Files
ragflow/rag/app/table.py
Billy Bao e59458c36b Fix: parsing excel with chartsheet & Clamp begin to a minimum of 0 to prevent negative indexing (#10819)
### What problem does this PR solve?

Fix: parsing excel with chartsheet #10815

Fix: Clamp begin to a minimum of 0 to prevent negative indexing #10804
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-28 09:40:37 +08:00

408 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import logging
import re
from io import BytesIO
from xpinyin import Pinyin
import numpy as np
import pandas as pd
from collections import Counter
# from openpyxl import load_workbook, Workbook
from dateutil.parser import parse as datetime_parse
from api.db.services.knowledgebase_service import KnowledgebaseService
from deepdoc.parser.utils import get_text
from rag.nlp import rag_tokenizer, tokenize
from deepdoc.parser import ExcelParser
class Excel(ExcelParser):
def __call__(self, fnm, binary=None, from_page=0, to_page=10000000000, callback=None):
if not binary:
wb = Excel._load_excel_to_workbook(fnm)
else:
wb = Excel._load_excel_to_workbook(BytesIO(binary))
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails, done = [], [], 0
rn = 0
for sheetname in wb.sheetnames:
ws = wb[sheetname]
try:
rows = list(ws.rows)
except Exception as e:
logging.warning(f"Skip sheet '{sheetname}' due to rows access error: {e}")
continue
if not rows:
continue
headers, header_rows = self._parse_headers(ws, rows)
if not headers:
continue
data = []
for i, r in enumerate(rows[header_rows:]):
rn += 1
if rn - 1 < from_page:
continue
if rn - 1 >= to_page:
break
row_data = self._extract_row_data(ws, r, header_rows + i, len(headers))
if row_data is None:
fails.append(str(i))
continue
if self._is_empty_row(row_data):
continue
data.append(row_data)
done += 1
if len(data) == 0:
continue
df = pd.DataFrame(data, columns=headers)
res.append(df)
callback(0.3, ("Extract records: {}~{}".format(from_page + 1, min(to_page, from_page + rn)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
def _parse_headers(self, ws, rows):
if len(rows) == 0:
return [], 0
has_complex_structure = self._has_complex_header_structure(ws, rows)
if has_complex_structure:
return self._parse_multi_level_headers(ws, rows)
else:
return self._parse_simple_headers(rows)
def _has_complex_header_structure(self, ws, rows):
if len(rows) < 1:
return False
merged_ranges = list(ws.merged_cells.ranges)
# 检查前两行是否涉及合并单元格
for rng in merged_ranges:
if rng.min_row <= 2: # 只要合并区域涉及第1或第2行
return True
return False
def _row_looks_like_header(self, row):
header_like_cells = 0
data_like_cells = 0
non_empty_cells = 0
for cell in row:
if cell.value is not None:
non_empty_cells += 1
val = str(cell.value).strip()
if self._looks_like_header(val):
header_like_cells += 1
elif self._looks_like_data(val):
data_like_cells += 1
if non_empty_cells == 0:
return False
return header_like_cells >= data_like_cells
def _parse_simple_headers(self, rows):
if not rows:
return [], 0
header_row = rows[0]
headers = []
for cell in header_row:
if cell.value is not None:
header_value = str(cell.value).strip()
if header_value:
headers.append(header_value)
else:
pass
final_headers = []
for i, cell in enumerate(header_row):
if cell.value is not None:
header_value = str(cell.value).strip()
if header_value:
final_headers.append(header_value)
else:
final_headers.append(f"Column_{i + 1}")
else:
final_headers.append(f"Column_{i + 1}")
return final_headers, 1
def _parse_multi_level_headers(self, ws, rows):
if len(rows) < 2:
return [], 0
header_rows = self._detect_header_rows(rows)
if header_rows == 1:
return self._parse_simple_headers(rows)
else:
return self._build_hierarchical_headers(ws, rows, header_rows), header_rows
def _detect_header_rows(self, rows):
if len(rows) < 2:
return 1
header_rows = 1
max_check_rows = min(5, len(rows))
for i in range(1, max_check_rows):
row = rows[i]
if self._row_looks_like_header(row):
header_rows = i + 1
else:
break
return header_rows
def _looks_like_header(self, value):
if len(value) < 1:
return False
if any(ord(c) > 127 for c in value):
return True
if len([c for c in value if c.isalpha()]) >= 2:
return True
if any(c in value for c in ["(", ")", "", ":", "", "", "_", "-"]):
return True
return False
def _looks_like_data(self, value):
