Files
ragflow/rag/utils/opensearch_conn.py
Vedant Madane ac936005e6 fix: ensure deleted chunks are not returned in retrieval (#12520) (#12546)
## Summary
Fixes #12520 - Deleted chunks should not appear in retrieval/reference
results.

## Changes

### Core Fix
- **api/apps/chunk_app.py**: Include \doc_id\ in delete condition to
properly scope the delete operation

### Improved Error Handling
- **api/db/services/document_service.py**: Better separation of concerns
with individual try-catch blocks and proper logging for each cleanup
operation

### Doc Store Updates
- **rag/utils/es_conn.py**: Updated delete query construction to support
compound conditions
- **rag/utils/opensearch_conn.py**: Same updates for OpenSearch
compatibility

### Tests
- **test/testcases/.../test_retrieval_chunks.py**: Added
\TestDeletedChunksNotRetrievable\ class with regression tests
- **test/unit/test_delete_query_construction.py**: Unit tests for delete
query construction

## Testing
- Added regression tests that verify deleted chunks are not returned by
retrieval API
- Tests cover single chunk deletion and batch deletion scenarios
2026-01-15 14:45:55 +08:00

573 lines
23 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
import json
import time
import os
import copy
from opensearchpy import OpenSearch, NotFoundError
from opensearchpy import UpdateByQuery, Q, Search, Index
from opensearchpy import ConnectionTimeout
from common.decorator import singleton
from common.file_utils import get_project_base_directory
from common.doc_store.doc_store_base import DocStoreConnection, MatchExpr, OrderByExpr, MatchTextExpr, MatchDenseExpr, \
FusionExpr
from rag.nlp import is_english, rag_tokenizer
from common.constants import PAGERANK_FLD, TAG_FLD
from common import settings
ATTEMPT_TIME = 2
logger = logging.getLogger('ragflow.opensearch_conn')
@singleton
class OSConnection(DocStoreConnection):
def __init__(self):
self.info = {}
logger.info(f"Use OpenSearch {settings.OS['hosts']} as the doc engine.")
for _ in range(ATTEMPT_TIME):
try:
self.os = OpenSearch(
settings.OS["hosts"].split(","),
http_auth=(settings.OS["username"], settings.OS[
"password"]) if "username" in settings.OS and "password" in settings.OS else None,
verify_certs=False,
timeout=600
)
if self.os:
self.info = self.os.info()
break
except Exception as e:
logger.warning(f"{str(e)}. Waiting OpenSearch {settings.OS['hosts']} to be healthy.")
time.sleep(5)
if not self.os.ping():
msg = f"OpenSearch {settings.OS['hosts']} is unhealthy in 120s."
logger.error(msg)
raise Exception(msg)
v = self.info.get("version", {"number": "2.18.0"})
v = v["number"].split(".")[0]
if int(v) < 2:
msg = f"OpenSearch version must be greater than or equal to 2, current version: {v}"
logger.error(msg)
raise Exception(msg)
fp_mapping = os.path.join(get_project_base_directory(), "conf", "os_mapping.json")
if not os.path.exists(fp_mapping):
msg = f"OpenSearch mapping file not found at {fp_mapping}"
logger.error(msg)
raise Exception(msg)
self.mapping = json.load(open(fp_mapping, "r"))
logger.info(f"OpenSearch {settings.OS['hosts']} is healthy.")
