mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 12:32:30 +08:00
### What problem does this PR solve? - Added TCADP Parser configuration fields to PDF, PPT, and spreadsheet parsing forms - Implemented support for setting table result type (Markdown/HTML) and Markdown image response type (URL/Text) - Updated TCADP Parser to handle return format settings from configuration or parameters - Enhanced frontend to dynamically show TCADP options based on selected parsing method - Modified backend to pass format parameters when calling TCADP API - Optimized form default value logic for TCADP configuration items - Updated multilingual resource files for new configuration options ### Type of change - [x] New Feature (non-breaking change which adds functionality)
739 lines
30 KiB
Python
739 lines
30 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import io
|
|
import json
|
|
import os
|
|
import random
|
|
import re
|
|
from functools import partial
|
|
|
|
import trio
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from common.constants import LLMType
|
|
from api.db.services.file2document_service import File2DocumentService
|
|
from api.db.services.file_service import FileService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from common.misc_utils import get_uuid
|
|
from rag.utils.base64_image import image2id
|
|
from deepdoc.parser import ExcelParser
|
|
from deepdoc.parser.mineru_parser import MinerUParser
|
|
from deepdoc.parser.pdf_parser import PlainParser, RAGFlowPdfParser, VisionParser
|
|
from deepdoc.parser.tcadp_parser import TCADPParser
|
|
from rag.app.naive import Docx
|
|
from rag.flow.base import ProcessBase, ProcessParamBase
|
|
from rag.flow.parser.schema import ParserFromUpstream
|
|
from rag.llm.cv_model import Base as VLM
|
|
from common import settings
|
|
|
|
|
|
class ParserParam(ProcessParamBase):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.allowed_output_format = {
|
|
"pdf": [
|
|
"json",
|
|
"markdown",
|
|
],
|
|
"spreadsheet": [
|
|
"json",
|
|
"markdown",
|
|
"html",
|
|
],
|
|
"word": [
|
|
"json",
|
|
"markdown",
|
|
],
|
|
"slides": [
|
|
"json",
|
|
],
|
|
"image": [
|
|
"text"
|
|
],
|
|
"email": ["text", "json"],
|
|
"text&markdown": [
|
|
"text",
|
|
"json"
|
|
],
|
|
"audio": [
|
|
"json"
|
|
],
|
|
"video": [],
|
|
}
|
|
|
|
self.setups = {
|
|
"pdf": {
|
|
"parse_method": "deepdoc", # deepdoc/plain_text/tcadp_parser/vlm
|
|
"lang": "Chinese",
|
|
"suffix": [
|
|
"pdf",
|
|
],
|
|
"output_format": "json",
|
|
},
|
|
"spreadsheet": {
|
|
"parse_method": "deepdoc", # deepdoc/tcadp_parser
|
|
"output_format": "html",
|
|
"suffix": [
|
|
"xls",
|
|
"xlsx",
|
|
"csv",
|
|
],
|
|
},
|
|
"word": {
|
|
"suffix": [
|
|
"doc",
|
|
"docx",
|
|
],
|
|
"output_format": "json",
|
|
},
|
|
"text&markdown": {
|
|
"suffix": ["md", "markdown", "mdx", "txt"],
|
|
"output_format": "json",
|
|
},
|
|
"slides": {
|
|
"parse_method": "deepdoc", # deepdoc/tcadp_parser
|
|
"suffix": [
|
|
"pptx",
|
|
"ppt"
|
|
],
|
|
"output_format": "json",
|
|
},
|
|
"image": {
|
|
"parse_method": "ocr",
|
|
"llm_id": "",
|
|
"lang": "Chinese",
|
|
"system_prompt": "",
|
|
"suffix": ["jpg", "jpeg", "png", "gif"],
|
|
"output_format": "text",
|
|
},
|
|
"email": {
|
|
"suffix": [
|
|
"eml", "msg"
|
|
],
|
|
"fields": ["from", "to", "cc", "bcc", "date", "subject", "body", "attachments", "metadata"],
|
|
"output_format": "json",
|
|
},
|
|
"audio": {
|
|
"suffix":[
|
|
"da",
|
|
"wave",
|
|
"wav",
|
|
"mp3",
|
|
"aac",
|
|
"flac",
|
|
"ogg",
|
|
"aiff",
|
|
"au",
|
|
"midi",
|
|
"wma",
|
|
"realaudio",
|
|
"vqf",
|
|
"oggvorbis",
|
|
"ape"
|
|
],
|
|
"output_format": "text",
|
|
},
|
|
"video": {
|
|
"suffix":[
|
|
"mp4",
|
|
"avi",
|
|
"mkv"
|
|
],
|
|
"output_format": "text",
|
|
},
|
|
}
|
|
|
|
def check(self):
|
|
pdf_config = self.setups.get("pdf", {})
|
|
if pdf_config:
|
|
pdf_parse_method = pdf_config.get("parse_method", "")
|
|
self.check_empty(pdf_parse_method, "Parse method abnormal.")
