mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
### What problem does this PR solve? Incorrect async chat streamly output. #11677. Disable beartype for #11666. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
430 lines
18 KiB
Python
430 lines
18 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import asyncio
|
|
import inspect
|
|
import logging
|
|
import re
|
|
import threading
|
|
from common.token_utils import num_tokens_from_string
|
|
from functools import partial
|
|
from typing import Generator
|
|
from common.constants import LLMType
|
|
from api.db.db_models import LLM
|
|
from api.db.services.common_service import CommonService
|
|
from api.db.services.tenant_llm_service import LLM4Tenant, TenantLLMService
|
|
|
|
|
|
class LLMService(CommonService):
|
|
model = LLM
|
|
|
|
|
|
def get_init_tenant_llm(user_id):
|
|
from common import settings
|
|
tenant_llm = []
|
|
|
|
model_configs = {
|
|
LLMType.CHAT: settings.CHAT_CFG,
|
|
LLMType.EMBEDDING: settings.EMBEDDING_CFG,
|
|
LLMType.SPEECH2TEXT: settings.ASR_CFG,
|
|
LLMType.IMAGE2TEXT: settings.IMAGE2TEXT_CFG,
|
|
LLMType.RERANK: settings.RERANK_CFG,
|
|
}
|
|
|
|
seen = set()
|
|
factory_configs = []
|
|
for factory_config in [
|
|
settings.CHAT_CFG,
|
|
settings.EMBEDDING_CFG,
|
|
settings.ASR_CFG,
|
|
settings.IMAGE2TEXT_CFG,
|
|
settings.RERANK_CFG,
|
|
]:
|
|
factory_name = factory_config["factory"]
|
|
if factory_name not in seen:
|
|
seen.add(factory_name)
|
|
factory_configs.append(factory_config)
|
|
|
|
for factory_config in factory_configs:
|
|
for llm in LLMService.query(fid=factory_config["factory"]):
|
|
tenant_llm.append(
|
|
{
|
|
"tenant_id": user_id,
|
|
"llm_factory": factory_config["factory"],
|
|
"llm_name": llm.llm_name,
|
|
"model_type": llm.model_type,
|
|
"api_key": model_configs.get(llm.model_type, {}).get("api_key", factory_config["api_key"]),
|
|
"api_base": model_configs.get(llm.model_type, {}).get("base_url", factory_config["base_url"]),
|
|
"max_tokens": llm.max_tokens if llm.max_tokens else 8192,
|
|
}
|
|
)
|
|
|
|
unique = {}
|
|
for item in tenant_llm:
|
|
key = (item["tenant_id"], item["llm_factory"], item["llm_name"])
|
|
if key not in unique:
|
|
unique[key] = item
|
|
return list(unique.values())
|
|
|
|
|
|
class LLMBundle(LLM4Tenant):
|
|
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
|
|
super().__init__(tenant_id, llm_type, llm_name, lang, **kwargs)
|
|
|
|
def bind_tools(self, toolcall_session, tools):
|
|
if not self.is_tools:
|
|
logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
|
|
return
|
|
self.mdl.bind_tools(toolcall_session, tools)
|
|
|
|
def encode(self, texts: list):
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode", model=self.llm_name, input={"texts": texts})
|
|
|
|
safe_texts = []
|
|
for text in texts:
|
|
token_size = num_tokens_from_string(text)
|
|
if token_size > self.max_length:
|
|
target_len = int(self.max_length * 0.95)
|
|
safe_texts.append(text[:target_len])
|
|
else:
|
|
safe_texts.append(text)
|
|
|
|
embeddings, used_tokens = self.mdl.encode(safe_texts)
|
|
|
|
llm_name = getattr(self, "llm_name", None)
|
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
|
|
logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
|
|
if self.langfuse:
|
|
generation.update(usage_details={"total_tokens": used_tokens})
|
|
generation.end()
|
|
|
|
return embeddings, used_tokens
|
|
|
|
def encode_queries(self, query: str):
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode_queries", model=self.llm_name, input={"query": query})
|
|
|
|
emd, used_tokens = self.mdl.encode_queries(query)
|
|
llm_name = getattr(self, "llm_name", None)
|
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
|
|
logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
|
|
if self.langfuse:
|
|
generation.update(usage_details={"total_tokens": used_tokens})
|
|
generation.end()
|
|
|
|
return emd, used_tokens
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
|
|
|
|
sim, used_tokens = self.mdl.similarity(query, texts)
|
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
|
|
if self.langfuse:
|
|
generation.update(usage_details={"total_tokens": used_tokens})
|
|
generation.end()
|
|
|
|
return sim, used_tokens
|
|
|
|
def describe(self, image, max_tokens=300):
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe", metadata={"model": self.llm_name})
|
|
|
|
txt, used_tokens = self.mdl.describe(image)
|
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
|
|
if self.langfuse:
|
|
generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
|
generation.end()
