Files
ragflow/api/db/services/dialog_service.py
Kevin Hu d0dc56166c Fix: no effect on retrieval_test in term of metadata filter. (#9566)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-19 18:57:35 +08:00

816 lines
33 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import binascii
import logging
import re
import time
from copy import deepcopy
from datetime import datetime
from functools import partial
from timeit import default_timer as timer
import trio
from langfuse import Langfuse
from peewee import fn
from agentic_reasoning import DeepResearcher
from api import settings
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import DB, Dialog
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.utils import current_timestamp, datetime_format
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in
from rag.prompts.prompts import gen_meta_filter, PROMPT_JINJA_ENV, ASK_SUMMARY
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily
class DialogService(CommonService):
model = Dialog
@classmethod
def save(cls, **kwargs):
"""Save a new record to database.
This method creates a new record in the database with the provided field values,
forcing an insert operation rather than an update.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The created record object.
"""
sample_obj = cls.model(**kwargs).save(force_insert=True)
return sample_obj
@classmethod
def update_many_by_id(cls, data_list):
"""Update multiple records by their IDs.
This method updates multiple records in the database, identified by their IDs.
It automatically updates the update_time and update_date fields for each record.
Args:
data_list (list): List of dictionaries containing record data to update.
Each dictionary must include an 'id' field.
"""
with DB.atomic():
for data in data_list:
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
cls.model.update(data).where(cls.model.id == data["id"]).execute()
@classmethod
@DB.connection_context()
def get_list(cls, tenant_id, page_number, items_per_page, orderby, desc, id, name):
chats = cls.model.select()
if id:
chats = chats.where(cls.model.id == id)
if name:
chats = chats.where(cls.model.name == name)
chats = chats.where((cls.model.tenant_id == tenant_id) & (cls.model.status == StatusEnum.VALID.value))
if desc:
chats = chats.order_by(cls.model.getter_by(orderby).desc())
else:
chats = chats.order_by(cls.model.getter_by(orderby).asc())
chats = chats.paginate(page_number, items_per_page)
return list(chats.dicts())
@classmethod
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id, page_number, items_per_page, orderby, desc, keywords, parser_id=None):
from api.db.db_models import User
fields = [
cls.model.id,
cls.model.tenant_id,
cls.model.name,
cls.model.description,
cls.model.language,
cls.model.llm_id,
cls.model.llm_setting,
cls.model.prompt_type,
cls.model.prompt_config,
cls.model.similarity_threshold,
cls.model.vector_similarity_weight,
cls.model.top_n,
cls.model.top_k,
cls.model.do_refer,
cls.model.rerank_id,
cls.model.kb_ids,
cls.model.icon,
cls.model.status,
User.nickname,
User.avatar.alias("tenant_avatar"),
cls.model.update_time,
cls.model.create_time,
]
if keywords:
dialogs = (
cls.model.select(*fields)
.join(User, on=(cls.model.tenant_id == User.id))
.where(
(cls.model.tenant_id.in_(joined_tenant_ids) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value),
(fn.LOWER(cls.model.name).contains(keywords.lower())),
)
)
else:
dialogs = (
cls.model.select(*fields)
.join(User, on=(cls.model.tenant_id == User.id))
.where(
(cls.model.tenant_id.in_(joined_tenant_ids) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value),
)
)
if parser_id:
dialogs = dialogs.where(cls.model.parser_id == parser_id)
if desc:
dialogs = dialogs.order_by(cls.model.getter_by(orderby).desc())
else:
dialogs = dialogs.order_by(cls.model.getter_by(orderby).asc())
count = dialogs.count()
if page_number and items_per_page:
dialogs = dialogs.paginate(page_number, items_per_page)
return list(dialogs.dicts()), count
def chat_solo(dialog, messages, stream=True):
if TenantLLMService.llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
prompt_config = dialog.prompt_config
tts_mdl = None
if prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"]
if stream:
last_ans = ""
delta_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
delta_ans = ""
if delta_ans:
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
else:
answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
def get_models(dialog):
embd_mdl, chat_mdl, rerank_mdl, tts_mdl = None, None, None, None
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
embedding_list = list(set([kb.embd_id for kb in kbs]))
if len(embedding_list) > 1:
raise Exception("**ERROR**: Knowledge bases use different embedding models.")