"""
Database operations
"""
def db_type(self) -> str:
return "opensearch"
def health(self) -> dict:
health_dict = dict(self.os.cluster.health())
health_dict["type"] = "opensearch"
return health_dict
"""
Table operations
"""
def create_idx(self, indexName: str, knowledgebaseId: str, vectorSize: int):
if self.index_exist(indexName, knowledgebaseId):
return True
try:
from opensearchpy.client import IndicesClient
return IndicesClient(self.os).create(index=indexName,
body=self.mapping)
except Exception:
logger.exception("OSConnection.createIndex error %s" % (indexName))
def delete_idx(self, indexName: str, knowledgebaseId: str):
if len(knowledgebaseId) > 0:
# The index need to be alive after any kb deletion since all kb under this tenant are in one index.
return
try:
self.os.indices.delete(index=indexName, allow_no_indices=True)
except NotFoundError:
pass
except Exception:
logger.exception("OSConnection.deleteIdx error %s" % (indexName))
def index_exist(self, indexName: str, knowledgebaseId: str = None) -> bool:
s = Index(indexName, self.os)
for i in range(ATTEMPT_TIME):
try:
return s.exists()
except Exception as e:
logger.exception("OSConnection.indexExist got exception")
if str(e).find("Timeout") > 0 or str(e).find("Conflict") > 0:
continue
break
return False
"""
CRUD operations
"""
def search(
self, selectFields: list[str],
highlightFields: list[str],
condition: dict,
matchExprs: list[MatchExpr],
orderBy: OrderByExpr,
offset: int,
limit: int,
indexNames: str | list[str],
knowledgebaseIds: list[str],
aggFields: list[str] = [],
rank_feature: dict | None = None
):
"""
Refers to https://github.com/opensearch-project/opensearch-py/blob/main/guides/dsl.md
"""
use_knn = False
if isinstance(indexNames, str):
indexNames = indexNames.split(",")
assert isinstance(indexNames, list) and len(indexNames) > 0
assert "_id" not in condition
bqry = Q("bool", must=[])
condition["kb_id"] = knowledgebaseIds
for k, v in condition.items():
if k == "available_int":
if v == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(
Q("bool", must_not=Q("range", available_int={"lt": 1})))
continue
if not v:
continue
if isinstance(v, list):
bqry.filter.append(Q("terms", **{k: v}))
elif isinstance(v, str) or isinstance(v, int):
bqry.filter.append(Q("term", **{k: v}))
else:
raise Exception(
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
s = Search()
vector_similarity_weight = 0.5
for m in matchExprs:
if isinstance(m, FusionExpr) and m.method == "weighted_sum" and "weights" in m.fusion_params:
assert len(matchExprs) == 3 and isinstance(matchExprs[0], MatchTextExpr) and isinstance(matchExprs[1],
MatchDenseExpr) and isinstance(
matchExprs[2], FusionExpr)
weights = m.fusion_params["weights"]
vector_similarity_weight = float(weights.split(",")[1])
knn_query = {}
for m in matchExprs:
if isinstance(m, MatchTextExpr):
minimum_should_match = m.extra_options.get("minimum_should_match", 0.0)
if isinstance(minimum_should_match, float):
minimum_should_match = str(int(minimum_should_match * 100)) + "%"
bqry.must.append(Q("query_string", fields=m.fields,
type="best_fields", query=m.matching_text,
minimum_should_match=minimum_should_match,
boost=1))
bqry.boost = 1.0 - vector_similarity_weight
# Elasticsearch has the encapsulation of KNN_search in python sdk
# while the Python SDK for OpenSearch does not provide encapsulation for KNN_search,
# the following codes implement KNN_search in OpenSearch using DSL
# Besides, Opensearch's DSL for KNN_search query syntax differs from that in Elasticsearch, I also made some adaptions for it
elif isinstance(m, MatchDenseExpr):
assert (bqry is not None)
similarity = 0.0
if "similarity" in m.extra_options:
