mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
### What problem does this PR solve? Fix broken imports ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) --------- Signed-off-by: jinhai <haijin.chn@gmail.com>
843 lines
30 KiB
Python
843 lines
30 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import base64
|
|
import json
|
|
import os
|
|
from abc import ABC
|
|
from copy import deepcopy
|
|
from io import BytesIO
|
|
from urllib.parse import urljoin
|
|
import requests
|
|
from openai import OpenAI
|
|
from openai.lib.azure import AzureOpenAI
|
|
from zhipuai import ZhipuAI
|
|
from rag.nlp import is_english
|
|
from rag.prompts.generator import vision_llm_describe_prompt
|
|
from rag.utils import num_tokens_from_string
|
|
|
|
|
|
class Base(ABC):
|
|
def __init__(self, **kwargs):
|
|
# Configure retry parameters
|
|
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
|
|
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
|
|
self.max_rounds = kwargs.get("max_rounds", 5)
|
|
self.is_tools = False
|
|
self.tools = []
|
|
self.toolcall_sessions = {}
|
|
|
|
def describe(self, image):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
raise NotImplementedError("Please implement encode method!")
|
|
|
|
def _form_history(self, system, history, images=[]):
|
|
hist = []
|
|
if system:
|
|
hist.append({"role": "system", "content": system})
|
|
for h in history:
|
|
if images and h["role"] == "user":
|
|
h["content"] = self._image_prompt(h["content"], images)
|
|
images = []
|
|
hist.append(h)
|
|
return hist
|
|
|
|
def _image_prompt(self, text, images):
|
|
if not images:
|
|
return text
|
|
|
|
if isinstance(images, str) or "bytes" in type(images).__name__:
|
|
images = [images]
|
|
|
|
pmpt = [{"type": "text", "text": text}]
|
|
for img in images:
|
|
pmpt.append({
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": img if isinstance(img, str) and img.startswith("data:") else f"data:image/png;base64,{img}"
|
|
}
|
|
})
|
|
return pmpt
|
|
|
|
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
|
try:
|
|
response = self.client.responses.create(
|
|
model=self.model_name,
|
|
messages=self._form_history(system, history, images)
|
|
)
|
|
return response.choices[0].message.content.strip(), response.usage.total_tokens
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
|
ans = ""
|
|
tk_count = 0
|
|
try:
|
|
response = self.client.responses.create(
|
|
model=self.model_name,
|
|
messages=self._form_history(system, history, images),
|
|
stream=True
|
|
)
|
|
for resp in response:
|
|
if not resp.choices[0].delta.content:
|
|
continue
|
|
delta = resp.choices[0].delta.content
|
|
ans = delta
|
|
if resp.choices[0].finish_reason == "length":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
if resp.choices[0].finish_reason == "stop":
|
|
tk_count += resp.usage.total_tokens
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
yield tk_count
|
|
|
|
@staticmethod
|
|
def image2base64(image):
|
|
# Return a data URL with the correct MIME to avoid provider mismatches
|
|
if isinstance(image, bytes):
|
|
# Best-effort magic number sniffing
|
|
mime = "image/png"
|
|
if len(image) >= 2 and image[0] == 0xFF and image[1] == 0xD8:
|
|
mime = "image/jpeg"
|
|
b64 = base64.b64encode(image).decode("utf-8")
|
|
return f"data:{mime};base64,{b64}"
|
|
if isinstance(image, BytesIO):
|
|
data = image.getvalue()
|
|
mime = "image/png"
|
|
if len(data) >= 2 and data[0] == 0xFF and data[1] == 0xD8:
|
|
mime = "image/jpeg"
|
|
b64 = base64.b64encode(data).decode("utf-8")
|
|
return f"data:{mime};base64,{b64}"
|
|
with BytesIO() as buffered:
|
|
fmt = "JPEG"
|
|
try:
|
|
image.save(buffered, format="JPEG")
|
|
except Exception:
|
|
# reset buffer before saving PNG
|
|
buffered.seek(0)
|
|
buffered.truncate()
|
|
image.save(buffered, format="PNG")
|
|
fmt = "PNG"
|
|
data = buffered.getvalue()
|
|
