Files
ragflow/rag/llm/chat_model.py
cnJasonZ 3fcf2ee54c feat: add new LLM provider Jiekou.AI (#11300)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Jason <ggbbddjm@gmail.com>
2025-11-17 19:47:46 +08:00

1913 lines
76 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import asyncio
import json
import logging
import os
import random
import re
import time
from abc import ABC
from copy import deepcopy
from urllib.parse import urljoin
import json_repair
import litellm
import openai
import requests
from openai import OpenAI
from openai.lib.azure import AzureOpenAI
from strenum import StrEnum
from zhipuai import ZhipuAI
from rag.llm import FACTORY_DEFAULT_BASE_URL, LITELLM_PROVIDER_PREFIX, SupportedLiteLLMProvider
from rag.nlp import is_chinese, is_english
from common.token_utils import num_tokens_from_string, total_token_count_from_response
# Error message constants
class LLMErrorCode(StrEnum):
ERROR_RATE_LIMIT = "RATE_LIMIT_EXCEEDED"
ERROR_AUTHENTICATION = "AUTH_ERROR"
ERROR_INVALID_REQUEST = "INVALID_REQUEST"
ERROR_SERVER = "SERVER_ERROR"
ERROR_TIMEOUT = "TIMEOUT"
ERROR_CONNECTION = "CONNECTION_ERROR"
ERROR_MODEL = "MODEL_ERROR"
ERROR_MAX_ROUNDS = "ERROR_MAX_ROUNDS"
ERROR_CONTENT_FILTER = "CONTENT_FILTERED"
ERROR_QUOTA = "QUOTA_EXCEEDED"
ERROR_MAX_RETRIES = "MAX_RETRIES_EXCEEDED"
ERROR_GENERIC = "GENERIC_ERROR"
class ReActMode(StrEnum):
FUNCTION_CALL = "function_call"
REACT = "react"
ERROR_PREFIX = "**ERROR**"
LENGTH_NOTIFICATION_CN = "······\n由于大模型的上下文窗口大小限制,回答已经被大模型截断。"
LENGTH_NOTIFICATION_EN = "...\nThe answer is truncated by your chosen LLM due to its limitation on context length."
class Base(ABC):
def __init__(self, key, model_name, base_url, **kwargs):
timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
self.model_name = model_name
# Configure retry parameters
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
self.max_rounds = kwargs.get("max_rounds", 5)
self.is_tools = False
self.tools = []
self.toolcall_sessions = {}
def _get_delay(self):
"""Calculate retry delay time"""
return self.base_delay * random.uniform(10, 150)
def _classify_error(self, error):
"""Classify error based on error message content"""
error_str = str(error).lower()
keywords_mapping = [
(["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA),
(["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT),
(["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION),
(["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST),
(["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER),
(["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT),
(["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION),
(["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER),
(["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL),
(["max rounds"], LLMErrorCode.ERROR_MODEL),
]
for words, code in keywords_mapping:
if re.search("({})".format("|".join(words)), error_str):
return code
return LLMErrorCode.ERROR_GENERIC
def _clean_conf(self, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
allowed_conf = {
"temperature",
"max_completion_tokens",
"top_p",
"stream",
"stream_options",
"stop",
"n",
"presence_penalty",
"frequency_penalty",
"functions",
"function_call",
"logit_bias",
"user",
"response_format",
"seed",
"tools",
"tool_choice",
"logprobs",
"top_logprobs",
"extra_headers"
}
gen_conf = {k: v for k, v in gen_conf.items() if k in allowed_conf}
return gen_conf
def _chat(self, history, gen_conf, **kwargs):
logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
if self.model_name.lower().find("qwq") >= 0:
logging.info(f"[INFO] {self.model_name} detected as reasoning model, using _chat_streamly")
final_ans = ""
tol_token = 0
for delta, tol in self._chat_streamly(history, gen_conf, with_reasoning=False, **kwargs):
if delta.startswith("<think>") or delta.endswith("</think>"):
continue
final_ans += delta
tol_token = tol
if len(final_ans.strip()) == 0:
final_ans = "**ERROR**: Empty response from reasoning model"
return final_ans.strip(), tol_token
if self.model_name.lower().find("qwen3") >= 0:
kwargs["extra_body"] = {"enable_thinking": False}
response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs)
if not response.choices or not response.choices[0].message or not response.choices[0].message.content:
return "", 0
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
ans = self._length_stop(ans)
return ans, total_token_count_from_response(response)