similarity = m.extra_options["similarity"]
use_knn = True
vector_column_name = m.vector_column_name
knn_query[vector_column_name] = {}
knn_query[vector_column_name]["vector"] = list(m.embedding_data)
knn_query[vector_column_name]["k"] = m.topn
knn_query[vector_column_name]["filter"] = bqry.to_dict()
knn_query[vector_column_name]["boost"] = similarity
if bqry and rank_feature:
for fld, sc in rank_feature.items():
if fld != PAGERANK_FLD:
fld = f"{TAG_FLD}.{fld}"
bqry.should.append(Q("rank_feature", field=fld, linear={}, boost=sc))
if bqry:
s = s.query(bqry)
for field in highlightFields:
s = s.highlight(field, force_source=True, no_match_size=30, require_field_match=False)
if orderBy:
orders = list()
for field, order in orderBy.fields:
order = "asc" if order == 0 else "desc"
if field in ["page_num_int", "top_int"]:
order_info = {"order": order, "unmapped_type": "float",
"mode": "avg", "numeric_type": "double"}
elif field.endswith("_int") or field.endswith("_flt"):
order_info = {"order": order, "unmapped_type": "float"}
else:
order_info = {"order": order, "unmapped_type": "text"}
orders.append({field: order_info})
s = s.sort(*orders)
for fld in aggFields:
s.aggs.bucket(f'aggs_{fld}', 'terms', field=fld, size=1000000)
if limit > 0:
s = s[offset:offset + limit]
q = s.to_dict()
logger.debug(f"OSConnection.search {str(indexNames)} query: " + json.dumps(q))
if use_knn:
del q["query"]
q["query"] = {"knn": knn_query}
for i in range(ATTEMPT_TIME):
try:
res = self.os.search(index=indexNames,
body=q,
timeout=600,
# search_type="dfs_query_then_fetch",
track_total_hits=True,
_source=True)
if str(res.get("timed_out", "")).lower() == "true":
raise Exception("OpenSearch Timeout.")
logger.debug(f"OSConnection.search {str(indexNames)} res: " + str(res))
return res
except Exception as e:
logger.exception(f"OSConnection.search {str(indexNames)} query: " + str(q))
if str(e).find("Timeout") > 0:
continue
raise e
logger.error(f"OSConnection.search timeout for {ATTEMPT_TIME} times!")
raise Exception("OSConnection.search timeout.")
def get(self, chunkId: str, indexName: str, knowledgebaseIds: list[str]) -> dict | None:
for i in range(ATTEMPT_TIME):
try:
res = self.os.get(index=(indexName),
id=chunkId, _source=True, )
if str(res.get("timed_out", "")).lower() == "true":
raise Exception("Es Timeout.")
chunk = res["_source"]
chunk["id"] = chunkId
return chunk
except NotFoundError:
return None
except Exception as e:
logger.exception(f"OSConnection.get({chunkId}) got exception")
if str(e).find("Timeout") > 0:
continue
raise e
logger.error(f"OSConnection.get timeout for {ATTEMPT_TIME} times!")
raise Exception("OSConnection.get timeout.")
def insert(self, documents: list[dict], indexName: str, knowledgebaseId: str = None) -> list[str]:
# Refers to https://opensearch.org/docs/latest/api-reference/document-apis/bulk/
operations = []
for d in documents:
assert "_id" not in d
assert "id" in d
d_copy = copy.deepcopy(d)
meta_id = d_copy.pop("id", "")
operations.append(
{"index": {"_index": indexName, "_id": meta_id}})
operations.append(d_copy)
res = []
for _ in range(ATTEMPT_TIME):
try:
res = []
r = self.os.bulk(index=(indexName), body=operations,
refresh=False, timeout=60)
if re.search(r"False", str(r["errors"]), re.IGNORECASE):
return res
for item in r["items"]:
for action in ["create", "delete", "index", "update"]:
if action in item and "error" in item[action]:
res.append(str(item[action]["_id"]) + ":" + str(item[action]["error"]))
return res
except Exception as e:
res.append(str(e))
logger.warning("OSConnection.insert got exception: " + str(e))
res = []
if re.search(r"(Timeout|time out)", str(e), re.IGNORECASE):
