Files
ragflow/test/unit_test/services/test_evaluation_service.py
hsparks-codes 237a66913b Feat: RAG evaluation (#11674)
### What problem does this PR solve?

Feature: This PR implements a comprehensive RAG evaluation framework to
address issue #11656.

**Problem**: Developers using RAGFlow lack systematic ways to measure
RAG accuracy and quality. They cannot objectively answer:
1. Are RAG results truly accurate?
2. How should configurations be adjusted to improve quality?
3. How to maintain and improve RAG performance over time?

**Solution**: This PR adds a complete evaluation system with:
- **Dataset & test case management** - Create ground truth datasets with
questions and expected answers
- **Automated evaluation** - Run RAG pipeline on test cases and compute
metrics
- **Comprehensive metrics** - Precision, recall, F1 score, MRR, hit rate
for retrieval quality
- **Smart recommendations** - Analyze results and suggest specific
configuration improvements (e.g., "increase top_k", "enable reranking")
- **20+ REST API endpoints** - Full CRUD operations for datasets, test
cases, and evaluation runs

**Impact**: Enables developers to objectively measure RAG quality,
identify issues, and systematically improve their RAG systems through
data-driven configuration tuning.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-03 17:00:58 +08:00

558 lines
20 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Unit tests for RAG Evaluation Service
Tests cover:
- Dataset management (CRUD operations)
- Test case management
- Evaluation execution
- Metrics computation
- Recommendations generation
"""
import pytest
from unittest.mock import patch
class TestEvaluationDatasetManagement:
"""Tests for evaluation dataset management"""
@pytest.fixture
def mock_evaluation_service(self):
"""Create a mock EvaluationService"""
with patch('api.db.services.evaluation_service.EvaluationService') as mock:
yield mock
@pytest.fixture
def sample_dataset_data(self):
"""Sample dataset data for testing"""
return {
"name": "Customer Support QA",
"description": "Test cases for customer support",
"kb_ids": ["kb_123", "kb_456"],
"tenant_id": "tenant_1",
"user_id": "user_1"
}
def test_create_dataset_success(self, mock_evaluation_service, sample_dataset_data):
"""Test successful dataset creation"""
mock_evaluation_service.create_dataset.return_value = (True, "dataset_123")
success, dataset_id = mock_evaluation_service.create_dataset(**sample_dataset_data)
assert success is True
assert dataset_id == "dataset_123"
mock_evaluation_service.create_dataset.assert_called_once()
def test_create_dataset_with_empty_name(self, mock_evaluation_service):
"""Test dataset creation with empty name"""
data = {
"name": "",
"description": "Test",
"kb_ids": ["kb_123"],
"tenant_id": "tenant_1",
"user_id": "user_1"
}
mock_evaluation_service.create_dataset.return_value = (False, "Dataset name cannot be empty")
success, error = mock_evaluation_service.create_dataset(**data)
assert success is False
assert "name" in error.lower() or "empty" in error.lower()
def test_create_dataset_with_empty_kb_ids(self, mock_evaluation_service):
"""Test dataset creation with empty kb_ids"""
data = {
"name": "Test Dataset",
"description": "Test",
"kb_ids": [],
"tenant_id": "tenant_1",
"user_id": "user_1"
}
mock_evaluation_service.create_dataset.return_value = (False, "kb_ids cannot be empty")
success, error = mock_evaluation_service.create_dataset(**data)
assert success is False
def test_get_dataset_success(self, mock_evaluation_service):
"""Test successful dataset retrieval"""
expected_dataset = {
"id": "dataset_123",
"name": "Test Dataset",
"kb_ids": ["kb_123"]
}
mock_evaluation_service.get_dataset.return_value = expected_dataset
dataset = mock_evaluation_service.get_dataset("dataset_123")
assert dataset is not None
assert dataset["id"] == "dataset_123"
def test_get_dataset_not_found(self, mock_evaluation_service):
"""Test getting non-existent dataset"""
mock_evaluation_service.get_dataset.return_value = None
dataset = mock_evaluation_service.get_dataset("nonexistent")
assert dataset is None
def test_list_datasets(self, mock_evaluation_service):
"""Test listing datasets"""