|
|
|
|
if pdf_parse_method.lower() not in ["deepdoc", "plain_text", "mineru", "tcadp parser"]:
|
|
self.check_empty(pdf_config.get("lang", ""), "PDF VLM language")
|
|
|
|
pdf_output_format = pdf_config.get("output_format", "")
|
|
self.check_valid_value(pdf_output_format, "PDF output format abnormal.", self.allowed_output_format["pdf"])
|
|
|
|
spreadsheet_config = self.setups.get("spreadsheet", "")
|
|
if spreadsheet_config:
|
|
spreadsheet_output_format = spreadsheet_config.get("output_format", "")
|
|
self.check_valid_value(spreadsheet_output_format, "Spreadsheet output format abnormal.", self.allowed_output_format["spreadsheet"])
|
|
|
|
doc_config = self.setups.get("word", "")
|
|
if doc_config:
|
|
doc_output_format = doc_config.get("output_format", "")
|
|
self.check_valid_value(doc_output_format, "Word processer document output format abnormal.", self.allowed_output_format["word"])
|
|
|
|
slides_config = self.setups.get("slides", "")
|
|
if slides_config:
|
|
slides_output_format = slides_config.get("output_format", "")
|
|
self.check_valid_value(slides_output_format, "Slides output format abnormal.", self.allowed_output_format["slides"])
|
|
|
|
image_config = self.setups.get("image", "")
|
|
if image_config:
|
|
image_parse_method = image_config.get("parse_method", "")
|
|
if image_parse_method not in ["ocr"]:
|
|
self.check_empty(image_config.get("lang", ""), "Image VLM language")
|
|
|
|
text_config = self.setups.get("text&markdown", "")
|
|
if text_config:
|
|
text_output_format = text_config.get("output_format", "")
|
|
self.check_valid_value(text_output_format, "Text output format abnormal.", self.allowed_output_format["text&markdown"])
|
|
|
|
audio_config = self.setups.get("audio", "")
|
|
if audio_config:
|
|
self.check_empty(audio_config.get("llm_id"), "Audio VLM")
|
|
|
|
video_config = self.setups.get("video", "")
|
|
if video_config:
|
|
self.check_empty(video_config.get("llm_id"), "Video VLM")
|
|
|
|
email_config = self.setups.get("email", "")
|
|
if email_config:
|
|
email_output_format = email_config.get("output_format", "")
|
|
self.check_valid_value(email_output_format, "Email output format abnormal.", self.allowed_output_format["email"])
|
|
|
|
def get_input_form(self) -> dict[str, dict]:
|
|
return {}
|
|
|
|
|
|
class Parser(ProcessBase):
|
|
component_name = "Parser"
|
|
|
|
def _pdf(self, name, blob):
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PDF.")