if embedding_list:
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_list[0])
if not embd_mdl:
raise LookupError("Embedding model(%s) not found" % embedding_list[0])
if TenantLLMService.llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
if dialog.rerank_id:
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
if dialog.prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
return kbs, embd_mdl, rerank_mdl, chat_mdl, tts_mdl
BAD_CITATION_PATTERNS = [
re.compile(r"\(\s*ID\s*[: ]*\s*(\d+)\s*\)"), # (ID: 12)
re.compile(r"\[\s*ID\s*[: ]*\s*(\d+)\s*\]"), # [ID: 12]
re.compile(r"\s*ID\s*[: ]*\s*(\d+)\s*】"), # 【ID: 12】
re.compile(r"ref\s*(\d+)", flags=re.IGNORECASE), # ref12、REF 12
]
def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
max_index = len(kbinfos["chunks"])
def safe_add(i):
if 0 <= i < max_index:
idx.add(i)
return True
return False
def find_and_replace(pattern, group_index=1, repl=lambda i: f"ID:{i}", flags=0):
nonlocal answer
def replacement(match):
try:
i = int(match.group(group_index))
if safe_add(i):
return f"[{repl(i)}]"
except Exception:
pass
return match.group(0)
answer = re.sub(pattern, replacement, answer, flags=flags)
for pattern in BAD_CITATION_PATTERNS:
find_and_replace(pattern)
return answer, idx
def meta_filter(metas: dict, filters: list[dict]):
doc_ids = []
def filter_out(v2docs, operator, value):
nonlocal doc_ids
for input, docids in v2docs.items():
try:
input = float(input)
value = float(value)
except Exception:
input = str(input)
value = str(value)
for conds in [
(operator == "contains", str(value).lower() in str(input).lower()),
(operator == "not contains", str(value).lower() not in str(input).lower()),
(operator == "start with", str(input).lower().startswith(str(value).lower())),
(operator == "end with", str(input).lower().endswith(str(value).lower())),
(operator == "empty", not input),
(operator == "not empty", input),
(operator == "=", input == value),
(operator == "", input != value),
(operator == ">", input > value),
(operator == "<", input < value),
(operator == "", input >= value),
(operator == "", input <= value),
]:
try:
if all(conds):
doc_ids.extend(docids)
except Exception:
pass
for k, v2docs in metas.items():
for f in filters:
if k != f["key"]:
continue
filter_out(v2docs, f["op"], f["value"])
return doc_ids
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
if not dialog.kb_ids and not dialog.prompt_config.get("tavily_api_key"):
for ans in chat_solo(dialog, messages, stream):
yield ans
return
chat_start_ts = timer()
if TenantLLMService.llm_id2llm_type(dialog.llm_id) == "image2text":
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
max_tokens = llm_model_config.get("max_tokens", 8192)
check_llm_ts = timer()
langfuse_tracer = None
trace_context = {}
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=dialog.tenant_id)
if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
if langfuse.auth_check():
langfuse_tracer = langfuse
trace_id = langfuse_tracer.create_trace_id()
trace_context = {"trace_id": trace_id}
check_langfuse_tracer_ts = timer()
kbs, embd_mdl, rerank_mdl, chat_mdl, tts_mdl = get_models(dialog)
toolcall_session, tools = kwargs.get("toolcall_session"), kwargs.get("tools")
if toolcall_session and tools:
chat_mdl.bind_tools(toolcall_session, tools)
bind_models_ts = timer()
retriever = settings.retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else []
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]
prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
# try to use sql if field mapping is good to go
if field_map:
logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
if ans:
yield ans
return
for p in prompt_config["parameters"]:
if p["key"] == "knowledge":
continue
if p["key"] not in kwargs and not p["optional"]:
raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
if len(questions) > 1 and prompt_config.get("refine_multiturn"):
questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
else:
questions = questions[-1:]
if prompt_config.get("cross_languages"):
questions = [cross_languages(dialog.tenant_id, dialog.llm_id, questions[0], prompt_config["cross_languages"])]
if dialog.meta_data_filter:
metas = DocumentService.get_meta_by_kbs(dialog.kb_ids)
if dialog.meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, questions[-1])
attachments.extend(meta_filter(metas, filters))
if not attachments:
attachments = None
elif dialog.meta_data_filter.get("method") == "manual":
attachments.extend(meta_filter(metas, dialog.meta_data_filter["manual"]))
if not attachments:
attachments = None
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
refine_question_ts = timer()
thought = ""
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
knowledges = []
if attachments is not None and "knowledge" in [p["key"] for p in prompt_config["parameters"]]:
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
knowledges = []
if prompt_config.get("reasoning", False):
reasoner = DeepResearcher(
