
|
||
"x0": left,
|
||
"x1": right,
|
||
"top": top + self.page_cum_height[pn],
|
||
"bottom": bott + self.page_cum_height[pn],
|
||
"layout_type": layout_type,
|
||
"text": txt,
|
||
"image": img,
|
||
"positions": [[pn + 1, int(left), int(right), int(top), int(bott)]],
|
||
},
|
||
)
|
||
|
||
for b in self.boxes:
|
||
b["position_tag"] = self._line_tag(b, zoomin)
|
||
b["image"] = self.crop(b["position_tag"], zoomin)
|
||
b["positions"] = [[pos[0][-1] + 1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(b["position_tag"])]
|
||
|
||
insert_table_figures(tbls, "table")
|
||
insert_table_figures(figs, "figure")
|
||
if callback:
|
||
callback(1, "Structured ({:.2f}s)".format(timer() - start))
|
||
return deepcopy(self.boxes)
|
||
|
||
@staticmethod
|
||
def remove_tag(txt):
|
||
return re.sub(r"@@[\t0-9.-]+?##", "", txt)
|
||
|
||
@staticmethod
|
||
def extract_positions(txt):
|
||
poss = []
|
||
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
|
||
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
|
||
left, right, top, bottom = float(left), float(right), float(top), float(bottom)
|
||
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
|
||
return poss
|
||
|
||
def crop(self, text, ZM=3, need_position=False):
|
||
imgs = []
|
||
poss = self.extract_positions(text)
|
||
if not poss:
|
||
if need_position:
|
||
return None, None
|
||
return
|
||
|
||
if not getattr(self, "page_images", None):
|
||
logging.warning("crop called without page images; skipping image generation.")
|
||
if need_position:
|
||
return None, None
|
||
return
|
||
|
||
page_count = len(self.page_images)
|
||
|
||
filtered_poss = []
|
||
for pns, left, right, top, bottom in poss:
|
||
if not pns:
|
||
logging.warning("Empty page index list in crop; skipping this position.")
|
||
continue
|
||
valid_pns = [p for p in pns if 0 <= p < page_count]
|
||
if not valid_pns:
|
||
logging.warning(f"All page indices {pns} out of range for {page_count} pages; skipping.")
|
||
continue
|
||
filtered_poss.append((valid_pns, left, right, top, bottom))
|
||
|
||
poss = filtered_poss
|
||
if not poss:
|
||
logging.warning("No valid positions after filtering; skip cropping.")
|
||
if need_position:
|
||
return None, None
|
||
return
|
||
|
||
max_width = max(np.max([right - left for (_, left, right, _, _) in poss]), 6)
|
||
GAP = 6
|
||
pos = poss[0]
|
||
first_page_idx = pos[0][0]
|
||
poss.insert(0, ([first_page_idx], pos[1], pos[2], max(0, pos[3] - 120), max(pos[3] - GAP, 0)))
|
||
pos = poss[-1]
|
||
last_page_idx = pos[0][-1]
|
||
if not (0 <= last_page_idx < page_count):
|
||
logging.warning(f"Last page index {last_page_idx} out of range for {page_count} pages; skipping crop.")
|
||
if need_position:
|
||
return None, None
|
||
return
|
||
last_page_height = self.page_images[last_page_idx].size[1] / ZM
|
||
poss.append(
|
||
(
|
||
[last_page_idx],
|
||
pos[1],
|
||
pos[2],
|
||
min(last_page_height, pos[4] + GAP),
|
||
min(last_page_height, pos[4] + 120),
|
||
)
|
||
)
|
||
|
||
positions = []
|
||
for ii, (pns, left, right, top, bottom) in enumerate(poss):
|
||
if 0 < ii < len(poss) - 1:
|
||
right = max(left + 10, right)
|
||
else:
|
||
right = left + max_width
|
||
bottom *= ZM
|
||
for pn in pns[1:]:
|
||
if 0 <= pn - 1 < page_count:
|
||
bottom += self.page_images[pn - 1].size[1]
|
||
else:
|
||
logging.warning(f"Page index {pn}-1 out of range for {page_count} pages during crop; skipping height accumulation.")
|
||
|
||
if not (0 <= pns[0] < page_count):
|
||
logging.warning(f"Base page index {pns[0]} out of range for {page_count} pages during crop; skipping this segment.")
|
||
continue
|
||
|
||
imgs.append(self.page_images[pns[0]].crop((left * ZM, top * ZM, right * ZM, min(bottom, self.page_images[pns[0]].size[1]))))
|
||
if 0 < ii < len(poss) - 1:
|
||
positions.append((pns[0] + self.page_from, left, right, top, min(bottom, self.page_images[pns[0]].size[1]) / ZM))
|
||
bottom -= self.page_images[pns[0]].size[1]
|
||
for pn in pns[1:]:
|
||
if not (0 <= pn < page_count):
|
||
logging.warning(f"Page index {pn} out of range for {page_count} pages during crop; skipping this page.")
