mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
### What problem does this PR solve? As title ### Type of change - [x] Refactoring --------- Signed-off-by: Jin Hai <haijin.chn@gmail.com>
176 lines
5.6 KiB
Python
176 lines
5.6 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import re
|
|
import time
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
from typing import TypedDict, List, Any
|
|
from agent.component.base import ComponentParamBase, ComponentBase
|
|
from common.misc_utils import hash_str2int
|
|
from rag.prompts.generator import kb_prompt
|
|
from common.mcp_tool_call_conn import MCPToolCallSession, ToolCallSession
|
|
from timeit import default_timer as timer
|
|
|
|
|
|
class ToolParameter(TypedDict):
|
|
type: str
|
|
description: str
|
|
displayDescription: str
|
|
enum: List[str]
|
|
required: bool
|
|
|
|
|
|
class ToolMeta(TypedDict):
|
|
name: str
|
|
displayName: str
|
|
description: str
|
|
displayDescription: str
|
|
parameters: dict[str, ToolParameter]
|
|
|
|
|
|
class LLMToolPluginCallSession(ToolCallSession):
|
|
def __init__(self, tools_map: dict[str, object], callback: partial):
|
|
self.tools_map = tools_map
|
|
self.callback = callback
|
|
|
|
def tool_call(self, name: str, arguments: dict[str, Any]) -> Any:
|
|
assert name in self.tools_map, f"LLM tool {name} does not exist"
|
|
st = timer()
|
|
if isinstance(self.tools_map[name], MCPToolCallSession):
|
|
resp = self.tools_map[name].tool_call(name, arguments, 60)
|
|
else:
|
|
resp = self.tools_map[name].invoke(**arguments)
|
|
|
|
self.callback(name, arguments, resp, elapsed_time=timer()-st)
|
|
return resp
|
|
|
|
def get_tool_obj(self, name):
|
|
return self.tools_map[name]
|
|
|
|
|
|
class ToolParamBase(ComponentParamBase):
|
|
def __init__(self):
|
|
#self.meta:ToolMeta = None
|
|
super().__init__()
|
|
self._init_inputs()
|
|
self._init_attr_by_meta()
|
|
|
|
def _init_inputs(self):
|
|
self.inputs = {}
|
|
for k,p in self.meta["parameters"].items():
|
|
self.inputs[k] = deepcopy(p)
|
|
|
|
def _init_attr_by_meta(self):
|
|
for k,p in self.meta["parameters"].items():
|
|
if not hasattr(self, k):
|
|
setattr(self, k, p.get("default"))
|
|
|
|
def get_meta(self):
|
|
params = {}
|
|
for k, p in self.meta["parameters"].items():
|
|
params[k] = {
|
|
"type": p["type"],
|
|
"description": p["description"]
|
|
}
|
|
if "enum" in p:
|
|
params[k]["enum"] = p["enum"]
|
|
|
|
desc = self.meta["description"]
|
|
if hasattr(self, "description"):
|
|
desc = self.description
|
|
|
|
function_name = self.meta["name"]
|
|
if hasattr(self, "function_name"):
|
|
function_name = self.function_name
|
|
|
|
return {
|
|
"type": "function",
|
|
"function": {
|
|
"name": function_name,
|
|
"description": desc,
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": params,
|
|
"required": [k for k, p in self.meta["parameters"].items() if p["required"]]
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
class ToolBase(ComponentBase):
|
|
def __init__(self, canvas, id, param: ComponentParamBase):
|
|
from agent.canvas import Canvas # Local import to avoid cyclic dependency
|
|
assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas"
|
|
self._canvas = canvas
|
|
self._id = id
|
|
self._param = param
|
|
self._param.check()
|
|
|
|
def get_meta(self) -> dict[str, Any]:
|
|
return self._param.get_meta()
|
|
|
|
def invoke(self, **kwargs):
|
|
if self.check_if_canceled("Tool processing"):
|
|
return
|
|
|
|
self.set_output("_created_time", time.perf_counter())
|
|
try:
|
|
res = self._invoke(**kwargs)
|
|
except Exception as e:
|
|
self._param.outputs["_ERROR"] = {"value": str(e)}
|
|
logging.exception(e)
|
|
res = str(e)
|
|
self._param.debug_inputs = []
|
|
|
|
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
|
|
return res
|
|
|
|
def _retrieve_chunks(self, res_list: list, get_title, get_url, get_content, get_score=None):
|
|
chunks = []
|
|
aggs = []
|
|
for r in res_list:
|
|
content = get_content(r)
|
|
if not content:
|
|
continue
|
|
content = re.sub(r"!?\[[a-z]+\]\(data:image/png;base64,[ 0-9A-Za-z/_=+-]+\)", "", content)
|
|
content = content[:10000]
|
|
if not content:
|
|
continue
|
|
id = str(hash_str2int(content))
|
|
title = get_title(r)
|
|
url = get_url(r)
|
|
score = get_score(r) if get_score else 1
|
|
chunks.append({
|
|
"chunk_id": id,
|
|
"content": content,
|
|
"doc_id": id,
|
|
"docnm_kwd": title,
|
|
"similarity": score,
|
|
"url": url
|
|
})
|
|
aggs.append({
|
|
"doc_name": title,
|
|
"doc_id": id,
|
|
"count": 1,
|
|
"url": url
|
|
})
|
|
self._canvas.add_reference(chunks, aggs)
|
|
self.set_output("formalized_content", "\n".join(kb_prompt({"chunks": chunks, "doc_aggs": aggs}, 200000, True)))
|
|
|
|
def thoughts(self) -> str:
|
|
return self._canvas.get_component_name(self._id) + " is running..."
|