|
|
|
|
return txt
|
|
|
|
def describe_with_prompt(self, image, prompt):
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
|
|
|
|
txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
|
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
|
|
if self.langfuse:
|
|
generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
|
generation.end()
|
|
|
|
return txt
|
|
|
|
def transcription(self, audio):
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="transcription", metadata={"model": self.llm_name})
|
|
|
|
txt, used_tokens = self.mdl.transcription(audio)
|
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
|
|
logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
|
|
|
if self.langfuse:
|
|
generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
|
generation.end()
|
|
|
|
return txt
|
|
|
|
def stream_transcription(self, audio):
|
|
mdl = self.mdl
|
|
supports_stream = hasattr(mdl, "stream_transcription") and callable(getattr(mdl, "stream_transcription"))
|
|
if supports_stream:
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(
|
|
trace_context=self.trace_context,
|
|
name="stream_transcription",
|
|
metadata={"model": self.llm_name}
|
|
)
|
|
final_text = ""
|
|
used_tokens = 0
|
|
|
|
try:
|
|
for evt in mdl.stream_transcription(audio):
|
|
if evt.get("event") == "final":
|
|
final_text = evt.get("text", "")
|
|
|
|
yield evt
|
|
|
|
except Exception as e:
|
|
err = {"event": "error", "text": str(e)}
|
|
yield err
|
|
final_text = final_text or ""
|
|
finally:
|
|
if final_text:
|
|
used_tokens = num_tokens_from_string(final_text)
|
|
TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens)
|
|
|
|
if self.langfuse:
|
|
generation.update(
|
|
output={"output": final_text},
|
|
usage_details={"total_tokens": used_tokens}
|
|
)
|
|
generation.end()
|
|
|
|
return
|
|
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="stream_transcription", metadata={"model": self.llm_name})
|
|
full_text, used_tokens = mdl.transcription(audio)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens
|
|
):
|
|
logging.error(
|
|
f"LLMBundle.stream_transcription can't update token usage for {self.tenant_id}/SEQUENCE2TXT used_tokens: {used_tokens}"
|
|
)
|
|
if self.langfuse:
|
|
generation.update(
|
|
output={"output": full_text},
|
|
usage_details={"total_tokens": used_tokens}
|
|
)
|
|
generation.end()
|
|
|
|
yield {
|
|
"event": "final",
|
|
"text": full_text,
|
|
"streaming": False
|
|
}
|
|
|
|
def tts(self, text: str) -> Generator[bytes, None, None]:
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="tts", input={"text": text})
|
|
|
|
for chunk in self.mdl.tts(text):
|
|
if isinstance(chunk, int):
|
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
|
|
logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
|
|
return
|
|
yield chunk
|
|
|
|
if self.langfuse:
|
|
generation.end()
|
|
|
|
def _remove_reasoning_content(self, txt: str) -> str:
|
|
first_think_start = txt.find("<think>")
|
|
if first_think_start == -1:
|
|
return txt
|
|
|
|
last_think_end = txt.rfind("</think>")
|
|
if last_think_end == -1:
|
|
return txt
|
|
|
|
if last_think_end < first_think_start:
|
|
return txt
|
|
|
|
return txt[last_think_end + len("</think>") :]
|
|
|
|
@staticmethod
|
|
def _clean_param(chat_partial, **kwargs):
|
|
func = chat_partial.func
|
|
sig = inspect.signature(func)
|
|
support_var_args = False
|
|
allowed_params = set()
|
|
|
|
for param in sig.parameters.values():
|
|
if param.kind == inspect.Parameter.VAR_KEYWORD:
|
|
support_var_args = True
|
|
elif param.kind in (inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY):
|
|
allowed_params.add(param.name)
|
|
if support_var_args:
|
|
return kwargs
|
|
else:
|
|
return {k: v for k, v in kwargs.items() if k in allowed_params}
|
|
def chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs) -> str:
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat", model=self.llm_name, input={"system": system, "history": history})
|
|
|
|
chat_partial = partial(self.mdl.chat, system, history, gen_conf, **kwargs)
|
|
if self.is_tools and self.mdl.is_tools:
|
|
chat_partial = partial(self.mdl.chat_with_tools, system, history, gen_conf, **kwargs)
|
|
|
|
use_kwargs = self._clean_param(chat_partial, **kwargs)
|
|
txt, used_tokens = chat_partial(**use_kwargs)
|
|
txt = self._remove_reasoning_content(txt)
|
|
|
|
if not self.verbose_tool_use:
|
|
txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
|
|
|
|
if used_tokens and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
|
|
logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