chat_mdl,
prompt_config,
partial(
retriever.retrieval,
embd_mdl=embd_mdl,
tenant_ids=tenant_ids,
kb_ids=dialog.kb_ids,
page=1,
page_size=dialog.top_n,
similarity_threshold=0.2,
vector_similarity_weight=0.3,
doc_ids=attachments,
),
)
for think in reasoner.thinking(kbinfos, " ".join(questions)):
if isinstance(think, str):
thought = think
knowledges = [t for t in think.split("\n") if t]
elif stream:
yield think
else:
if embd_mdl:
kbinfos = retriever.retrieval(
" ".join(questions),
embd_mdl,
tenant_ids,
dialog.kb_ids,
1,
dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs),
)
if prompt_config.get("tavily_api_key"):
tav = Tavily(prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(questions))
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl, LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
knowledges = kb_prompt(kbinfos, max_tokens)
logging.debug("{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
retrieval_ts = timer()
if not knowledges and prompt_config.get("empty_response"):
empty_res = prompt_config["empty_response"]
yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)}
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
prompt4citation = ""
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
prompt4citation = citation_prompt()
msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"])
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.95))
assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
prompt = msg[0]["content"]
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], max_tokens - used_token_count)
def decorate_answer(answer):
nonlocal embd_mdl, prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions, langfuse_tracer
refs = []
ans = answer.split("</think>")
think = ""
if len(ans) == 2:
think = ans[0] + "</think>"
answer = ans[1]
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
idx = set([])
if embd_mdl and not re.search(r"\[ID:([0-9]+)\]", answer):
answer, idx = retriever.insert_citations(
answer,
[ck["content_ltks"] for ck in kbinfos["chunks"]],
[ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight,
)
else:
for match in re.finditer(r"\[ID:([0-9]+)\]", answer):
i = int(match.group(1))
if i < len(kbinfos["chunks"]):
idx.add(i)
answer, idx = repair_bad_citation_formats(answer, kbinfos, idx)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
refs = deepcopy(kbinfos)
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
finish_chat_ts = timer()
total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
check_langfuse_tracer_cost = (check_langfuse_tracer_ts - check_llm_ts) * 1000
bind_embedding_time_cost = (bind_models_ts - check_langfuse_tracer_ts) * 1000
refine_question_time_cost = (refine_question_ts - bind_models_ts) * 1000
retrieval_time_cost = (retrieval_ts - refine_question_ts) * 1000
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
tk_num = num_tokens_from_string(think + answer)
prompt += "\n\n### Query:\n%s" % " ".join(questions)
prompt = (
f"{prompt}\n\n"
"## Time elapsed:\n"
f" - Total: {total_time_cost:.1f}ms\n"
f" - Check LLM: {check_llm_time_cost:.1f}ms\n"
f" - Check Langfuse tracer: {check_langfuse_tracer_cost:.1f}ms\n"
f" - Bind models: {bind_embedding_time_cost:.1f}ms\n"
f" - Query refinement(LLM): {refine_question_time_cost:.1f}ms\n"
f" - Retrieval: {retrieval_time_cost:.1f}ms\n"
f" - Generate answer: {generate_result_time_cost:.1f}ms\n\n"
"## Token usage:\n"
f" - Generated tokens(approximately): {tk_num}\n"
f" - Token speed: {int(tk_num / (generate_result_time_cost / 1000.0))}/s"
)
# Add a condition check to call the end method only if langfuse_tracer exists
if langfuse_tracer and "langfuse_generation" in locals():
langfuse_output = "\n" + re.sub(r"^.*?(### Query:.*)", r"\1", prompt, flags=re.DOTALL)
langfuse_output = {"time_elapsed:": re.sub(r"\n", " \n", langfuse_output), "created_at": time.time()}
langfuse_generation.update(output=langfuse_output)
langfuse_generation.end()
return {"answer": think + answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
if langfuse_tracer:
langfuse_generation = langfuse_tracer.start_generation(
trace_context=trace_context, name="chat", model=llm_model_config["llm_name"], input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg}
)
if stream:
last_ans = ""
answer = ""
for ans in chat_mdl.chat_streamly(prompt + prompt4citation, msg[1:], gen_conf):
if thought:
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans) :]
if delta_ans:
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought + answer)
else:
answer = chat_mdl.chat(prompt + prompt4citation, msg[1:], gen_conf)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
res = decorate_answer(answer)
res["audio_binary"] = tts(tts_mdl, answer)
yield res
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
user_prompt = """
Table name: {};
Table of database fields are as follows:
{}
Question are as follows:
{}
Please write the SQL, only SQL, without any other explanations or text.