def _chat_streamly(self, history, gen_conf, **kwargs):
logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
reasoning_start = False
if kwargs.get("stop") or "stop" in gen_conf:
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf, stop=kwargs.get("stop"))
else:
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
for resp in response:
if not resp.choices:
continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
if kwargs.get("with_reasoning", True) and hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
ans = ""
if not reasoning_start:
reasoning_start = True
ans = "<think>"
ans += resp.choices[0].delta.reasoning_content + "</think>"
else:
reasoning_start = False
ans = resp.choices[0].delta.content
tol = total_token_count_from_response(resp)
if not tol:
tol = num_tokens_from_string(resp.choices[0].delta.content)
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans, tol
def _length_stop(self, ans):
if is_chinese([ans]):
return ans + LENGTH_NOTIFICATION_CN
return ans + LENGTH_NOTIFICATION_EN
@property
def _retryable_errors(self) -> set[str]:
return {
LLMErrorCode.ERROR_RATE_LIMIT,
LLMErrorCode.ERROR_SERVER,
}
def _should_retry(self, error_code: str) -> bool:
return error_code in self._retryable_errors
def _exceptions(self, e, attempt) -> str | None:
logging.exception("OpenAI chat_with_tools")
# Classify the error
error_code = self._classify_error(e)
if attempt == self.max_retries:
error_code = LLMErrorCode.ERROR_MAX_RETRIES
if self._should_retry(error_code):
delay = self._get_delay()
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
time.sleep(delay)
return None
return f"{ERROR_PREFIX}: {error_code} - {str(e)}"
def _verbose_tool_use(self, name, args, res):
return "<tool_call>" + json.dumps({"name": name, "args": args, "result": res}, ensure_ascii=False, indent=2) + "</tool_call>"
def _append_history(self, hist, tool_call, tool_res):
hist.append(
{
"role": "assistant",
"tool_calls": [
{
"index": tool_call.index,
"id": tool_call.id,
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments,
},
"type": "function",
},
],
}
)
try:
if isinstance(tool_res, dict):
tool_res = json.dumps(tool_res, ensure_ascii=False)
finally:
hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)})
return hist
def bind_tools(self, toolcall_session, tools):
if not (toolcall_session and tools):
return
self.is_tools = True
self.toolcall_session = toolcall_session
self.tools = tools
def chat_with_tools(self, system: str, history: list, gen_conf: dict = {}):
gen_conf = self._clean_conf(gen_conf)
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
ans = ""
tk_count = 0
hist = deepcopy(history)
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries + 1):
history = hist
try:
for _ in range(self.max_rounds + 1):
logging.info(f"{self.tools=}")
response = self.client.chat.completions.create(model=self.model_name, messages=history, tools=self.tools, tool_choice="auto", **gen_conf)
tk_count += total_token_count_from_response(response)
if any([not response.choices, not response.choices[0].message]):
raise Exception(f"500 response structure error. Response: {response}")
if not hasattr(response.choices[0].message, "tool_calls") or not response.choices[0].message.tool_calls:
if hasattr(response.choices[0].message, "reasoning_content") and response.choices[0].message.reasoning_content:
ans += "<think>" + response.choices[0].message.reasoning_content + "</think>"
ans += response.choices[0].message.content
if response.choices[0].finish_reason == "length":
ans = self._length_stop(ans)
return ans, tk_count
for tool_call in response.choices[0].message.tool_calls:
logging.info(f"Response {tool_call=}")
name = tool_call.function.name
try:
args = json_repair.loads(tool_call.function.arguments)
tool_response = self.toolcall_session.tool_call(name, args)
history = self._append_history(history, tool_call, tool_response)
ans += self._verbose_tool_use(name, args, tool_response)
except Exception as e:
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
ans += self._verbose_tool_use(name, {}, str(e))
logging.warning(f"Exceed max rounds: {self.max_rounds}")
history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
response, token_count = self._chat(history, gen_conf)
ans += response
tk_count += token_count
return ans, tk_count
except Exception as e:
e = self._exceptions(e, attempt)
if e:
return e, tk_count
assert False, "Shouldn't be here."