b64 = base64.b64encode(data).decode("utf-8")
|
|
mime = f"image/{fmt.lower()}"
|
|
return f"data:{mime};base64,{b64}"
|
|
|
|
def prompt(self, b64):
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": self._image_prompt(
|
|
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
|
|
if self.lang.lower() == "chinese"
|
|
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
|
|
b64
|
|
)
|
|
}
|
|
]
|
|
|
|
def vision_llm_prompt(self, b64, prompt=None):
|
|
return [
|
|
{
|
|
"role": "user",
|
|
"content": self._image_prompt(prompt if prompt else vision_llm_describe_prompt(), b64)
|
|
}
|
|
]
|
|
|
|
|
|
class GptV4(Base):
|
|
_FACTORY_NAME = "OpenAI"
|
|
|
|
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1", **kwargs):
|
|
if not base_url:
|
|
base_url = "https://api.openai.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
super().__init__(**kwargs)
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
# Check if this is a GPT-5 model and use responses.create API
|
|
res = self.client.responses.create(
|
|
model=self.model_name,
|
|
messages=self.prompt(b64),
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
res = self.client.responses.create(
|
|
model=self.model_name,
|
|
messages=self.vision_llm_prompt(b64, prompt),
|
|
)
|
|
return res.choices[0].message.content.strip(), res.usage.total_tokens
|
|
|
|
|
|
class AzureGptV4(GptV4):
|
|
_FACTORY_NAME = "Azure-OpenAI"
|
|
|
|
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
|
api_key = json.loads(key).get("api_key", "")
|
|
api_version = json.loads(key).get("api_version", "2024-02-01")
|
|
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class xAICV(GptV4):
|
|
_FACTORY_NAME = "xAI"
|
|
|
|
def __init__(self, key, model_name="grok-3", lang="Chinese", base_url=None, **kwargs):
|
|
if not base_url:
|
|
base_url = "https://api.x.ai/v1"
|
|
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
|
|
|
|
|
|
class QWenCV(GptV4):
|
|
_FACTORY_NAME = "Tongyi-Qianwen"
|
|
|
|
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", base_url=None, **kwargs):
|
|
if not base_url:
|
|
base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
|
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
|
|
|
|
|
|
class HunyuanCV(GptV4):
|
|
_FACTORY_NAME = "Tencent Hunyuan"
|
|
|
|
def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
|
|
if not base_url:
|
|
base_url = "https://api.hunyuan.cloud.tencent.com/v1"
|
|
super().__init__(key, model_name, lang=lang, base_url=base_url, **kwargs)
|
|
|
|
|
|
class Zhipu4V(GptV4):
|
|
_FACTORY_NAME = "ZHIPU-AI"
|
|
|
|
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
|
|
self.client = ZhipuAI(api_key=key)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class StepFunCV(GptV4):
|
|
_FACTORY_NAME = "StepFun"
|
|
|
|
def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1", **kwargs):
|
|
if not base_url:
|
|
base_url = "https://api.stepfun.com/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class LmStudioCV(GptV4):
|
|
_FACTORY_NAME = "LM-Studio"
|
|
|
|
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class OpenAI_APICV(GptV4):
|
|
_FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
|
|
|
|
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
|
|
if not base_url:
|
|
raise ValueError("url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class TogetherAICV(GptV4):
|
|
_FACTORY_NAME = "TogetherAI"
|
|
|
|
def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1", **kwargs):
|
|
if not base_url:
|
|
base_url = "https://api.together.xyz/v1"
|
|
super().__init__(key, model_name, lang, base_url, **kwargs)
|
|
|
|
|
|
class YiCV(GptV4):
|
|
_FACTORY_NAME = "01.AI"
|
|
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
lang="Chinese",
|
|
base_url="https://api.lingyiwanwu.com/v1", **kwargs
|
|
):
|
|
if not base_url:
|
|
base_url = "https://api.lingyiwanwu.com/v1"
|
|