|
|
conf = self._param.setups["pdf"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
|
|
if conf.get("parse_method").lower() == "deepdoc":
|
|
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
|
|
elif conf.get("parse_method").lower() == "plain_text":
|
|
lines, _ = PlainParser()(blob)
|
|
bboxes = [{"text": t} for t, _ in lines]
|
|
elif conf.get("parse_method").lower() == "mineru":
|
|
mineru_executable = os.environ.get("MINERU_EXECUTABLE", "mineru")
|
|
mineru_api = os.environ.get("MINERU_APISERVER", "http://host.docker.internal:9987")
|
|
pdf_parser = MinerUParser(mineru_path=mineru_executable, mineru_api=mineru_api)
|
|
ok, reason = pdf_parser.check_installation()
|
|
if not ok:
|
|
raise RuntimeError(f"MinerU not found or server not accessible: {reason}. Please install it via: pip install -U 'mineru[core]'.")
|
|
|
|
lines, _ = pdf_parser.parse_pdf(
|
|
filepath=name,
|
|
binary=blob,
|
|
callback=self.callback,
|
|
output_dir=os.environ.get("MINERU_OUTPUT_DIR", ""),
|
|
delete_output=bool(int(os.environ.get("MINERU_DELETE_OUTPUT", 1))),
|
|
)
|
|
bboxes = []
|
|
for t, poss in lines:
|
|
box = {
|
|
"image": pdf_parser.crop(poss, 1),
|
|
"positions": [[pos[0][-1], *pos[1:]] for pos in pdf_parser.extract_positions(poss)],
|
|
"text": t,
|
|
}
|
|
bboxes.append(box)
|
|
elif conf.get("parse_method").lower() == "tcadp parser":
|
|
# ADP is a document parsing tool using Tencent Cloud API
|
|
table_result_type = conf.get("table_result_type", "1")
|
|
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
|
|
tcadp_parser = TCADPParser(
|
|
table_result_type=table_result_type,
|
|
markdown_image_response_type=markdown_image_response_type
|
|
)
|
|
sections, _ = tcadp_parser.parse_pdf(
|
|
filepath=name,
|
|
binary=blob,
|
|
callback=self.callback,
|
|
file_type="PDF",
|
|
file_start_page=1,
|
|
file_end_page=1000
|
|
)
|
|
bboxes = []
|
|
for section, position_tag in sections:
|
|
if position_tag:
|
|
# Extract position information from TCADP's position tag
|
|
# Format: @@{page_number}\t{x0}\t{x1}\t{top}\t{bottom}##
|
|
import re
|
|
match = re.match(r"@@([0-9-]+)\t([0-9.]+)\t([0-9.]+)\t([0-9.]+)\t([0-9.]+)##", position_tag)
|
|
if match:
|
|
pn, x0, x1, top, bott = match.groups()
|
|
bboxes.append({
|
|
"page_number": int(pn.split('-')[0]), # Take the first page number
|
|
"x0": float(x0),
|
|
"x1": float(x1),
|
|
"top": float(top),
|
|
"bottom": float(bott),
|
|
"text": section
|
|
})
|
|
else:
|
|
# If no position info, add as text without position
|
|
bboxes.append({"text": section})
|
|
else:
|
|
bboxes.append({"text": section})
|
|
else:
|
|
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("parse_method"), lang=self._param.setups["pdf"].get("lang"))
|
|
lines, _ = VisionParser(vision_model=vision_model)(blob, callback=self.callback)
|
|
bboxes = []
|
|
for t, poss in lines:
|
|
for pn, x0, x1, top, bott in RAGFlowPdfParser.extract_positions(poss):
|
|
bboxes.append({"page_number": int(pn[0]), "x0": float(x0), "x1": float(x1), "top": float(top), "bottom": float(bott), "text": t})
|
|
|
|
if conf.get("output_format") == "json":
|
|
self.set_output("json", bboxes)
|
|
if conf.get("output_format") == "markdown":
|
|
mkdn = ""
|
|
for b in bboxes:
|
|
if b.get("layout_type", "") == "title":
|
|
mkdn += "\n## "
|
|
if b.get("layout_type", "") == "figure":
|
|
mkdn += "\n".format(VLM.image2base64(b["image"]))
|
|
continue
|
|
mkdn += b.get("text", "") + "\n"
|
|
self.set_output("markdown", mkdn)
|
|
|
|
def _spreadsheet(self, name, blob):
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
|
|
conf = self._param.setups["spreadsheet"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
|
|
parse_method = conf.get("parse_method", "deepdoc")
|
|
|
|
# Handle TCADP parser
|
|
if parse_method.lower() == "tcadp parser":
|
|
table_result_type = conf.get("table_result_type", "1")
|
|
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
|
|
tcadp_parser = TCADPParser(
|
|
table_result_type=table_result_type,
|
|
markdown_image_response_type=markdown_image_response_type
|
|
)
|
|
if not tcadp_parser.check_installation():
|
|
raise RuntimeError("TCADP parser not available. Please check Tencent Cloud API configuration.")