res.append(str(e))
time.sleep(3)
continue
return res
def update(self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str) -> bool:
doc = copy.deepcopy(newValue)
doc.pop("id", None)
if "id" in condition and isinstance(condition["id"], str):
# update specific single document
chunkId = condition["id"]
for i in range(ATTEMPT_TIME):
try:
self.os.update(index=indexName, id=chunkId, body={"doc": doc})
return True
except Exception as e:
logger.exception(
f"OSConnection.update(index={indexName}, id={id}, doc={json.dumps(condition, ensure_ascii=False)}) got exception")
if re.search(r"(timeout|connection)", str(e).lower()):
continue
break
return False
# update unspecific maybe-multiple documents
bqry = Q("bool")
for k, v in condition.items():
if not isinstance(k, str) or not v:
continue
if k == "exists":
bqry.filter.append(Q("exists", field=v))
continue
if isinstance(v, list):
bqry.filter.append(Q("terms", **{k: v}))
elif isinstance(v, str) or isinstance(v, int):
bqry.filter.append(Q("term", **{k: v}))
else:
raise Exception(
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
scripts = []
params = {}
for k, v in newValue.items():
if k == "remove":
if isinstance(v, str):
scripts.append(f"ctx._source.remove('{v}');")
if isinstance(v, dict):
for kk, vv in v.items():
scripts.append(f"int i=ctx._source.{kk}.indexOf(params.p_{kk});ctx._source.{kk}.remove(i);")
params[f"p_{kk}"] = vv
continue
if k == "add":
if isinstance(v, dict):
for kk, vv in v.items():
scripts.append(f"ctx._source.{kk}.add(params.pp_{kk});")
params[f"pp_{kk}"] = vv.strip()
continue
if (not isinstance(k, str) or not v) and k != "available_int":
continue
if isinstance(v, str):
v = re.sub(r"(['\n\r]|\\.)", " ", v)
params[f"pp_{k}"] = v
scripts.append(f"ctx._source.{k}=params.pp_{k};")
elif isinstance(v, int) or isinstance(v, float):
scripts.append(f"ctx._source.{k}={v};")
elif isinstance(v, list):
scripts.append(f"ctx._source.{k}=params.pp_{k};")
params[f"pp_{k}"] = json.dumps(v, ensure_ascii=False)
else:
raise Exception(
f"newValue `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str.")
ubq = UpdateByQuery(
index=indexName).using(
self.os).query(bqry)
ubq = ubq.script(source="".join(scripts), params=params)
ubq = ubq.params(refresh=True)
ubq = ubq.params(slices=5)
ubq = ubq.params(conflicts="proceed")
for _ in range(ATTEMPT_TIME):
try:
_ = ubq.execute()
return True
except Exception as e:
logger.error("OSConnection.update got exception: " + str(e) + "\n".join(scripts))
if re.search(r"(timeout|connection|conflict)", str(e).lower()):
continue
break
return False
def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int:
assert "_id" not in condition
condition["kb_id"] = knowledgebaseId
# Build a bool query that combines id filter with other conditions
bool_query = Q("bool")
# Handle chunk IDs if present
if "id" in condition:
chunk_ids = condition["id"]
if not isinstance(chunk_ids, list):
chunk_ids = [chunk_ids]
if chunk_ids:
# Filter by specific chunk IDs
bool_query.filter.append(Q("ids", values=chunk_ids))
# If chunk_ids is empty, we don't add an ids filter - rely on other conditions
# Add all other conditions as filters
for k, v in condition.items():
if k == "id":
continue # Already handled above
if k == "exists":
bool_query.filter.append(Q("exists", field=v))
elif k == "must_not":
if isinstance(v, dict):
for kk, vv in v.items():
if kk == "exists":
bool_query.must_not.append(Q("exists", field=vv))
elif isinstance(v, list):
bool_query.must.append(Q("terms", **{k: v}))
elif isinstance(v, str) or isinstance(v, int):
bool_query.must.append(Q("term", **{k: v}))
elif v is not None:
raise Exception("Condition value must be int, str or list.")