expected_result = {
"total": 2,
"datasets": [
{"id": "dataset_1", "name": "Dataset 1"},
{"id": "dataset_2", "name": "Dataset 2"}
]
}
mock_evaluation_service.list_datasets.return_value = expected_result
result = mock_evaluation_service.list_datasets(
tenant_id="tenant_1",
user_id="user_1",
page=1,
page_size=20
)
assert result["total"] == 2
assert len(result["datasets"]) == 2
def test_list_datasets_with_pagination(self, mock_evaluation_service):
"""Test listing datasets with pagination"""
mock_evaluation_service.list_datasets.return_value = {
"total": 50,
"datasets": [{"id": f"dataset_{i}"} for i in range(10)]
}
result = mock_evaluation_service.list_datasets(
tenant_id="tenant_1",
user_id="user_1",
page=2,
page_size=10
)
assert result["total"] == 50
assert len(result["datasets"]) == 10
def test_update_dataset_success(self, mock_evaluation_service):
"""Test successful dataset update"""
mock_evaluation_service.update_dataset.return_value = True
success = mock_evaluation_service.update_dataset(
"dataset_123",
name="Updated Name",
description="Updated Description"
)
assert success is True
def test_update_dataset_not_found(self, mock_evaluation_service):
"""Test updating non-existent dataset"""
mock_evaluation_service.update_dataset.return_value = False
success = mock_evaluation_service.update_dataset(
"nonexistent",
name="Updated Name"
)
assert success is False
def test_delete_dataset_success(self, mock_evaluation_service):
"""Test successful dataset deletion"""
mock_evaluation_service.delete_dataset.return_value = True
success = mock_evaluation_service.delete_dataset("dataset_123")
assert success is True
def test_delete_dataset_not_found(self, mock_evaluation_service):
"""Test deleting non-existent dataset"""
mock_evaluation_service.delete_dataset.return_value = False
success = mock_evaluation_service.delete_dataset("nonexistent")
assert success is False
class TestEvaluationTestCaseManagement:
"""Tests for test case management"""
@pytest.fixture
def mock_evaluation_service(self):
"""Create a mock EvaluationService"""
with patch('api.db.services.evaluation_service.EvaluationService') as mock:
yield mock
@pytest.fixture
def sample_test_case(self):
"""Sample test case data"""
return {
"dataset_id": "dataset_123",
"question": "How do I reset my password?",
"reference_answer": "Click on 'Forgot Password' and follow the email instructions.",
"relevant_doc_ids": ["doc_789"],
"relevant_chunk_ids": ["chunk_101", "chunk_102"]
}
def test_add_test_case_success(self, mock_evaluation_service, sample_test_case):
"""Test successful test case addition"""
mock_evaluation_service.add_test_case.return_value = (True, "case_123")
success, case_id = mock_evaluation_service.add_test_case(**sample_test_case)
assert success is True
assert case_id == "case_123"
def test_add_test_case_with_empty_question(self, mock_evaluation_service):
"""Test adding test case with empty question"""
mock_evaluation_service.add_test_case.return_value = (False, "Question cannot be empty")
success, error = mock_evaluation_service.add_test_case(
dataset_id="dataset_123",
question=""
)
assert success is False
assert "question" in error.lower() or "empty" in error.lower()
def test_add_test_case_without_reference_answer(self, mock_evaluation_service):
"""Test adding test case without reference answer (optional)"""
mock_evaluation_service.add_test_case.return_value = (True, "case_123")
success, case_id = mock_evaluation_service.add_test_case(
dataset_id="dataset_123",
question="Test question",
reference_answer=None
)
assert success is True
def test_get_test_cases(self, mock_evaluation_service):
"""Test getting all test cases for a dataset"""
expected_cases = [
{"id": "case_1", "question": "Question 1"},
{"id": "case_2", "question": "Question 2"}
]
mock_evaluation_service.get_test_cases.return_value = expected_cases
cases = mock_evaluation_service.get_test_cases("dataset_123")
assert len(cases) == 2
assert cases[0]["id"] == "case_1"
def test_get_test_cases_empty_dataset(self, mock_evaluation_service):
"""Test getting test cases from empty dataset"""
mock_evaluation_service.get_test_cases.return_value = []
cases = mock_evaluation_service.get_test_cases("dataset_123")