|
|
|
|
# Determine file type based on extension
|
|
if re.search(r"\.xlsx?$", name, re.IGNORECASE):
|
|
file_type = "XLSX"
|
|
else:
|
|
file_type = "CSV"
|
|
|
|
self.callback(0.2, f"Using TCADP parser for {file_type} file.")
|
|
sections, tables = tcadp_parser.parse_pdf(
|
|
filepath=name,
|
|
binary=blob,
|
|
callback=self.callback,
|
|
file_type=file_type,
|
|
file_start_page=1,
|
|
file_end_page=1000
|
|
)
|
|
|
|
# Process TCADP parser output based on configured output_format
|
|
output_format = conf.get("output_format", "html")
|
|
|
|
if output_format == "html":
|
|
# For HTML output, combine sections and tables into HTML
|
|
html_content = ""
|
|
for section, position_tag in sections:
|
|
if section:
|
|
html_content += section + "\n"
|
|
for table in tables:
|
|
if table:
|
|
html_content += table + "\n"
|
|
|
|
self.set_output("html", html_content)
|
|
|
|
elif output_format == "json":
|
|
# For JSON output, create a list of text items
|
|
result = []
|
|
# Add sections as text
|
|
for section, position_tag in sections:
|
|
if section:
|
|
result.append({"text": section})
|
|
# Add tables as text
|
|
for table in tables:
|
|
if table:
|
|
result.append({"text": table})
|
|
|
|
self.set_output("json", result)
|
|
|
|
elif output_format == "markdown":
|
|
# For markdown output, combine into markdown
|
|
md_content = ""
|
|
for section, position_tag in sections:
|
|
if section:
|
|
md_content += section + "\n\n"
|
|
for table in tables:
|
|
if table:
|
|
md_content += table + "\n\n"
|
|
|
|
self.set_output("markdown", md_content)
|
|
else:
|
|
# Default DeepDOC parser
|
|
spreadsheet_parser = ExcelParser()
|
|
if conf.get("output_format") == "html":
|
|
htmls = spreadsheet_parser.html(blob, 1000000000)
|
|
self.set_output("html", htmls[0])
|
|
elif conf.get("output_format") == "json":
|
|
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
|
|
elif conf.get("output_format") == "markdown":
|
|
self.set_output("markdown", spreadsheet_parser.markdown(blob))
|
|
|
|
def _word(self, name, blob):
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
|
|
conf = self._param.setups["word"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
docx_parser = Docx()
|
|
|
|
if conf.get("output_format") == "json":
|
|
sections, tbls = docx_parser(name, binary=blob)
|
|
sections = [{"text": section[0], "image": section[1]} for section in sections if section]
|
|
sections.extend([{"text": tb, "image": None} for ((_,tb), _) in tbls])
|
|
self.set_output("json", sections)
|
|
elif conf.get("output_format") == "markdown":
|
|
markdown_text = docx_parser.to_markdown(name, binary=blob)
|
|
self.set_output("markdown", markdown_text)
|
|
|
|
def _slides(self, name, blob):
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PowerPoint Document")
|
|
|
|
conf = self._param.setups["slides"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
|
|
parse_method = conf.get("parse_method", "deepdoc")
|
|
|
|
# Handle TCADP parser
|
|
if parse_method.lower() == "tcadp parser":
|
|
table_result_type = conf.get("table_result_type", "1")
|
|
markdown_image_response_type = conf.get("markdown_image_response_type", "1")
|
|
tcadp_parser = TCADPParser(
|
|
table_result_type=table_result_type,
|
|
markdown_image_response_type=markdown_image_response_type
|
|
)
|
|
if not tcadp_parser.check_installation():
|
|
raise RuntimeError("TCADP parser not available. Please check Tencent Cloud API configuration.")