|
||
continue
|
||
imgs.append(self.page_images[pn].crop((left * ZM, 0, right * ZM, min(bottom, self.page_images[pn].size[1]))))
|
||
if 0 < ii < len(poss) - 1:
|
||
positions.append((pn + self.page_from, left, right, 0, min(bottom, self.page_images[pn].size[1]) / ZM))
|
||
bottom -= self.page_images[pn].size[1]
|
||
|
||
if not imgs:
|
||
if need_position:
|
||
return None, None
|
||
return
|
||
height = 0
|
||
for img in imgs:
|
||
height += img.size[1] + GAP
|
||
height = int(height)
|
||
width = int(np.max([i.size[0] for i in imgs]))
|
||
pic = Image.new("RGB", (width, height), (245, 245, 245))
|
||
height = 0
|
||
for ii, img in enumerate(imgs):
|
||
if ii == 0 or ii + 1 == len(imgs):
|
||
img = img.convert("RGBA")
|
||
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
||
overlay.putalpha(128)
|
||
img = Image.alpha_composite(img, overlay).convert("RGB")
|
||
pic.paste(img, (0, int(height)))
|
||
height += img.size[1] + GAP
|
||
|
||
if need_position:
|
||
return pic, positions
|
||
return pic
|
||
|
||
def get_position(self, bx, ZM):
|
||
poss = []
|
||
pn = bx["page_number"]
|
||
top = bx["top"] - self.page_cum_height[pn - 1]
|
||
bott = bx["bottom"] - self.page_cum_height[pn - 1]
|
||
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
|
||
while bott * ZM > self.page_images[pn - 1].size[1]:
|
||
bott -= self.page_images[pn - 1].size[1] / ZM
|
||
top = 0
|
||
pn += 1
|
||
poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / ZM)))
|
||
return poss
|
||
|
||
|
||
class PlainParser:
|
||
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
|
||
self.outlines = []
|
||
lines = []
|
||
try:
|
||
self.pdf = pdf2_read(filename if isinstance(filename, str) else BytesIO(filename))
|
||
for page in self.pdf.pages[from_page:to_page]:
|
||
lines.extend([t for t in page.extract_text().split("\n")])
|
||
|
||
outlines = self.pdf.outline
|
||
|
||
def dfs(arr, depth):
|
||
for a in arr:
|
||
if isinstance(a, dict):
|
||
self.outlines.append((a["/Title"], depth))
|
||
continue
|
||
dfs(a, depth + 1)
|
||
|
||
dfs(outlines, 0)
|
||
except Exception:
|
||
logging.exception("Outlines exception")
|
||
if not self.outlines:
|
||
logging.warning("Miss outlines")
|
||
|
||
return [(line, "") for line in lines], []
|
||
|
||
def crop(self, ck, need_position):
|
||
raise NotImplementedError
|
||
|
||
@staticmethod
|
||
def remove_tag(txt):
|
||
raise NotImplementedError
|
||
|
||
|
||
class VisionParser(RAGFlowPdfParser):
|
||
def __init__(self, vision_model, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
self.vision_model = vision_model
|
||
self.outlines = []
|
||
|
||
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
|
||
try:
|
||
with sys.modules[LOCK_KEY_pdfplumber]:
|
||
self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))
|
||
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in enumerate(self.pdf.pages[page_from:page_to])]
|
||
self.total_page = len(self.pdf.pages)
|
||
except Exception:
|
||
self.page_images = None
|
||
self.total_page = 0
|
||
logging.exception("VisionParser __images__")
|
||
|
||
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
|
||
callback = kwargs.get("callback", lambda prog, msg: None)
|
||
zoomin = kwargs.get("zoomin", 3)
|
||
self.__images__(fnm=filename, zoomin=zoomin, page_from=from_page, page_to=to_page, callback=callback)
|
||
|
||
total_pdf_pages = self.total_page
|
||
|
||
start_page = max(0, from_page)
|
||
end_page = min(to_page, total_pdf_pages)
|
||
|
||
all_docs = []
|
||
|
||
for idx, img_binary in enumerate(self.page_images or []):
|
||
pdf_page_num = idx # 0-based
|
||
if pdf_page_num < start_page or pdf_page_num >= end_page:
|
||
continue
|
||
|
||
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
|
||
|
||
text = picture_vision_llm_chunk(
|
||
binary=img_binary,
|
||
vision_model=self.vision_model,
|
||
prompt=vision_llm_describe_prompt(page=pdf_page_num + 1),
|
||
callback=callback,
|
||
)
|
||
|
||
if kwargs.get("callback"):
|
||
kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}")
|
||
|
||
if text:
|
||
width, height = self.page_images[idx].size
|
||
all_docs.append((text, f"@@{pdf_page_num + 1}\t{0.0:.1f}\t{width / zoomin:.1f}\t{0.0:.1f}\t{height / zoomin:.1f}##"))
|
||
return all_docs, []
|
||
|
||
|
||
if __name__ == "__main__":
|
||
pass
|