""".format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question)
tried_times = 0
def get_table():
nonlocal sys_prompt, user_prompt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {"temperature": 0.06})
sql = re.sub(r"^.*</think>", "", sql, flags=re.DOTALL)
logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;]|```).*", "", sql)
if sql[: len("select ")] != "select ":
return None, None
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
if sql[: len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
for k in field_map.keys():
if k in forbidden_select_fields4resume:
continue
if len(flds) > 11:
break
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
logging.debug(f"{question} get SQL(refined): {sql}")
tried_times += 1
return settings.retrievaler.sql_retrieval(sql, format="json"), sql
tbl, sql = get_table()
if tbl is None:
return None
if tbl.get("error") and tried_times <= 2:
user_prompt = """
Table name: {};
Table of database fields are as follows:
{}
Question are as follows:
{}
Please write the SQL, only SQL, without any other explanations or text.
The SQL error you provided last time is as follows:
{}
Error issued by database as follows:
{}
Please correct the error and write SQL again, only SQL, without any other explanations or text.
""".format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question, sql, tbl["error"])
tbl, sql = get_table()
logging.debug("TRY it again: {}".format(sql))
logging.debug("GET table: {}".format(tbl))
if tbl.get("error") or len(tbl["rows"]) == 0:
return None
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
doc_name_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
column_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
# compose Markdown table
columns = (
"|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
)
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + ("|------|" if docid_idx and docid_idx else "")
rows = ["|" + "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
if not docid_idx or not doc_name_idx:
logging.warning("SQL missing field: " + sql)
return {"answer": "\n".join([columns, line, rows]), "reference": {"chunks": [], "doc_aggs": []}, "prompt": sys_prompt}
docid_idx = list(docid_idx)[0]
doc_name_idx = list(doc_name_idx)[0]
doc_aggs = {}
for r in tbl["rows"]:
if r[docid_idx] not in doc_aggs:
doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0}
doc_aggs[r[docid_idx]]["count"] += 1
return {
"answer": "\n".join([columns, line, rows]),
"reference": {
"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()],
},
"prompt": sys_prompt,
}
def tts(tts_mdl, text):
if not tts_mdl or not text:
return
bin = b""
for chunk in tts_mdl.tts(text):
bin += chunk
return binascii.hexlify(bin).decode("utf-8")
def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
doc_ids = search_config.get("doc_ids", [])
rerank_mdl = None
kb_ids = search_config.get("kb_ids", kb_ids)
chat_llm_name = search_config.get("chat_id", chat_llm_name)
rerank_id = search_config.get("rerank_id", "")
meta_data_filter = search_config.get("meta_data_filter")
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embedding_list = list(set([kb.embd_id for kb in kbs]))
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_llm_name)
if rerank_id:
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
max_tokens = chat_mdl.max_length
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
if meta_data_filter:
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
kbinfos = retriever.retrieval(
question = question,
embd_mdl=embd_mdl,
tenant_ids=tenant_ids,
kb_ids=kb_ids,
page=1,
page_size=12,
similarity_threshold=search_config.get("similarity_threshold", 0.1),
vector_similarity_weight=search_config.get("vector_similarity_weight", 0.3),
top=search_config.get("top_k", 1024),
doc_ids=doc_ids,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(question, kbs)
)
knowledges = kb_prompt(kbinfos, max_tokens)
sys_prompt = PROMPT_JINJA_ENV.from_string(ASK_SUMMARY).render(knowledge="\n".join(knowledges))
msg = [{"role": "user", "content": question}]
def decorate_answer(answer):
nonlocal knowledges, kbinfos, sys_prompt
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
refs = deepcopy(kbinfos)
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
refs["chunks"] = chunks_format(refs)
return {"answer": answer, "reference": refs}
answer = ""
for ans in chat_mdl.chat_streamly(sys_prompt, msg, {"temperature": 0.1}):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)
def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
meta_data_filter = search_config.get("meta_data_filter", {})
doc_ids = search_config.get("doc_ids", [])
rerank_id = search_config.get("rerank_id", "")
rerank_mdl = None
kbs = KnowledgebaseService.get_by_ids(kb_ids)
if not kbs:
return {"error": "No KB selected"}
embedding_list = list(set([kb.embd_id for kb in kbs]))
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, llm_name=embedding_list[0])
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
if rerank_id:
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
if meta_data_filter:
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
ranks = settings.retrievaler.retrieval(
question=question,
embd_mdl=embd_mdl,
tenant_ids=tenant_ids,
kb_ids=kb_ids,
page=1,
page_size=12,
similarity_threshold=search_config.get("similarity_threshold", 0.2),
vector_similarity_weight=search_config.get("vector_similarity_weight", 0.3),
top=search_config.get("top_k", 1024),
doc_ids=doc_ids,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(question, kbs),
)
mindmap = MindMapExtractor(chat_mdl)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
return mind_map.output