|
|
|
|
# Determine file type based on extension
|
|
if re.search(r"\.pptx?$", name, re.IGNORECASE):
|
|
file_type = "PPTX"
|
|
else:
|
|
file_type = "PPT"
|
|
|
|
self.callback(0.2, f"Using TCADP parser for {file_type} file.")
|
|
|
|
sections, tables = tcadp_parser.parse_pdf(
|
|
filepath=name,
|
|
binary=blob,
|
|
callback=self.callback,
|
|
file_type=file_type,
|
|
file_start_page=1,
|
|
file_end_page=1000
|
|
)
|
|
|
|
# Process TCADP parser output - PPT only supports json format
|
|
output_format = conf.get("output_format", "json")
|
|
if output_format == "json":
|
|
# For JSON output, create a list of text items
|
|
result = []
|
|
# Add sections as text
|
|
for section, position_tag in sections:
|
|
if section:
|
|
result.append({"text": section})
|
|
# Add tables as text
|
|
for table in tables:
|
|
if table:
|
|
result.append({"text": table})
|
|
|
|
self.set_output("json", result)
|
|
else:
|
|
# Default DeepDOC parser (supports .pptx format)
|
|
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
|
|
|
|
ppt_parser = ppt_parser()
|
|
txts = ppt_parser(blob, 0, 100000, None)
|
|
|
|
sections = [{"text": section} for section in txts if section.strip()]
|
|
|
|
# json
|
|
assert conf.get("output_format") == "json", "have to be json for ppt"
|
|
if conf.get("output_format") == "json":
|
|
self.set_output("json", sections)
|
|
|
|
def _markdown(self, name, blob):
|
|
from functools import reduce
|
|
|
|
from rag.app.naive import Markdown as naive_markdown_parser
|
|
from rag.nlp import concat_img
|
|
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on a markdown.")
|
|
conf = self._param.setups["text&markdown"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
|
|
markdown_parser = naive_markdown_parser()
|
|
sections, tables = markdown_parser(name, blob, separate_tables=False)
|
|
|
|
if conf.get("output_format") == "json":
|
|
json_results = []
|
|
|
|
for section_text, _ in sections:
|
|
json_result = {
|
|
"text": section_text,
|
|
}
|
|
|
|
images = markdown_parser.get_pictures(section_text) if section_text else None
|
|
if images:
|
|
# If multiple images found, combine them using concat_img
|
|
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
|
|
json_result["image"] = combined_image
|
|
|
|
json_results.append(json_result)
|
|
|
|
self.set_output("json", json_results)
|
|
else:
|
|
self.set_output("text", "\n".join([section_text for section_text, _ in sections]))
|
|
|
|
|
|
def _image(self, name, blob):
|
|
from deepdoc.vision import OCR
|
|
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on an image.")
|
|
conf = self._param.setups["image"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
|
|
img = Image.open(io.BytesIO(blob)).convert("RGB")
|
|
|
|
if conf["parse_method"] == "ocr":
|
|
# use ocr, recognize chars only
|
|
ocr = OCR()
|
|
bxs = ocr(np.array(img)) # return boxes and recognize result
|
|
txt = "\n".join([t[0] for _, t in bxs if t[0]])
|
|
else:
|
|
lang = conf["lang"]
|
|
# use VLM to describe the picture
|
|
cv_model = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT, llm_name=conf["parse_method"], lang=lang)
|
|
img_binary = io.BytesIO()
|
|
img.save(img_binary, format="JPEG")
|
|
img_binary.seek(0)
|
|
|
|
system_prompt = conf.get("system_prompt")
|
|
if system_prompt:
|
|
txt = cv_model.describe_with_prompt(img_binary.read(), system_prompt)
|
|
else:
|
|
txt = cv_model.describe(img_binary.read())
|
|
|
|
self.set_output("text", txt)
|
|
|
|
def _audio(self, name, blob):
|
|
import os
|
|
import tempfile
|
|
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on an audio.")