if len(value) == 1 and value.upper() in ["Y", "N", "M", "X", "/", "-"]:
return True
if value.replace(".", "").replace("-", "").replace(",", "").isdigit():
return True
if value.startswith("0x") and len(value) <= 10:
return True
return False
def _build_hierarchical_headers(self, ws, rows, header_rows):
headers = []
max_col = max(len(row) for row in rows[:header_rows]) if header_rows > 0 else 0
merged_ranges = list(ws.merged_cells.ranges)
for col_idx in range(max_col):
header_parts = []
for row_idx in range(header_rows):
if col_idx < len(rows[row_idx]):
cell_value = rows[row_idx][col_idx].value
merged_value = self._get_merged_cell_value(ws, row_idx + 1, col_idx + 1, merged_ranges)
if merged_value is not None:
cell_value = merged_value
if cell_value is not None:
cell_value = str(cell_value).strip()
if cell_value and cell_value not in header_parts and self._is_valid_header_part(cell_value):
header_parts.append(cell_value)
if header_parts:
header = "-".join(header_parts)
headers.append(header)
else:
headers.append(f"Column_{col_idx + 1}")
final_headers = [h for h in headers if h and h != "-"]
return final_headers
def _is_valid_header_part(self, value):
if len(value) == 1 and value.upper() in ["Y", "N", "M", "X"]:
return False
if value.replace(".", "").replace("-", "").replace(",", "").isdigit():
return False
if value in ["/", "-", "+", "*", "="]:
return False
return True
def _get_merged_cell_value(self, ws, row, col, merged_ranges):
for merged_range in merged_ranges:
if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col:
return ws.cell(merged_range.min_row, merged_range.min_col).value
return None
def _extract_row_data(self, ws, row, absolute_row_idx, expected_cols):
row_data = []
merged_ranges = list(ws.merged_cells.ranges)
actual_row_num = absolute_row_idx + 1
for col_idx in range(expected_cols):
cell_value = None
actual_col_num = col_idx + 1
try:
cell_value = ws.cell(row=actual_row_num, column=actual_col_num).value
except ValueError:
if col_idx < len(row):
cell_value = row[col_idx].value
if cell_value is None:
merged_value = self._get_merged_cell_value(ws, actual_row_num, actual_col_num, merged_ranges)
if merged_value is not None:
cell_value = merged_value
else:
cell_value = self._get_inherited_value(ws, actual_row_num, actual_col_num, merged_ranges)
row_data.append(cell_value)
return row_data
def _get_inherited_value(self, ws, row, col, merged_ranges):
for merged_range in merged_ranges:
if merged_range.min_row <= row <= merged_range.max_row and merged_range.min_col <= col <= merged_range.max_col:
return ws.cell(merged_range.min_row, merged_range.min_col).value
return None
def _is_empty_row(self, row_data):
for val in row_data:
if val is not None and str(val).strip() != "":
return False
return True
def trans_datatime(s):
try:
return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S")
except Exception:
pass
def trans_bool(s):
if re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√)$", str(s).strip(), flags=re.IGNORECASE):
return "yes"
if re.match(r"(false|no|否|⍻|×)$", str(s).strip(), flags=re.IGNORECASE):
return "no"
def column_data_type(arr):
arr = list(arr)
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
trans = {t: f for f, t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
float_flag = False
for a in arr:
if a is None:
continue
if re.match(r"[+-]?[0-9]+$", str(a).replace("%%", "")) and not str(a).replace("%%", "").startswith("0"):
counts["int"] += 1
if int(str(a)) > 2**63 - 1:
float_flag = True
break
elif re.match(r"[+-]?[0-9.]{,19}$", str(a).replace("%%", "")) and not str(a).replace("%%", "").startswith("0"):
counts["float"] += 1
elif re.match(r"(true|yes|是|\*|✓|✔|☑|✅|√|false|no|否|⍻|×)$", str(a), flags=re.IGNORECASE):
counts["bool"] += 1
elif trans_datatime(str(a)):
counts["datetime"] += 1
else:
counts["text"] += 1
if float_flag:
ty = "float"
else:
counts = sorted(counts.items(), key=lambda x: x[1] * -1)
ty = counts[0][0]
for i in range(len(arr)):
if arr[i] is None:
continue
try:
arr[i] = trans[ty](str(arr[i]))
except Exception:
arr[i] = None
# if ty == "text":
# if len(arr) > 128 and uni / len(arr) < 0.1:
# ty = "keyword"
return arr, ty
def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese", callback=None, **kwargs):
"""
Excel and csv(txt) format files are supported.