assert len(cases) == 0
def test_delete_test_case_success(self, mock_evaluation_service):
"""Test successful test case deletion"""
mock_evaluation_service.delete_test_case.return_value = True
success = mock_evaluation_service.delete_test_case("case_123")
assert success is True
def test_import_test_cases_success(self, mock_evaluation_service):
"""Test bulk import of test cases"""
cases = [
{"question": "Question 1", "reference_answer": "Answer 1"},
{"question": "Question 2", "reference_answer": "Answer 2"},
{"question": "Question 3", "reference_answer": "Answer 3"}
]
mock_evaluation_service.import_test_cases.return_value = (3, 0)
success_count, failure_count = mock_evaluation_service.import_test_cases(
"dataset_123",
cases
)
assert success_count == 3
assert failure_count == 0
def test_import_test_cases_with_failures(self, mock_evaluation_service):
"""Test bulk import with some failures"""
cases = [
{"question": "Question 1"},
{"question": ""}, # Invalid
{"question": "Question 3"}
]
mock_evaluation_service.import_test_cases.return_value = (2, 1)
success_count, failure_count = mock_evaluation_service.import_test_cases(
"dataset_123",
cases
)
assert success_count == 2
assert failure_count == 1
class TestEvaluationExecution:
"""Tests for evaluation execution"""
@pytest.fixture
def mock_evaluation_service(self):
"""Create a mock EvaluationService"""
with patch('api.db.services.evaluation_service.EvaluationService') as mock:
yield mock
def test_start_evaluation_success(self, mock_evaluation_service):
"""Test successful evaluation start"""
mock_evaluation_service.start_evaluation.return_value = (True, "run_123")
success, run_id = mock_evaluation_service.start_evaluation(
dataset_id="dataset_123",
dialog_id="dialog_456",
user_id="user_1"
)
assert success is True
assert run_id == "run_123"
def test_start_evaluation_with_invalid_dialog(self, mock_evaluation_service):
"""Test starting evaluation with invalid dialog"""
mock_evaluation_service.start_evaluation.return_value = (False, "Dialog not found")
success, error = mock_evaluation_service.start_evaluation(
dataset_id="dataset_123",
dialog_id="nonexistent",
user_id="user_1"
)
assert success is False
assert "dialog" in error.lower()
def test_start_evaluation_with_custom_name(self, mock_evaluation_service):
"""Test starting evaluation with custom name"""
mock_evaluation_service.start_evaluation.return_value = (True, "run_123")
success, run_id = mock_evaluation_service.start_evaluation(
dataset_id="dataset_123",
dialog_id="dialog_456",
user_id="user_1",
name="My Custom Evaluation"
)
assert success is True
def test_get_run_results(self, mock_evaluation_service):
"""Test getting evaluation run results"""
expected_results = {
"run": {
"id": "run_123",
"status": "COMPLETED",
"metrics_summary": {
"avg_precision": 0.85,
"avg_recall": 0.78
}
},
"results": [
{"case_id": "case_1", "metrics": {"precision": 0.9}},
{"case_id": "case_2", "metrics": {"precision": 0.8}}
]
}
mock_evaluation_service.get_run_results.return_value = expected_results
results = mock_evaluation_service.get_run_results("run_123")
assert results["run"]["id"] == "run_123"
assert len(results["results"]) == 2
def test_get_run_results_not_found(self, mock_evaluation_service):
"""Test getting results for non-existent run"""
mock_evaluation_service.get_run_results.return_value = {}
results = mock_evaluation_service.get_run_results("nonexistent")
assert results == {}
class TestEvaluationMetrics:
"""Tests for metrics computation"""
@pytest.fixture
def mock_evaluation_service(self):
"""Create a mock EvaluationService"""
with patch('api.db.services.evaluation_service.EvaluationService') as mock:
yield mock
def test_compute_retrieval_metrics_perfect_match(self, mock_evaluation_service):
"""Test retrieval metrics with perfect match"""
retrieved_ids = ["chunk_1", "chunk_2", "chunk_3"]
relevant_ids = ["chunk_1", "chunk_2", "chunk_3"]
expected_metrics = {
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"hit_rate": 1.0,
"mrr": 1.0
}
mock_evaluation_service._compute_retrieval_metrics.return_value = expected_metrics
metrics = mock_evaluation_service._compute_retrieval_metrics(retrieved_ids, relevant_ids)
