mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-18 03:26:42 +08:00
### PR details feat: Add Excel export support and fix variable reference regex Changes: - Add Excel export output format option to Message component - Apply nest_asyncio patch to handle nested event loops - Fix async generator iteration in canvas_app.py debug endpoint - Add underscore support in variable reference regex pattern ### What problem does this PR solve? ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Shivam Johri <shivamjohri@Shivams-MacBook-Air.local>
424 lines
16 KiB
Python
424 lines
16 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import asyncio
|
|
import nest_asyncio
|
|
nest_asyncio.apply()
|
|
import inspect
|
|
import json
|
|
import os
|
|
import random
|
|
import re
|
|
import logging
|
|
import tempfile
|
|
from functools import partial
|
|
from typing import Any
|
|
|
|
from agent.component.base import ComponentBase, ComponentParamBase
|
|
from jinja2 import Template as Jinja2Template
|
|
|
|
from common.connection_utils import timeout
|
|
from common.misc_utils import get_uuid
|
|
from common import settings
|
|
|
|
|
|
class MessageParam(ComponentParamBase):
|
|
"""
|
|
Define the Message component parameters.
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.content = []
|
|
self.stream = True
|
|
self.output_format = None # default output format
|
|
self.auto_play = False
|
|
self.outputs = {
|
|
"content": {
|
|
"type": "str"
|
|
}
|
|
}
|
|
|
|
def check(self):
|
|
self.check_empty(self.content, "[Message] Content")
|
|
self.check_boolean(self.stream, "[Message] stream")
|
|
return True
|
|
|
|
|
|
class Message(ComponentBase):
|
|
component_name = "Message"
|
|
|
|
def get_input_elements(self) -> dict[str, Any]:
|
|
return self.get_input_elements_from_text("".join(self._param.content))
|
|
|
|
def get_kwargs(self, script:str, kwargs:dict = {}, delimiter:str=None) -> tuple[str, dict[str, str | list | Any]]:
|
|
for k,v in self.get_input_elements_from_text(script).items():
|
|
if k in kwargs:
|
|
continue
|
|
v = v["value"]
|
|
if not v:
|
|
v = ""
|
|
ans = ""
|
|
if isinstance(v, partial):
|
|
iter_obj = v()
|
|
if inspect.isasyncgen(iter_obj):
|
|
ans = asyncio.run(self._consume_async_gen(iter_obj))
|
|
else:
|
|
for t in iter_obj:
|
|
ans += t
|
|
elif isinstance(v, list) and delimiter:
|
|
ans = delimiter.join([str(vv) for vv in v])
|
|
elif not isinstance(v, str):
|
|
try:
|
|
ans = json.dumps(v, ensure_ascii=False)
|
|
except Exception:
|
|
pass
|
|
else:
|
|
ans = v
|
|
if not ans:
|
|
ans = ""
|
|
kwargs[k] = ans
|
|
self.set_input_value(k, ans)
|
|
|
|
_kwargs = {}
|
|
for n, v in kwargs.items():
|
|
_n = re.sub("[@:.]", "_", n)
|
|
script = re.sub(r"\{%s\}" % re.escape(n), _n, script)
|
|
_kwargs[_n] = v
|
|
return script, _kwargs
|
|
|
|
async def _consume_async_gen(self, agen):
|
|
buf = ""
|
|
async for t in agen:
|
|
buf += t
|
|
return buf
|
|
|
|
async def _stream(self, rand_cnt:str):
|
|
s = 0
|
|
all_content = ""
|
|
cache = {}
|
|
for r in re.finditer(self.variable_ref_patt, rand_cnt, flags=re.DOTALL):
|
|
if self.check_if_canceled("Message streaming"):
|
|
return
|
|
|
|
all_content += rand_cnt[s: r.start()]
|
|
yield rand_cnt[s: r.start()]
|
|
s = r.end()
|
|
exp = r.group(1)
|
|
if exp in cache:
|
|
yield cache[exp]
|
|
all_content += cache[exp]
|
|
continue
|
|
|
|
v = self._canvas.get_variable_value(exp)
|
|
if v is None:
|
|
v = ""
|
|
if isinstance(v, partial):
|
|
cnt = ""
|
|
iter_obj = v()
|
|
if inspect.isasyncgen(iter_obj):
|
|
async for t in iter_obj:
|
|
if self.check_if_canceled("Message streaming"):
|
|
return
|
|
|
|
all_content += t
|
|
cnt += t
|
|
yield t
|
|
else:
|
|
for t in iter_obj:
|
|
if self.check_if_canceled("Message streaming"):
|
|
return
|
|
|
|
all_content += t
|
|
cnt += t
|
|
yield t
|
|
self.set_input_value(exp, cnt)
|
|
continue
|
|
elif inspect.isawaitable(v):
|
|
v = await v
|
|
elif not isinstance(v, str):
|
|
try:
|
|
v = json.dumps(v, ensure_ascii=False)
|
|
except Exception:
|
|
v = str(v)
|
|
yield v
|
|
self.set_input_value(exp, v)
|
|
all_content += v
|
|