For csv or txt file, the delimiter between columns is TAB.
The first line must be column headers.
Column headers must be meaningful terms inorder to make our NLP model understanding.
It's good to enumerate some synonyms using slash '/' to separate, and even better to
enumerate values using brackets like 'gender/sex(male, female)'.
Here are some examples for headers:
1. supplier/vendor\tcolor(yellow, red, brown)\tgender/sex(male, female)\tsize(M,L,XL,XXL)
2. 姓名/名字\t电话/手机/微信\t最高学历高中职高硕士本科博士初中中技中专专科专升本MPAMBAEMBA
Every row in table will be treated as a chunk.
"""
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = Excel()
dfs = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = get_text(filename, binary)
lines = txt.split("\n")
fails = []
headers = lines[0].split(kwargs.get("delimiter", "\t"))
rows = []
for i, line in enumerate(lines[1:]):
if i < from_page:
continue
if i >= to_page:
break
row = [field for field in line.split(kwargs.get("delimiter", "\t"))]
if len(row) != len(headers):
fails.append(str(i))
continue
rows.append(row)
callback(0.3, ("Extract records: {}~{}".format(from_page, min(len(lines), to_page)) + (f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
else:
raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
res = []
PY = Pinyin()
fieds_map = {"text": "_tks", "int": "_long", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
for df in dfs:
for n in ["id", "_id", "index", "idx"]:
if n in df.columns:
del df[n]
clmns = df.columns.values
if len(clmns) != len(set(clmns)):
col_counts = Counter(clmns)
duplicates = [col for col, count in col_counts.items() if count > 1]
if duplicates:
raise ValueError(f"Duplicate column names detected: {duplicates}\nFrom: {clmns}")
txts = list(copy.deepcopy(clmns))
py_clmns = [PY.get_pinyins(re.sub(r"(/.*|[^]+?|\([^()]+?\))", "", str(n)), "_")[0] for n in clmns]
clmn_tys = []
for j in range(len(clmns)):
cln, ty = column_data_type(df[clmns[j]])
clmn_tys.append(ty)
df[clmns[j]] = cln
if ty == "text":
txts.extend([str(c) for c in cln if c])
clmns_map = [(py_clmns[i].lower() + fieds_map[clmn_tys[i]], str(clmns[i]).replace("_", " ")) for i in range(len(clmns))]
eng = lang.lower() == "english" # is_english(txts)
for ii, row in df.iterrows():
d = {"docnm_kwd": filename, "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))}
row_txt = []
for j in range(len(clmns)):
if row[clmns[j]] is None:
continue
if not str(row[clmns[j]]):
continue
if not isinstance(row[clmns[j]], pd.Series) and pd.isna(row[clmns[j]]):
continue
fld = clmns_map[j][0]
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else rag_tokenizer.tokenize(row[clmns[j]])
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
if not row_txt:
continue
tokenize(d, "; ".join(row_txt), eng)
res.append(d)
KnowledgebaseService.update_parser_config(kwargs["kb_id"], {"field_map": {k: v for k, v in clmns_map}})
callback(0.35, "")
return res
if __name__ == "__main__":
import sys
def dummy(prog=None, msg=""):
pass
chunk(sys.argv[1], callback=dummy)