assert metrics["precision"] == 1.0
assert metrics["recall"] == 1.0
assert metrics["f1_score"] == 1.0
def test_compute_retrieval_metrics_partial_match(self, mock_evaluation_service):
"""Test retrieval metrics with partial match"""
retrieved_ids = ["chunk_1", "chunk_2", "chunk_4", "chunk_5"]
relevant_ids = ["chunk_1", "chunk_2", "chunk_3"]
expected_metrics = {
"precision": 0.5, # 2 out of 4 retrieved are relevant
"recall": 0.67, # 2 out of 3 relevant were retrieved
"f1_score": 0.57,
"hit_rate": 1.0, # At least one relevant was retrieved
"mrr": 1.0 # First retrieved is relevant
}
mock_evaluation_service._compute_retrieval_metrics.return_value = expected_metrics
metrics = mock_evaluation_service._compute_retrieval_metrics(retrieved_ids, relevant_ids)
assert metrics["precision"] < 1.0
assert metrics["recall"] < 1.0
assert metrics["hit_rate"] == 1.0
def test_compute_retrieval_metrics_no_match(self, mock_evaluation_service):
"""Test retrieval metrics with no match"""
retrieved_ids = ["chunk_4", "chunk_5", "chunk_6"]
relevant_ids = ["chunk_1", "chunk_2", "chunk_3"]
expected_metrics = {
"precision": 0.0,
"recall": 0.0,
"f1_score": 0.0,
"hit_rate": 0.0,
"mrr": 0.0
}
mock_evaluation_service._compute_retrieval_metrics.return_value = expected_metrics
metrics = mock_evaluation_service._compute_retrieval_metrics(retrieved_ids, relevant_ids)
assert metrics["precision"] == 0.0
assert metrics["recall"] == 0.0
assert metrics["hit_rate"] == 0.0
def test_compute_summary_metrics(self, mock_evaluation_service):
"""Test summary metrics computation"""
results = [
{"metrics": {"precision": 0.9, "recall": 0.8}, "execution_time": 1.2},
{"metrics": {"precision": 0.8, "recall": 0.7}, "execution_time": 1.5},
{"metrics": {"precision": 0.85, "recall": 0.75}, "execution_time": 1.3}
]
expected_summary = {
"total_cases": 3,
"avg_execution_time": 1.33,
"avg_precision": 0.85,
"avg_recall": 0.75
}
mock_evaluation_service._compute_summary_metrics.return_value = expected_summary
summary = mock_evaluation_service._compute_summary_metrics(results)
assert summary["total_cases"] == 3
assert summary["avg_precision"] > 0.8
class TestEvaluationRecommendations:
"""Tests for configuration recommendations"""
@pytest.fixture
def mock_evaluation_service(self):
"""Create a mock EvaluationService"""
with patch('api.db.services.evaluation_service.EvaluationService') as mock:
yield mock
def test_get_recommendations_low_precision(self, mock_evaluation_service):
"""Test recommendations for low precision"""
recommendations = [
{
"issue": "Low Precision",
"severity": "high",
"suggestions": [
"Increase similarity_threshold",
"Enable reranking"
]
}
]
mock_evaluation_service.get_recommendations.return_value = recommendations
recs = mock_evaluation_service.get_recommendations("run_123")
assert len(recs) > 0
assert any("precision" in r["issue"].lower() for r in recs)
def test_get_recommendations_low_recall(self, mock_evaluation_service):
"""Test recommendations for low recall"""
recommendations = [
{
"issue": "Low Recall",
"severity": "high",
"suggestions": [
"Increase top_k",
"Lower similarity_threshold"
]
}
]
mock_evaluation_service.get_recommendations.return_value = recommendations
recs = mock_evaluation_service.get_recommendations("run_123")
assert len(recs) > 0
assert any("recall" in r["issue"].lower() for r in recs)
def test_get_recommendations_slow_response(self, mock_evaluation_service):
"""Test recommendations for slow response time"""
recommendations = [
{
"issue": "Slow Response Time",
"severity": "medium",
"suggestions": [
"Reduce top_k",
"Optimize embedding model"
]
}
]
mock_evaluation_service.get_recommendations.return_value = recommendations
recs = mock_evaluation_service.get_recommendations("run_123")
assert len(recs) > 0
assert any("response" in r["issue"].lower() or "slow" in r["issue"].lower() for r in recs)
def test_get_recommendations_no_issues(self, mock_evaluation_service):
"""Test recommendations when metrics are good"""
mock_evaluation_service.get_recommendations.return_value = []
recs = mock_evaluation_service.get_recommendations("run_123")
assert len(recs) == 0
if __name__ == "__main__":
pytest.main([__file__, "-v"])