def chat(self, system, history, gen_conf={}, **kwargs):
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
gen_conf = self._clean_conf(gen_conf)
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries + 1):
try:
return self._chat(history, gen_conf, **kwargs)
except Exception as e:
e = self._exceptions(e, attempt)
if e:
return e, 0
assert False, "Shouldn't be here."
def _wrap_toolcall_message(self, stream):
final_tool_calls = {}
for chunk in stream:
for tool_call in chunk.choices[0].delta.tool_calls or []:
index = tool_call.index
if index not in final_tool_calls:
final_tool_calls[index] = tool_call
final_tool_calls[index].function.arguments += tool_call.function.arguments
return final_tool_calls
def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict = {}):
gen_conf = self._clean_conf(gen_conf)
tools = self.tools
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
total_tokens = 0
hist = deepcopy(history)
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries + 1):
history = hist
try:
for _ in range(self.max_rounds + 1):
reasoning_start = False
logging.info(f"{tools=}")
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, tools=tools, tool_choice="auto", **gen_conf)
final_tool_calls = {}
answer = ""
for resp in response:
if resp.choices[0].delta.tool_calls:
for tool_call in resp.choices[0].delta.tool_calls or []:
index = tool_call.index
if index not in final_tool_calls:
if not tool_call.function.arguments:
tool_call.function.arguments = ""
final_tool_calls[index] = tool_call
else:
final_tool_calls[index].function.arguments += tool_call.function.arguments if tool_call.function.arguments else ""
continue
if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]):
raise Exception("500 response structure error.")
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
if hasattr(resp.choices[0].delta, "reasoning_content") and resp.choices[0].delta.reasoning_content:
ans = ""
if not reasoning_start:
reasoning_start = True
ans = "<think>"
ans += resp.choices[0].delta.reasoning_content + "</think>"
yield ans
else:
reasoning_start = False
answer += resp.choices[0].delta.content
yield resp.choices[0].delta.content
tol = total_token_count_from_response(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens = tol
finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
if finish_reason == "length":
yield self._length_stop("")
if answer:
yield total_tokens
return
for tool_call in final_tool_calls.values():
name = tool_call.function.name
try:
args = json_repair.loads(tool_call.function.arguments)
yield self._verbose_tool_use(name, args, "Begin to call...")
tool_response = self.toolcall_session.tool_call(name, args)
history = self._append_history(history, tool_call, tool_response)
yield self._verbose_tool_use(name, args, tool_response)
except Exception as e:
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
yield self._verbose_tool_use(name, {}, str(e))
logging.warning(f"Exceed max rounds: {self.max_rounds}")
history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
for resp in response:
if any([not resp.choices, not resp.choices[0].delta, not hasattr(resp.choices[0].delta, "content")]):
raise Exception("500 response structure error.")