super().__init__(key, model_name, lang, base_url, **kwargs)
|
|
|
|
|
|
class SILICONFLOWCV(GptV4):
|
|
_FACTORY_NAME = "SILICONFLOW"
|
|
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
lang="Chinese",
|
|
base_url="https://api.siliconflow.cn/v1", **kwargs
|
|
):
|
|
if not base_url:
|
|
base_url = "https://api.siliconflow.cn/v1"
|
|
super().__init__(key, model_name, lang, base_url, **kwargs)
|
|
|
|
|
|
class OpenRouterCV(GptV4):
|
|
_FACTORY_NAME = "OpenRouter"
|
|
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
lang="Chinese",
|
|
base_url="https://openrouter.ai/api/v1", **kwargs
|
|
):
|
|
if not base_url:
|
|
base_url = "https://openrouter.ai/api/v1"
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class LocalAICV(GptV4):
|
|
_FACTORY_NAME = "LocalAI"
|
|
|
|
def __init__(self, key, model_name, base_url, lang="Chinese", **kwargs):
|
|
if not base_url:
|
|
raise ValueError("Local cv model url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key="empty", base_url=base_url)
|
|
self.model_name = model_name.split("___")[0]
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class XinferenceCV(GptV4):
|
|
_FACTORY_NAME = "Xinference"
|
|
|
|
def __init__(self, key, model_name="", lang="Chinese", base_url="", **kwargs):
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class GPUStackCV(GptV4):
|
|
_FACTORY_NAME = "GPUStack"
|
|
|
|
def __init__(self, key, model_name, lang="Chinese", base_url="", **kwargs):
|
|
if not base_url:
|
|
raise ValueError("Local llm url cannot be None")
|
|
base_url = urljoin(base_url, "v1")
|
|
self.client = OpenAI(api_key=key, base_url=base_url)
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
class LocalCV(Base):
|
|
_FACTORY_NAME = "Moonshot"
|
|
|
|
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
|
|
pass
|
|
|
|
def describe(self, image):
|
|
return "", 0
|
|
|
|
|
|
class OllamaCV(Base):
|
|
_FACTORY_NAME = "Ollama"
|
|
|
|
def __init__(self, key, model_name, lang="Chinese", **kwargs):
|
|
from ollama import Client
|
|
self.client = Client(host=kwargs["base_url"])
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
|
|
Base.__init__(self, **kwargs)
|
|
|
|
|
|
def _clean_img(self, img):
|
|
if not isinstance(img, str):
|
|
return img
|
|
|
|
#remove the header like "data/*;base64,"
|
|
if img.startswith("data:") and ";base64," in img:
|
|
img = img.split(";base64,")[1]
|
|
return img
|
|
|
|
def _clean_conf(self, gen_conf):
|
|
options = {}
|
|
if "temperature" in gen_conf:
|
|
options["temperature"] = gen_conf["temperature"]
|
|
if "top_p" in gen_conf:
|
|
options["top_k"] = gen_conf["top_p"]
|
|
if "presence_penalty" in gen_conf:
|
|
options["presence_penalty"] = gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
options["frequency_penalty"] = gen_conf["frequency_penalty"]
|
|
return options
|
|
|
|
def _form_history(self, system, history, images=[]):
|
|
hist = deepcopy(history)
|
|
if system and hist[0]["role"] == "user":
|
|
hist.insert(0, {"role": "system", "content": system})
|
|
if not images:
|
|
return hist
|
|
temp_images = []
|
|
for img in images:
|
|
temp_images.append(self._clean_img(img))
|
|
for his in hist:
|
|
if his["role"] == "user":
|
|
his["images"] = temp_images
|
|
break
|
|
return hist
|
|
|
|
def describe(self, image):
|
|
prompt = self.prompt("")
|
|
try:
|
|
response = self.client.generate(
|
|
model=self.model_name,
|
|
prompt=prompt[0]["content"][0]["text"],
|
|
images=[image],
|
|
)
|
|
ans = response["response"].strip()
|
|
return ans, 128
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
|
|
try:
|
|
response = self.client.generate(
|
|
model=self.model_name,
|
|
prompt=vision_prompt[0]["content"][0]["text"],
|
|
images=[image],
|
|
)
|
|
ans = response["response"].strip()
|
|
return ans, 128
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat(self, system, history, gen_conf, images=[]):
|
|
try:
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=self._form_history(system, history, images),
|
|
options=self._clean_conf(gen_conf),
|
|
keep_alive=self.keep_alive
|
|
)
|
|
|
|
ans = response["message"]["content"].strip()
|
|
return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, images=[]):
|
|
ans = ""
|
|
try:
|
|
response = self.client.chat(
|
|
model=self.model_name,
|
|
messages=self._form_history(system, history, images),
|
|
stream=True,
|
|
options=self._clean_conf(gen_conf),
|
|
keep_alive=self.keep_alive
|
|
)
|
|
for resp in response:
|
|
if resp["done"]:
|
|
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
|
|
ans = resp["message"]["content"]
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
yield 0
|
|
|
|
|
|
class GeminiCV(Base):
|
|
_FACTORY_NAME = "Gemini"
|
|
|
|
def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
|
|
from google.generativeai import GenerativeModel, client
|
|
|
|
client.configure(api_key=key)
|
|
_client = client.get_default_generative_client()
|
|
self.model_name = model_name
|
|
self.model = GenerativeModel(model_name=self.model_name)
|
|
self.model._client = _client
|
|
self.lang = lang
|
|
Base.__init__(self, **kwargs)
|
|
|
|
def _form_history(self, system, history, images=[]):
|
|
hist = []
|
|
if system:
|
|
hist.append({"role": "user", "parts": [system, history[0]["content"]]})
|
|
for img in images:
|
|
hist[0]["parts"].append(("data:image/jpeg;base64," + img) if img[:4]!="data" else img)
|
|
for h in history[1:]:
|
|
hist.append({"role": "user" if h["role"]=="user" else "model", "parts": [h["content"]]})
|
|
return hist
|
|
|
|
def describe(self, image):
|
|
from PIL.Image import open
|
|
|
|
prompt = (
|
|
"请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
|
|
if self.lang.lower() == "chinese"
|
|
else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
|
|
)
|
|
b64 = self.image2base64(image)
|
|
with BytesIO(base64.b64decode(b64)) as bio:
|
|
img = open(bio)
|
|
input = [prompt, img]
|
|
res = self.model.generate_content(input)
|
|
img.close()
|
|
return res.text, res.usage_metadata.total_token_count
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
from PIL.Image import open
|
|
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = prompt if prompt else vision_llm_describe_prompt()
|
|
with BytesIO(base64.b64decode(b64)) as bio:
|
|
img = open(bio)
|
|
input = [vision_prompt, img]
|
|
res = self.model.generate_content(input)
|
|
img.close()
|
|
return res.text, res.usage_metadata.total_token_count
|
|
|
|
def chat(self, system, history, gen_conf, images=[]):
|
|
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
|
|
try:
|
|
response = self.model.generate_content(
|
|
self._form_history(system, history, images),
|
|
generation_config=generation_config)
|
|
ans = response.text
|
|
return ans, response.usage_metadata.total_token_count
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, images=[]):
|
|
ans = ""
|
|
response = None
|
|
try:
|
|
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
|
|
response = self.model.generate_content(
|
|
self._form_history(system, history, images),
|
|
generation_config=generation_config,
|
|
stream=True,
|
|
)
|
|
|
|
for resp in response:
|
|
if not resp.text:
|
|
continue
|
|
ans = resp.text
|
|
yield ans
|
|
except Exception as e:
|
|
yield ans + "\n**ERROR**: " + str(e)
|
|
|
|
if response and hasattr(response, "usage_metadata") and hasattr(response.usage_metadata, "total_token_count"):
|
|
yield response.usage_metadata.total_token_count
|
|
else:
|
|
yield 0
|
|
|
|
|
|
class NvidiaCV(Base):
|
|
_FACTORY_NAME = "NVIDIA"
|
|
|
|
def __init__(
|
|
self,
|
|
key,
|
|
model_name,
|
|
lang="Chinese",
|
|
base_url="https://ai.api.nvidia.com/v1/vlm", **kwargs
|
|
):
|
|
if not base_url:
|
|
base_url = ("https://ai.api.nvidia.com/v1/vlm",)
|
|
self.lang = lang
|
|
factory, llm_name = model_name.split("/")