|
|
|
|
if self.langfuse:
|
|
generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
|
|
generation.end()
|
|
|
|
return txt
|
|
|
|
def chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs):
|
|
if self.langfuse:
|
|
generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
|
|
|
|
ans = ""
|
|
chat_partial = partial(self.mdl.chat_streamly, system, history, gen_conf)
|
|
total_tokens = 0
|
|
if self.is_tools and self.mdl.is_tools:
|
|
chat_partial = partial(self.mdl.chat_streamly_with_tools, system, history, gen_conf)
|
|
use_kwargs = self._clean_param(chat_partial, **kwargs)
|
|
for txt in chat_partial(**use_kwargs):
|
|
if isinstance(txt, int):
|
|
total_tokens = txt
|
|
if self.langfuse:
|
|
generation.update(output={"output": ans})
|
|
generation.end()
|
|
break
|
|
|
|
if txt.endswith("</think>"):
|
|
ans = ans[: -len("</think>")]
|
|
|
|
if not self.verbose_tool_use:
|
|
txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
|
|
|
|
ans += txt
|
|
yield ans
|
|
|
|
if total_tokens > 0:
|
|
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, total_tokens, self.llm_name):
|
|
logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, total_tokens))
|
|
|
|
def _bridge_sync_stream(self, gen):
|
|
loop = asyncio.get_running_loop()
|
|
queue: asyncio.Queue = asyncio.Queue()
|
|
|
|
def worker():
|
|
try:
|
|
for item in gen:
|
|
loop.call_soon_threadsafe(queue.put_nowait, item)
|
|
except Exception as e: # pragma: no cover
|
|
loop.call_soon_threadsafe(queue.put_nowait, e)
|
|
finally:
|
|
loop.call_soon_threadsafe(queue.put_nowait, StopAsyncIteration)
|
|
|
|
threading.Thread(target=worker, daemon=True).start()
|
|
return queue
|
|
|
|
async def async_chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs):
|
|
chat_partial = partial(self.mdl.chat, system, history, gen_conf, **kwargs)
|
|
if self.is_tools and self.mdl.is_tools and hasattr(self.mdl, "chat_with_tools"):
|
|
chat_partial = partial(self.mdl.chat_with_tools, system, history, gen_conf, **kwargs)
|
|
|
|
use_kwargs = self._clean_param(chat_partial, **kwargs)
|
|
|
|
if hasattr(self.mdl, "async_chat_with_tools") and self.is_tools and self.mdl.is_tools:
|
|
txt, used_tokens = await self.mdl.async_chat_with_tools(system, history, gen_conf, **use_kwargs)
|
|
elif hasattr(self.mdl, "async_chat"):
|
|
txt, used_tokens = await self.mdl.async_chat(system, history, gen_conf, **use_kwargs)
|
|
else:
|
|
txt, used_tokens = await asyncio.to_thread(chat_partial, **use_kwargs)
|
|
|
|
txt = self._remove_reasoning_content(txt)
|
|
if not self.verbose_tool_use:
|
|
txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
|
|
|
|
if used_tokens and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
|
|
logging.error("LLMBundle.async_chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
|
|
|
|
return txt
|
|
|
|
async def async_chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs):
|
|
total_tokens = 0
|
|
ans = ""
|
|
if self.is_tools and self.mdl.is_tools:
|
|
stream_fn = getattr(self.mdl, "async_chat_streamly_with_tools", None)
|
|
else:
|
|
stream_fn = getattr(self.mdl, "async_chat_streamly", None)
|
|
|
|
if stream_fn:
|
|
chat_partial = partial(stream_fn, system, history, gen_conf)
|
|
use_kwargs = self._clean_param(chat_partial, **kwargs)
|
|
async for txt in chat_partial(**use_kwargs):
|
|
if isinstance(txt, int):
|
|
total_tokens = txt
|
|
break
|
|
|
|
if txt.endswith("</think>"):
|
|
ans = ans[: -len("</think>")]
|
|
|
|
if not self.verbose_tool_use:
|
|
txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
|
|
|
|
ans += txt
|
|
yield ans
|
|
if total_tokens and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, total_tokens, self.llm_name):
|
|
logging.error("LLMBundle.async_chat_streamly can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, total_tokens))
|
|
return
|
|
|
|
chat_partial = partial(self.mdl.chat_streamly_with_tools if (self.is_tools and self.mdl.is_tools) else self.mdl.chat_streamly, system, history, gen_conf)
|
|
use_kwargs = self._clean_param(chat_partial, **kwargs)
|
|
queue = self._bridge_sync_stream(chat_partial(**use_kwargs))
|
|
while True:
|
|
item = await queue.get()
|
|
if item is StopAsyncIteration:
|
|
break
|
|
if isinstance(item, Exception):
|
|
raise item
|
|
if isinstance(item, int):
|
|
total_tokens = item
|
|
break
|
|
yield item
|
|
|
|
if total_tokens and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, total_tokens, self.llm_name):
|
|
logging.error("LLMBundle.async_chat_streamly can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, total_tokens))
|