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
continue
tol = total_token_count_from_response(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens = tol
answer += resp.choices[0].delta.content
yield resp.choices[0].delta.content
yield total_tokens
return
except Exception as e:
e = self._exceptions(e, attempt)
if e:
yield e
yield total_tokens
return
assert False, "Shouldn't be here."
def chat_streamly(self, system, history, gen_conf: dict = {}, **kwargs):
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
gen_conf = self._clean_conf(gen_conf)
ans = ""
total_tokens = 0
try:
for delta_ans, tol in self._chat_streamly(history, gen_conf, **kwargs):
yield delta_ans
total_tokens += tol
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
def _calculate_dynamic_ctx(self, history):
"""Calculate dynamic context window size"""
def count_tokens(text):
"""Calculate token count for text"""
# Simple calculation: 1 token per ASCII character
# 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
total = 0
for char in text:
if ord(char) < 128: # ASCII characters
total += 1
else: # Non-ASCII characters (Chinese, Japanese, Korean, etc.)
total += 2
return total
# Calculate total tokens for all messages
total_tokens = 0
for message in history:
content = message.get("content", "")
# Calculate content tokens
content_tokens = count_tokens(content)
# Add role marker token overhead
role_tokens = 4
total_tokens += content_tokens + role_tokens
# Apply 1.2x buffer ratio
total_tokens_with_buffer = int(total_tokens * 1.2)
if total_tokens_with_buffer <= 8192:
ctx_size = 8192
else:
ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
ctx_size = ctx_multiplier * 8192
return ctx_size
class GptTurbo(Base):
_FACTORY_NAME = "OpenAI"
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1", **kwargs):
if not base_url:
base_url = "https://api.openai.com/v1"
super().__init__(key, model_name, base_url, **kwargs)
class XinferenceChat(Base):
_FACTORY_NAME = "Xinference"
def __init__(self, key=None, model_name="", base_url="", **kwargs):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name, base_url, **kwargs)
class HuggingFaceChat(Base):
_FACTORY_NAME = "HuggingFace"
def __init__(self, key=None, model_name="", base_url="", **kwargs):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
class ModelScopeChat(Base):
_FACTORY_NAME = "ModelScope"
def __init__(self, key=None, model_name="", base_url="", **kwargs):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name.split("___")[0], base_url, **kwargs)
class AzureChat(Base):
_FACTORY_NAME = "Azure-OpenAI"
def __init__(self, key, model_name, base_url, **kwargs):
api_key = json.loads(key).get("api_key", "")
api_version = json.loads(key).get("api_version", "2024-02-01")
super().__init__(key, model_name, base_url, **kwargs)
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=base_url, api_version=api_version)
self.model_name = model_name
@property
def _retryable_errors(self) -> set[str]:
return {
LLMErrorCode.ERROR_RATE_LIMIT,
LLMErrorCode.ERROR_SERVER,
LLMErrorCode.ERROR_QUOTA,
}
class BaiChuanChat(Base):
_FACTORY_NAME = "BaiChuan"
def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1", **kwargs):
if not base_url:
base_url = "https://api.baichuan-ai.com/v1"
super().__init__(key, model_name, base_url, **kwargs)
@staticmethod
def _format_params(params):
return {
"temperature": params.get("temperature", 0.3),
"top_p": params.get("top_p", 0.85),
}
def _clean_conf(self, gen_conf):
return {
"temperature": gen_conf.get("temperature", 0.3),
"top_p": gen_conf.get("top_p", 0.85),
}
def _chat(self, history, gen_conf={}, **kwargs):
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
**gen_conf,
)
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, total_token_count_from_response(response)
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
total_tokens = 0
try:
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
extra_body={"tools": [{"type": "web_search", "web_search": {"enable": True, "search_mode": "performance_first"}}]},
stream=True,
**self._format_params(gen_conf),
)
for resp in response:
if not resp.choices:
continue
if not resp.choices[0].delta.content:
resp.choices[0].delta.content = ""
ans = resp.choices[0].delta.content
tol = total_token_count_from_response(resp)
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens = tol
if resp.choices[0].finish_reason == "length":
if is_chinese([ans]):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class ZhipuChat(Base):