|
|
if factory != "liuhaotian":
|
|
self.base_url = urljoin(base_url, f"{factory}/{llm_name}")
|
|
else:
|
|
self.base_url = urljoin(f"{base_url}/community", llm_name.replace("-v1.6", "16"))
|
|
self.key = key
|
|
Base.__init__(self, **kwargs)
|
|
|
|
def _image_prompt(self, text, images):
|
|
if not images:
|
|
return text
|
|
htmls = ""
|
|
for img in images:
|
|
htmls += ' <img src="{}"/>'.format(f"data:image/jpeg;base64,{img}" if img[:4] != "data" else img)
|
|
return text + htmls
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
response = requests.post(
|
|
url=self.base_url,
|
|
headers={
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"Authorization": f"Bearer {self.key}",
|
|
},
|
|
json={"messages": self.prompt(b64)},
|
|
)
|
|
response = response.json()
|
|
return (
|
|
response["choices"][0]["message"]["content"].strip(),
|
|
response["usage"]["total_tokens"],
|
|
)
|
|
|
|
def _request(self, msg, gen_conf={}):
|
|
response = requests.post(
|
|
url=self.base_url,
|
|
headers={
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
"Authorization": f"Bearer {self.key}",
|
|
},
|
|
json={
|
|
"messages": msg, **gen_conf
|
|
},
|
|
)
|
|
return response.json()
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
|
|
response = self._request(vision_prompt)
|
|
return (
|
|
response["choices"][0]["message"]["content"].strip(),
|
|
response["usage"]["total_tokens"],
|
|
)
|
|
|
|
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
|
try:
|
|
response = self._request(self._form_history(system, history, images), gen_conf)
|
|
return (
|
|
response["choices"][0]["message"]["content"].strip(),
|
|
response["usage"]["total_tokens"],
|
|
)
|
|
except Exception as e:
|
|
return "**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, images=[], **kwargs):
|
|
total_tokens = 0
|
|
try:
|
|
response = self._request(self._form_history(system, history, images), gen_conf)
|
|
cnt = response["choices"][0]["message"]["content"]
|
|
if "usage" in response and "total_tokens" in response["usage"]:
|
|
total_tokens += response["usage"]["total_tokens"]
|
|
for resp in cnt:
|
|
yield resp
|
|
except Exception as e:
|
|
yield "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class AnthropicCV(Base):
|
|
_FACTORY_NAME = "Anthropic"
|
|
|
|
def __init__(self, key, model_name, base_url=None, **kwargs):
|
|
import anthropic
|
|
|
|
self.client = anthropic.Anthropic(api_key=key)
|
|
self.model_name = model_name
|
|
self.system = ""
|
|
self.max_tokens = 8192
|
|
if "haiku" in self.model_name or "opus" in self.model_name:
|
|
self.max_tokens = 4096
|
|
Base.__init__(self, **kwargs)
|
|
|
|
def _image_prompt(self, text, images):
|
|
if not images:
|
|
return text
|
|
pmpt = [{"type": "text", "text": text}]
|
|
for img in images:
|
|
pmpt.append({
|
|
"type": "image",
|
|
"source": {
|
|
"type": "base64",
|
|
"media_type": (img.split(":")[1].split(";")[0] if isinstance(img, str) and img[:4] == "data" else "image/png"),
|
|
"data": (img.split(",")[1] if isinstance(img, str) and img[:4] == "data" else img)
|
|
},
|
|
}
|
|
)
|
|
return pmpt
|
|
|
|
def describe(self, image):
|
|
b64 = self.image2base64(image)
|
|
response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=self.prompt(b64))
|
|
return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
b64 = self.image2base64(image)
|
|
prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
|
|
|
|
response = self.client.messages.create(model=self.model_name, max_tokens=self.max_tokens, messages=prompt)
|
|
return response["content"][0]["text"].strip(), response["usage"]["input_tokens"] + response["usage"]["output_tokens"]
|
|
|
|
def _clean_conf(self, gen_conf):
|
|
if "presence_penalty" in gen_conf:
|
|
del gen_conf["presence_penalty"]
|
|
if "frequency_penalty" in gen_conf:
|
|
del gen_conf["frequency_penalty"]
|
|
if "max_token" in gen_conf:
|
|