cache[exp] = v
|
|
|
|
if s < len(rand_cnt):
|
|
if self.check_if_canceled("Message streaming"):
|
|
return
|
|
|
|
all_content += rand_cnt[s: ]
|
|
yield rand_cnt[s: ]
|
|
|
|
self.set_output("content", all_content)
|
|
self._convert_content(all_content)
|
|
|
|
def _is_jinjia2(self, content:str) -> bool:
|
|
patt = [
|
|
r"\{%.*%\}", "{{", "}}"
|
|
]
|
|
return any([re.search(p, content) for p in patt])
|
|
|
|
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
|
|
def _invoke(self, **kwargs):
|
|
if self.check_if_canceled("Message processing"):
|
|
return
|
|
|
|
rand_cnt = random.choice(self._param.content)
|
|
if self._param.stream and not self._is_jinjia2(rand_cnt):
|
|
self.set_output("content", partial(self._stream, rand_cnt))
|
|
return
|
|
|
|
rand_cnt, kwargs = self.get_kwargs(rand_cnt, kwargs)
|
|
template = Jinja2Template(rand_cnt)
|
|
try:
|
|
content = template.render(kwargs)
|
|
except Exception:
|
|
pass
|
|
|
|
if self.check_if_canceled("Message processing"):
|
|
return
|
|
|
|
for n, v in kwargs.items():
|
|
content = re.sub(n, v, content)
|
|
|
|
self.set_output("content", content)
|
|
self._convert_content(content)
|
|
|
|
def thoughts(self) -> str:
|
|
return ""
|
|
|
|
def _parse_markdown_table_lines(self, table_lines: list):
|
|
"""
|
|
Parse a list of markdown table lines into a pandas DataFrame.
|
|
|
|
Args:
|
|
table_lines: List of strings, each representing a row in the markdown table
|
|
(excluding separator lines like |---|---|)
|
|
|
|
Returns:
|
|
pandas DataFrame with the table data, or None if parsing fails
|
|
"""
|
|
import pandas as pd
|
|
|
|
if not table_lines:
|
|
return None
|
|
|
|
rows = []
|
|
headers = None
|
|
|
|
for line in table_lines:
|
|
# Split by | and clean up
|
|
cells = [cell.strip() for cell in line.split('|')]
|
|
# Remove empty first and last elements from split (caused by leading/trailing |)
|
|
cells = [c for c in cells if c]
|
|
|
|
if headers is None:
|
|
headers = cells
|
|
else:
|
|
rows.append(cells)
|
|
|
|
if headers and rows:
|
|
# Ensure all rows have same number of columns as headers
|
|
normalized_rows = []
|
|
for row in rows:
|
|
while len(row) < len(headers):
|
|
row.append('')
|
|
normalized_rows.append(row[:len(headers)])
|
|
|
|
return pd.DataFrame(normalized_rows, columns=headers)
|
|
|
|
return None
|
|
|
|
def _convert_content(self, content):
|
|
if not self._param.output_format:
|
|
return
|
|
|
|
import pypandoc
|
|
doc_id = get_uuid()
|
|
|
|
if self._param.output_format.lower() not in {"markdown", "html", "pdf", "docx", "xlsx"}:
|
|
self._param.output_format = "markdown"
|
|
|
|
try:
|
|
if self._param.output_format in {"markdown", "html"}:
|
|
if isinstance(content, str):
|
|
converted = pypandoc.convert_text(
|
|
content,
|
|
to=self._param.output_format,
|
|
format="markdown",
|
|
)
|
|
else:
|
|
converted = pypandoc.convert_file(
|
|
content,
|
|
to=self._param.output_format,
|
|
format="markdown",
|
|
)
|
|
|
|
binary_content = converted.encode("utf-8")
|
|
|
|
elif self._param.output_format == "xlsx":
|
|
import pandas as pd
|
|
from io import BytesIO
|
|
|
|
# Debug: log the content being parsed
|
|
logging.info(f"XLSX Parser: Content length={len(content) if content else 0}, first 500 chars: {content[:500] if content else 'None'}")
|
|
|
|
# Try to parse ALL markdown tables from the content
|
|
# Each table will be written to a separate sheet
|
|
tables = [] # List of (sheet_name, dataframe)
|
|
|
|
if isinstance(content, str):
|
|
lines = content.strip().split('\n')
|
|
logging.info(f"XLSX Parser: Total lines={len(lines)}, lines starting with '|': {sum(1 for line in lines if line.strip().startswith('|'))}")
|
|
current_table_lines = []
|
|
current_table_title = None
|
|
pending_title = None
|
|
in_table = False
|
|
table_count = 0
|
|
|
|
for i, line in enumerate(lines):
|
|
stripped = line.strip()
|
|
|
|
# Check for potential table title (lines before a table)
|
|
# Look for patterns like "Table 1:", "## Table", or markdown headers
|
|
if not in_table and stripped and not stripped.startswith('|'):
|
|
# Check if this could be a table title
|
|