_FACTORY_NAME = "ZHIPU-AI"
def __init__(self, key, model_name="glm-3-turbo", base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
def _clean_conf(self, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
gen_conf = self._clean_conf_plealty(gen_conf)
return gen_conf
def _clean_conf_plealty(self, gen_conf):
if "presence_penalty" in gen_conf:
del gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
del gen_conf["frequency_penalty"]
return gen_conf
def chat_with_tools(self, system: str, history: list, gen_conf: dict):
gen_conf = self._clean_conf_plealty(gen_conf)
return super().chat_with_tools(system, history, gen_conf)
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
gen_conf = self._clean_conf(gen_conf)
ans = ""
tk_count = 0
try:
logging.info(json.dumps(history, ensure_ascii=False, indent=2))
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
for resp in response:
if not resp.choices[0].delta.content:
continue
delta = resp.choices[0].delta.content
ans = delta
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
tk_count = total_token_count_from_response(resp)
if resp.choices[0].finish_reason == "stop":
tk_count = total_token_count_from_response(resp)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict):
gen_conf = self._clean_conf_plealty(gen_conf)
return super().chat_streamly_with_tools(system, history, gen_conf)
class LocalAIChat(Base):
_FACTORY_NAME = "LocalAI"
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
class LocalLLM(Base):
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
from jina import Client
self.client = Client(port=12345, protocol="grpc", asyncio=True)
def _prepare_prompt(self, system, history, gen_conf):
from rag.svr.jina_server import Prompt
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
return Prompt(message=history, gen_conf=gen_conf)
def _stream_response(self, endpoint, prompt):
from rag.svr.jina_server import Generation
answer = ""
try:
res = self.client.stream_doc(on=endpoint, inputs=prompt, return_type=Generation)
loop = asyncio.get_event_loop()
try:
while True:
answer = loop.run_until_complete(res.__anext__()).text
yield answer
except StopAsyncIteration:
pass
except Exception as e:
yield answer + "\n**ERROR**: " + str(e)
yield num_tokens_from_string(answer)
def chat(self, system, history, gen_conf={}, **kwargs):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
prompt = self._prepare_prompt(system, history, gen_conf)
chat_gen = self._stream_response("/chat", prompt)
ans = next(chat_gen)
total_tokens = next(chat_gen)
return ans, total_tokens
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
prompt = self._prepare_prompt(system, history, gen_conf)
return self._stream_response("/stream", prompt)
class VolcEngineChat(Base):
_FACTORY_NAME = "VolcEngine"
def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3", **kwargs):
"""
Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
model_name is for display only
"""
base_url = base_url if base_url else "https://ark.cn-beijing.volces.com/api/v3"
ark_api_key = json.loads(key).get("ark_api_key", "")
model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
super().__init__(ark_api_key, model_name, base_url, **kwargs)
class MiniMaxChat(Base):
_FACTORY_NAME = "MiniMax"
def __init__(self, key, model_name, base_url="https://api.minimax.chat/v1/text/chatcompletion_v2", **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
if not base_url:
base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
self.base_url = base_url
self.model_name = model_name
self.api_key = key
def _clean_conf(self, gen_conf):
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
return gen_conf
def _chat(self, history, gen_conf):
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = json.dumps({"model": self.model_name, "messages": history, **gen_conf})
response = requests.request("POST", url=self.base_url, headers=headers, data=payload)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
if response["choices"][0]["finish_reason"] == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, total_token_count_from_response(response)
def chat_streamly(self, system, history, gen_conf):
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
ans = ""
total_tokens = 0
try:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = json.dumps(
{
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
)
response = requests.request(
"POST",
url=self.base_url,
headers=headers,
data=payload,
)