gen_conf["max_tokens"] = self.max_tokens
|
|
return gen_conf
|
|
|
|
def chat(self, system, history, gen_conf, images=[]):
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
ans = ""
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=self._form_history(system, history, images),
|
|
system=system,
|
|
stream=False,
|
|
**gen_conf,
|
|
).to_dict()
|
|
ans = response["content"][0]["text"]
|
|
if response["stop_reason"] == "max_tokens":
|
|
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
|
return (
|
|
ans,
|
|
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
|
|
)
|
|
except Exception as e:
|
|
return ans + "\n**ERROR**: " + str(e), 0
|
|
|
|
def chat_streamly(self, system, history, gen_conf, images=[]):
|
|
gen_conf = self._clean_conf(gen_conf)
|
|
total_tokens = 0
|
|
try:
|
|
response = self.client.messages.create(
|
|
model=self.model_name,
|
|
messages=self._form_history(system, history, images),
|
|
system=system,
|
|
stream=True,
|
|
**gen_conf,
|
|
)
|
|
think = False
|
|
for res in response:
|
|
if res.type == "content_block_delta":
|
|
if res.delta.type == "thinking_delta" and res.delta.thinking:
|
|
if not think:
|
|
yield "<think>"
|
|
think = True
|
|
yield res.delta.thinking
|
|
total_tokens += num_tokens_from_string(res.delta.thinking)
|
|
elif think:
|
|
yield "</think>"
|
|
else:
|
|
yield res.delta.text
|
|
total_tokens += num_tokens_from_string(res.delta.text)
|
|
except Exception as e:
|
|
yield "\n**ERROR**: " + str(e)
|
|
|
|
yield total_tokens
|
|
|
|
|
|
class GoogleCV(AnthropicCV, GeminiCV):
|
|
_FACTORY_NAME = "Google Cloud"
|
|
|
|
def __init__(self, key, model_name, lang="Chinese", base_url=None, **kwargs):
|
|
import base64
|
|
|
|
from google.oauth2 import service_account
|
|
|
|
key = json.loads(key)
|
|
access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
|
|
project_id = key.get("google_project_id", "")
|
|
region = key.get("google_region", "")
|
|
|
|
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
|
|
self.model_name = model_name
|
|
self.lang = lang
|
|
|
|
if "claude" in self.model_name:
|
|
from anthropic import AnthropicVertex
|
|
from google.auth.transport.requests import Request
|
|
|
|
if access_token:
|
|
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
|
|
request = Request()
|
|
credits.refresh(request)
|
|
token = credits.token
|
|
self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
|
|
else:
|
|
self.client = AnthropicVertex(region=region, project_id=project_id)
|
|
else:
|
|
import vertexai.generative_models as glm
|
|
from google.cloud import aiplatform
|
|
|
|
if access_token:
|
|
credits = service_account.Credentials.from_service_account_info(access_token)
|
|
aiplatform.init(credentials=credits, project=project_id, location=region)
|
|
else:
|
|
aiplatform.init(project=project_id, location=region)
|
|
self.client = glm.GenerativeModel(model_name=self.model_name)
|
|
Base.__init__(self, **kwargs)
|
|
|
|
def describe(self, image):
|
|
if "claude" in self.model_name:
|
|
return AnthropicCV.describe(self, image)
|
|
else:
|
|
return GeminiCV.describe(self, image)
|
|
|
|
def describe_with_prompt(self, image, prompt=None):
|
|
if "claude" in self.model_name:
|
|
return AnthropicCV.describe_with_prompt(self, image, prompt)
|
|
else:
|
|
return GeminiCV.describe_with_prompt(self, image, prompt)
|
|
|
|
def chat(self, system, history, gen_conf, images=[]):
|
|
if "claude" in self.model_name:
|
|
return AnthropicCV.chat(self, system, history, gen_conf, images)
|
|
else:
|
|
return GeminiCV.chat(self, system, history, gen_conf, images)
|
|
|
|
def chat_streamly(self, system, history, gen_conf, images=[]):
|
|
if "claude" in self.model_name:
|
|
for ans in AnthropicCV.chat_streamly(self, system, history, gen_conf, images):
|
|
yield ans
|
|
else:
|
|
for ans in GeminiCV.chat_streamly(self, system, history, gen_conf, images):
|
|
yield ans
|