# If no filters were added, use match_all (for tenant-wide operations)
if not bool_query.filter and not bool_query.must and not bool_query.must_not:
qry = Q("match_all")
else:
qry = bool_query
logger.debug("OSConnection.delete query: " + json.dumps(qry.to_dict()))
for _ in range(ATTEMPT_TIME):
try:
# print(Search().query(qry).to_dict(), flush=True)
res = self.os.delete_by_query(
index=indexName,
body=Search().query(qry).to_dict(),
refresh=True)
return res["deleted"]
except Exception as e:
logger.warning("OSConnection.delete got exception: " + str(e))
if re.search(r"(timeout|connection)", str(e).lower()):
time.sleep(3)
continue
if re.search(r"(not_found)", str(e), re.IGNORECASE):
return 0
return 0
"""
Helper functions for search result
"""
def get_total(self, res):
if isinstance(res["hits"]["total"], type({})):
return res["hits"]["total"]["value"]
return res["hits"]["total"]
def get_doc_ids(self, res):
return [d["_id"] for d in res["hits"]["hits"]]
def __getSource(self, res):
rr = []
for d in res["hits"]["hits"]:
d["_source"]["id"] = d["_id"]
d["_source"]["_score"] = d["_score"]
rr.append(d["_source"])
return rr
def get_fields(self, res, fields: list[str]) -> dict[str, dict]:
res_fields = {}
if not fields:
return {}
for d in self.__getSource(res):
m = {n: d.get(n) for n in fields if d.get(n) is not None}
for n, v in m.items():
if isinstance(v, list):
m[n] = v
continue
if not isinstance(v, str):
m[n] = str(m[n])
# if n.find("tks") > 0:
# m[n] = remove_redundant_spaces(m[n])
if m:
res_fields[d["id"]] = m
return res_fields
def get_highlight(self, res, keywords: list[str], fieldnm: str):
ans = {}
for d in res["hits"]["hits"]:
hlts = d.get("highlight")
if not hlts:
continue
txt = "...".join([a for a in list(hlts.items())[0][1]])
if not is_english(txt.split()):
ans[d["_id"]] = txt
continue
txt = d["_source"][fieldnm]
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE)
txts = []
for t in re.split(r"[.?!;\n]", txt):
for w in keywords:
t = re.sub(r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])" % re.escape(w), r"\1<em>\2</em>\3", t,
flags=re.IGNORECASE | re.MULTILINE)
if not re.search(r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE):
continue
txts.append(t)
ans[d["_id"]] = "...".join(txts) if txts else "...".join([a for a in list(hlts.items())[0][1]])
return ans
def get_aggregation(self, res, fieldnm: str):
agg_field = "aggs_" + fieldnm
if "aggregations" not in res or agg_field not in res["aggregations"]:
return list()
bkts = res["aggregations"][agg_field]["buckets"]
return [(b["key"], b["doc_count"]) for b in bkts]
"""
SQL
"""
def sql(self, sql: str, fetch_size: int, format: str):
logger.debug(f"OSConnection.sql get sql: {sql}")
sql = re.sub(r"[ `]+", " ", sql)
sql = sql.replace("%", "")
replaces = []
for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
fld, v = r.group(1), r.group(3)
match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
fld, rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(v)))
replaces.append(
("{}{}'{}'".format(
r.group(1),
r.group(2),
r.group(3)),
match))
for p, r in replaces:
sql = sql.replace(p, r, 1)
logger.debug(f"OSConnection.sql to os: {sql}")
for i in range(ATTEMPT_TIME):
try:
res = self.os.sql.query(body={"query": sql, "fetch_size": fetch_size}, format=format,
request_timeout="2s")
return res
except ConnectionTimeout:
logger.exception("OSConnection.sql timeout")
continue
except Exception:
logger.exception("OSConnection.sql got exception")
return None
logger.error(f"OSConnection.sql timeout for {ATTEMPT_TIME} times!")
return None