for resp in response.text.split("\n\n")[:-1]:
resp = json.loads(resp[6:])
text = ""
if "choices" in resp and "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"]
ans = text
tol = total_token_count_from_response(resp)
if not tol:
total_tokens += num_tokens_from_string(text)
else:
total_tokens = tol
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class MistralChat(Base):
_FACTORY_NAME = "Mistral"
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
from mistralai.client import MistralClient
self.client = MistralClient(api_key=key)
self.model_name = model_name
def _clean_conf(self, gen_conf):
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
return gen_conf
def _chat(self, history, gen_conf={}, **kwargs):
gen_conf = self._clean_conf(gen_conf)
response = self.client.chat(model=self.model_name, messages=history, **gen_conf)
ans = response.choices[0].message.content
if response.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
return ans, total_token_count_from_response(response)
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
gen_conf = self._clean_conf(gen_conf)
ans = ""
total_tokens = 0
try:
response = self.client.chat_stream(model=self.model_name, messages=history, **gen_conf, **kwargs)
for resp in response:
if not resp.choices or not resp.choices[0].delta.content:
continue
ans = resp.choices[0].delta.content
total_tokens += 1
if resp.choices[0].finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class LmStudioChat(Base):
_FACTORY_NAME = "LM-Studio"
def __init__(self, key, model_name, base_url, **kwargs):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name, base_url, **kwargs)
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
self.model_name = model_name
class OpenAI_APIChat(Base):
_FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
def __init__(self, key, model_name, base_url, **kwargs):
if not base_url:
raise ValueError("url cannot be None")
model_name = model_name.split("___")[0]
super().__init__(key, model_name, base_url, **kwargs)
class LeptonAIChat(Base):
_FACTORY_NAME = "LeptonAI"
def __init__(self, key, model_name, base_url=None, **kwargs):
if not base_url:
base_url = urljoin("https://" + model_name + ".lepton.run", "api/v1")
super().__init__(key, model_name, base_url, **kwargs)
class ReplicateChat(Base):
_FACTORY_NAME = "Replicate"
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
from replicate.client import Client
self.model_name = model_name
self.client = Client(api_token=key)
def _chat(self, history, gen_conf={}, **kwargs):
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:] if item["role"] != "system"])
response = self.client.run(
self.model_name,
input={"system_prompt": system, "prompt": prompt, **gen_conf},
)
ans = "".join(response)
return ans, num_tokens_from_string(ans)
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
prompt = "\n".join([item["role"] + ":" + item["content"] for item in history[-5:]])
ans = ""
try:
response = self.client.run(
self.model_name,
input={"system_prompt": system, "prompt": prompt, **gen_conf},
)
for resp in response:
ans = resp
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield num_tokens_from_string(ans)
class HunyuanChat(Base):
_FACTORY_NAME = "Tencent Hunyuan"
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
from tencentcloud.common import credential
from tencentcloud.hunyuan.v20230901 import hunyuan_client
key = json.loads(key)
sid = key.get("hunyuan_sid", "")
sk = key.get("hunyuan_sk", "")
cred = credential.Credential(sid, sk)
self.model_name = model_name
self.client = hunyuan_client.HunyuanClient(cred, "")
def _clean_conf(self, gen_conf):
_gen_conf = {}
if "temperature" in gen_conf:
_gen_conf["Temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
_gen_conf["TopP"] = gen_conf["top_p"]
return _gen_conf
def _chat(self, history, gen_conf={}, **kwargs):
from tencentcloud.hunyuan.v20230901 import models
hist = [{k.capitalize(): v for k, v in item.items()} for item in history]
req = models.ChatCompletionsRequest()
params = {"Model": self.model_name, "Messages": hist, **gen_conf}
req.from_json_string(json.dumps(params))
response = self.client.ChatCompletions(req)
ans = response.Choices[0].Message.Content
return ans, response.Usage.TotalTokens
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
TencentCloudSDKException,
)
from tencentcloud.hunyuan.v20230901 import models
_gen_conf = {}
_history = [{k.capitalize(): v for k, v in item.items()} for item in history]