lower_stripped = stripped.lower()
|
|
if (lower_stripped.startswith('table') or
|
|
stripped.startswith('#') or
|
|
':' in stripped):
|
|
pending_title = stripped.lstrip('#').strip()
|
|
|
|
if stripped.startswith('|') and '|' in stripped[1:]:
|
|
# Check if this is a separator line (|---|---|)
|
|
cleaned = stripped.replace(' ', '').replace('|', '').replace('-', '').replace(':', '')
|
|
if cleaned == '':
|
|
continue # Skip separator line
|
|
|
|
if not in_table:
|
|
# Starting a new table
|
|
in_table = True
|
|
current_table_lines = []
|
|
current_table_title = pending_title
|
|
pending_title = None
|
|
|
|
current_table_lines.append(stripped)
|
|
|
|
elif in_table and not stripped.startswith('|'):
|
|
# End of current table - save it
|
|
if current_table_lines:
|
|
df = self._parse_markdown_table_lines(current_table_lines)
|
|
if df is not None and not df.empty:
|
|
table_count += 1
|
|
# Generate sheet name
|
|
if current_table_title:
|
|
# Clean and truncate title for sheet name
|
|
sheet_name = current_table_title[:31]
|
|
sheet_name = sheet_name.replace('/', '_').replace('\\', '_').replace('*', '').replace('?', '').replace('[', '').replace(']', '').replace(':', '')
|
|
else:
|
|
sheet_name = f"Table_{table_count}"
|
|
tables.append((sheet_name, df))
|
|
|
|
# Reset for next table
|
|
in_table = False
|
|
current_table_lines = []
|
|
current_table_title = None
|
|
|
|
# Check if this line could be a title for the next table
|
|
if stripped:
|
|
lower_stripped = stripped.lower()
|
|
if (lower_stripped.startswith('table') or
|
|
stripped.startswith('#') or
|
|
':' in stripped):
|
|
pending_title = stripped.lstrip('#').strip()
|
|
|
|
# Don't forget the last table if content ends with a table
|
|
if in_table and current_table_lines:
|
|
df = self._parse_markdown_table_lines(current_table_lines)
|
|
if df is not None and not df.empty:
|
|
table_count += 1
|
|
if current_table_title:
|
|
sheet_name = current_table_title[:31]
|
|
sheet_name = sheet_name.replace('/', '_').replace('\\', '_').replace('*', '').replace('?', '').replace('[', '').replace(']', '').replace(':', '')
|
|
else:
|
|
sheet_name = f"Table_{table_count}"
|
|
tables.append((sheet_name, df))
|
|
|
|
# Fallback: if no tables found, create single sheet with content
|
|
if not tables:
|
|
df = pd.DataFrame({"Content": [content if content else ""]})
|
|
tables = [("Data", df)]
|
|
|
|
# Write all tables to Excel, each in a separate sheet
|
|
excel_io = BytesIO()
|
|
with pd.ExcelWriter(excel_io, engine='openpyxl') as writer:
|
|
used_names = set()
|
|
for sheet_name, df in tables:
|
|
# Ensure unique sheet names
|
|
original_name = sheet_name
|
|
counter = 1
|
|
while sheet_name in used_names:
|
|
suffix = f"_{counter}"
|
|
sheet_name = original_name[:31-len(suffix)] + suffix
|
|
counter += 1
|
|
used_names.add(sheet_name)
|
|
df.to_excel(writer, sheet_name=sheet_name, index=False)
|
|
|
|
excel_io.seek(0)
|
|
binary_content = excel_io.read()
|
|
|
|
logging.info(f"Generated Excel with {len(tables)} sheet(s): {[t[0] for t in tables]}")
|
|
|
|
else: # pdf, docx
|
|
with tempfile.NamedTemporaryFile(suffix=f".{self._param.output_format}", delete=False) as tmp:
|
|
tmp_name = tmp.name
|
|
|
|
try:
|
|
if isinstance(content, str):
|
|
pypandoc.convert_text(
|
|
content,
|
|
to=self._param.output_format,
|
|
format="markdown",
|
|
outputfile=tmp_name,
|
|
)
|
|
else:
|
|
pypandoc.convert_file(
|
|
content,
|
|
to=self._param.output_format,
|
|
format="markdown",
|
|
outputfile=tmp_name,
|
|
)
|
|
|
|
with open(tmp_name, "rb") as f:
|
|
binary_content = f.read()
|
|
|
|
finally:
|
|
if os.path.exists(tmp_name):
|
|
os.remove(tmp_name)
|
|
|
|
settings.STORAGE_IMPL.put(self._canvas._tenant_id, doc_id, binary_content)
|
|
self.set_output("attachment", {
|
|
"doc_id":doc_id,
|
|
"format":self._param.output_format,
|
|
"file_name":f"{doc_id[:8]}.{self._param.output_format}"})
|
|
|
|
logging.info(f"Converted content uploaded as {doc_id} (format={self._param.output_format})")
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error converting content to {self._param.output_format}: {e}")
|