|
|
|
|
conf = self._param.setups["audio"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
_, ext = os.path.splitext(name)
|
|
with tempfile.NamedTemporaryFile(suffix=ext) as tmpf:
|
|
tmpf.write(blob)
|
|
tmpf.flush()
|
|
tmp_path = os.path.abspath(tmpf.name)
|
|
|
|
seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT)
|
|
txt = seq2txt_mdl.transcription(tmp_path)
|
|
|
|
self.set_output("text", txt)
|
|
|
|
def _video(self, name, blob):
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on an video.")
|
|
|
|
conf = self._param.setups["video"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
|
|
cv_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT, llm_name=conf["llm_id"])
|
|
txt = cv_mdl.chat(system="", history=[], gen_conf={}, video_bytes=blob, filename=name)
|
|
|
|
self.set_output("text", txt)
|
|
|
|
def _email(self, name, blob):
|
|
self.callback(random.randint(1, 5) / 100.0, "Start to work on an email.")
|
|
|
|
email_content = {}
|
|
conf = self._param.setups["email"]
|
|
self.set_output("output_format", conf["output_format"])
|
|
target_fields = conf["fields"]
|
|
|
|
_, ext = os.path.splitext(name)
|
|
if ext == ".eml":
|
|
# handle eml file
|
|
from email import policy
|
|
from email.parser import BytesParser
|
|
|
|
msg = BytesParser(policy=policy.default).parse(io.BytesIO(blob))
|
|
email_content['metadata'] = {}
|
|
# handle header info
|
|
for header, value in msg.items():
|
|
# get fields like from, to, cc, bcc, date, subject
|
|
if header.lower() in target_fields:
|
|
email_content[header.lower()] = value
|
|
# get metadata
|
|
elif header.lower() not in ["from", "to", "cc", "bcc", "date", "subject"]:
|
|
email_content["metadata"][header.lower()] = value
|
|
# get body
|
|
if "body" in target_fields:
|
|
body_text, body_html = [], []
|
|
def _add_content(m, content_type):
|
|
def _decode_payload(payload, charset, target_list):
|
|
try:
|
|
target_list.append(payload.decode(charset))
|
|
except (UnicodeDecodeError, LookupError):
|
|
for enc in ["utf-8", "gb2312", "gbk", "gb18030", "latin1"]:
|
|
try:
|
|
target_list.append(payload.decode(enc))
|
|
break
|
|
except UnicodeDecodeError:
|
|
continue
|
|
else:
|
|
target_list.append(payload.decode("utf-8", errors="ignore"))
|
|
|
|
if content_type == "text/plain":
|
|
payload = msg.get_payload(decode=True)
|
|
charset = msg.get_content_charset() or "utf-8"
|
|
_decode_payload(payload, charset, body_text)
|
|
elif content_type == "text/html":
|
|
payload = msg.get_payload(decode=True)
|
|
charset = msg.get_content_charset() or "utf-8"
|
|
_decode_payload(payload, charset, body_html)
|
|
elif "multipart" in content_type:
|
|
if m.is_multipart():
|
|
for part in m.iter_parts():
|
|
_add_content(part, part.get_content_type())
|
|
|
|
_add_content(msg, msg.get_content_type())
|
|
|
|
email_content["text"] = "\n".join(body_text)
|
|
email_content["text_html"] = "\n".join(body_html)
|
|
# get attachment
|
|
if "attachments" in target_fields:
|
|
attachments = []
|
|
for part in msg.iter_attachments():
|
|
content_disposition = part.get("Content-Disposition")
|
|
if content_disposition:
|
|
dispositions = content_disposition.strip().split(";")
|
|
if dispositions[0].lower() == "attachment":
|
|
filename = part.get_filename()
|
|
payload = part.get_payload(decode=True).decode(part.get_content_charset())
|
|
attachments.append({
|
|
"filename": filename,
|
|
"payload": payload,
|
|
})
|
|
email_content["attachments"] = attachments
|
|
else:
|
|
# handle msg file
|
|
import extract_msg
|
|
print("handle a msg file.")