if system and history and history[0].get("role") != "system":
_history.insert(0, {"Role": "system", "Content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
if "temperature" in gen_conf:
_gen_conf["Temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
_gen_conf["TopP"] = gen_conf["top_p"]
req = models.ChatCompletionsRequest()
params = {
"Model": self.model_name,
"Messages": _history,
"Stream": True,
**_gen_conf,
}
req.from_json_string(json.dumps(params))
ans = ""
total_tokens = 0
try:
response = self.client.ChatCompletions(req)
for resp in response:
resp = json.loads(resp["data"])
if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
continue
ans = resp["Choices"][0]["Delta"]["Content"]
total_tokens += 1
yield ans
except TencentCloudSDKException as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class SparkChat(Base):
_FACTORY_NAME = "XunFei Spark"
def __init__(self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1", **kwargs):
if not base_url:
base_url = "https://spark-api-open.xf-yun.com/v1"
model2version = {
"Spark-Max": "generalv3.5",
"Spark-Lite": "general",
"Spark-Pro": "generalv3",
"Spark-Pro-128K": "pro-128k",
"Spark-4.0-Ultra": "4.0Ultra",
}
version2model = {v: k for k, v in model2version.items()}
assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
if model_name in model2version:
model_version = model2version[model_name]
else:
model_version = model_name
super().__init__(key, model_version, base_url, **kwargs)
class BaiduYiyanChat(Base):
_FACTORY_NAME = "BaiduYiyan"
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
import qianfan
key = json.loads(key)
ak = key.get("yiyan_ak", "")
sk = key.get("yiyan_sk", "")
self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
self.model_name = model_name.lower()
def _clean_conf(self, gen_conf):
gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
return gen_conf
def _chat(self, history, gen_conf):
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
response = self.client.do(model=self.model_name, messages=[h for h in history if h["role"] != "system"], system=system, **gen_conf).body
ans = response["result"]
return ans, total_token_count_from_response(response)
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
gen_conf["penalty_score"] = ((gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2) + 1
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
total_tokens = 0
try:
response = self.client.do(model=self.model_name, messages=history, system=system, stream=True, **gen_conf)
for resp in response:
resp = resp.body
ans = resp["result"]
total_tokens = total_token_count_from_response(resp)
yield ans
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
yield total_tokens
class GoogleChat(Base):
_FACTORY_NAME = "Google Cloud"
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
import base64
from google.oauth2 import service_account
key = json.loads(key)
access_token = json.loads(base64.b64decode(key.get("google_service_account_key", "")))
project_id = key.get("google_project_id", "")
region = key.get("google_region", "")
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
self.model_name = model_name
if "claude" in self.model_name:
from anthropic import AnthropicVertex
from google.auth.transport.requests import Request
if access_token:
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
request = Request()
credits.refresh(request)
token = credits.token
self.client = AnthropicVertex(region=region, project_id=project_id, access_token=token)
else:
self.client = AnthropicVertex(region=region, project_id=project_id)
else:
from google import genai
if access_token:
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
self.client = genai.Client(vertexai=True, project=project_id, location=region, credentials=credits)
else:
self.client = genai.Client(vertexai=True, project=project_id, location=region)
def _clean_conf(self, gen_conf):
if "claude" in self.model_name:
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
else:
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
del gen_conf["max_tokens"]
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
return gen_conf
def _chat(self, history, gen_conf={}, **kwargs):
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
if "claude" in self.model_name:
gen_conf = self._clean_conf(gen_conf)
response = self.client.messages.create(
model=self.model_name,
messages=[h for h in history if h["role"] != "system"],
system=system,
stream=False,
**gen_conf,
).json()