|
|
msg = extract_msg.Message(blob)
|
|
# handle header info
|
|
basic_content = {
|
|
"from": msg.sender,
|
|
"to": msg.to,
|
|
"cc": msg.cc,
|
|
"bcc": msg.bcc,
|
|
"date": msg.date,
|
|
"subject": msg.subject,
|
|
}
|
|
email_content.update({k: v for k, v in basic_content.items() if k in target_fields})
|
|
# get metadata
|
|
email_content['metadata'] = {
|
|
'message_id': msg.messageId,
|
|
'in_reply_to': msg.inReplyTo,
|
|
}
|
|
# get body
|
|
if "body" in target_fields:
|
|
email_content["text"] = msg.body[0] if isinstance(msg.body, list) and msg.body else msg.body
|
|
if not email_content["text"] and msg.htmlBody:
|
|
email_content["text"] = msg.htmlBody[0] if isinstance(msg.htmlBody, list) and msg.htmlBody else msg.htmlBody
|
|
# get attachments
|
|
if "attachments" in target_fields:
|
|
attachments = []
|
|
for t in msg.attachments:
|
|
attachments.append({
|
|
"filename": t.name,
|
|
"payload": t.data.decode("utf-8")
|
|
})
|
|
email_content["attachments"] = attachments
|
|
|
|
if conf["output_format"] == "json":
|
|
self.set_output("json", [email_content])
|
|
else:
|
|
content_txt = ''
|
|
for k, v in email_content.items():
|
|
if isinstance(v, str):
|
|
# basic info
|
|
content_txt += f'{k}:{v}' + "\n"
|
|
elif isinstance(v, dict):
|
|
# metadata
|
|
content_txt += f'{k}:{json.dumps(v)}' + "\n"
|
|
elif isinstance(v, list):
|
|
# attachments or others
|
|
for fb in v:
|
|
if isinstance(fb, dict):
|
|
# attachments
|
|
content_txt += f'{fb["filename"]}:{fb["payload"]}' + "\n"
|
|
else:
|
|
# str, usually plain text
|
|
content_txt += fb
|
|
self.set_output("text", content_txt)
|
|
|
|
async def _invoke(self, **kwargs):
|
|
function_map = {
|
|
"pdf": self._pdf,
|
|
"text&markdown": self._markdown,
|
|
"spreadsheet": self._spreadsheet,
|
|
"slides": self._slides,
|
|
"word": self._word,
|
|
"image": self._image,
|
|
"audio": self._audio,
|
|
"video": self._video,
|
|
"email": self._email,
|
|
}
|
|
|
|
try:
|
|
from_upstream = ParserFromUpstream.model_validate(kwargs)
|
|
except Exception as e:
|
|
self.set_output("_ERROR", f"Input error: {str(e)}")
|
|
return
|
|
|
|
name = from_upstream.name
|
|
if self._canvas._doc_id:
|
|
b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
|
|
blob = settings.STORAGE_IMPL.get(b, n)
|
|
else:
|
|
blob = FileService.get_blob(from_upstream.file["created_by"], from_upstream.file["id"])
|
|
|
|
done = False
|
|
for p_type, conf in self._param.setups.items():
|
|
if from_upstream.name.split(".")[-1].lower() not in conf.get("suffix", []):
|
|
continue
|
|
await trio.to_thread.run_sync(function_map[p_type], name, blob)
|
|
done = True
|
|
break
|
|
|
|
if not done:
|
|
raise Exception("No suitable for file extension: `.%s`" % from_upstream.name.split(".")[-1].lower())
|
|
|
|
outs = self.output()
|
|
async with trio.open_nursery() as nursery:
|
|
for d in outs.get("json", []):
|
|
nursery.start_soon(image2id, d, partial(settings.STORAGE_IMPL.put, tenant_id=self._canvas._tenant_id), get_uuid())
|