ans = response["content"][0]["text"]
if response["stop_reason"] == "max_tokens":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return (
ans,
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
)
# Gemini models with google-genai SDK
# Set default thinking_budget=0 if not specified
if "thinking_budget" not in gen_conf:
gen_conf["thinking_budget"] = 0
thinking_budget = gen_conf.pop("thinking_budget", 0)
gen_conf = self._clean_conf(gen_conf)
# Build GenerateContentConfig
try:
from google.genai.types import GenerateContentConfig, ThinkingConfig, Content, Part
except ImportError as e:
logging.error(f"[GoogleChat] Failed to import google-genai: {e}. Please install: pip install google-genai>=1.41.0")
raise
config_dict = {}
if system:
config_dict["system_instruction"] = system
if "temperature" in gen_conf:
config_dict["temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
config_dict["top_p"] = gen_conf["top_p"]
if "max_output_tokens" in gen_conf:
config_dict["max_output_tokens"] = gen_conf["max_output_tokens"]
# Add ThinkingConfig
config_dict["thinking_config"] = ThinkingConfig(thinking_budget=thinking_budget)
config = GenerateContentConfig(**config_dict)
# Convert history to google-genai Content format
contents = []
for item in history:
if item["role"] == "system":
continue
# google-genai uses 'model' instead of 'assistant'
role = "model" if item["role"] == "assistant" else item["role"]
content = Content(
role=role,
parts=[Part(text=item["content"])]
)
contents.append(content)
response = self.client.models.generate_content(
model=self.model_name,
contents=contents,
config=config
)
ans = response.text
# Get token count from response
try:
total_tokens = response.usage_metadata.total_token_count
except Exception:
total_tokens = 0
return ans, total_tokens
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
if "claude" in self.model_name:
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
ans = ""
total_tokens = 0
try:
response = self.client.messages.create(
model=self.model_name,
messages=history,
system=system,
stream=True,
**gen_conf,
)
for res in response.iter_lines():
res = res.decode("utf-8")
if "content_block_delta" in res and "data" in res:
text = json.loads(res[6:])["delta"]["text"]
ans = text
total_tokens += num_tokens_from_string(text)
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
else:
# Gemini models with google-genai SDK
ans = ""
total_tokens = 0
# Set default thinking_budget=0 if not specified
if "thinking_budget" not in gen_conf:
gen_conf["thinking_budget"] = 0
thinking_budget = gen_conf.pop("thinking_budget", 0)
gen_conf = self._clean_conf(gen_conf)
# Build GenerateContentConfig
try:
from google.genai.types import GenerateContentConfig, ThinkingConfig, Content, Part
except ImportError as e:
logging.error(f"[GoogleChat] Failed to import google-genai: {e}. Please install: pip install google-genai>=1.41.0")
raise
config_dict = {}
if system:
config_dict["system_instruction"] = system
if "temperature" in gen_conf:
config_dict["temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
config_dict["top_p"] = gen_conf["top_p"]
if "max_output_tokens" in gen_conf:
config_dict["max_output_tokens"] = gen_conf["max_output_tokens"]
# Add ThinkingConfig
config_dict["thinking_config"] = ThinkingConfig(thinking_budget=thinking_budget)
config = GenerateContentConfig(**config_dict)
# Convert history to google-genai Content format
contents = []
for item in history:
# google-genai uses 'model' instead of 'assistant'
role = "model" if item["role"] == "assistant" else item["role"]
content = Content(
role=role,
parts=[Part(text=item["content"])]
)
contents.append(content)
try:
for chunk in self.client.models.generate_content_stream(
model=self.model_name,
contents=contents,
config=config
):
text = chunk.text
ans = text
total_tokens += num_tokens_from_string(text)
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class GPUStackChat(Base):
_FACTORY_NAME = "GPUStack"
def __init__(self, key=None, model_name="", base_url="", **kwargs):
if not base_url:
raise ValueError("Local llm url cannot be None")
base_url = urljoin(base_url, "v1")
super().__init__(key, model_name, base_url, **kwargs)
class TokenPonyChat(Base):
_FACTORY_NAME = "TokenPony"
def __init__(self, key, model_name, base_url="https://ragflow.vip-api.tokenpony.cn/v1", **kwargs):
if not base_url:
base_url = "https://ragflow.vip-api.tokenpony.cn/v1"
super().__init__(key, model_name, base_url, **kwargs)
class DeerAPIChat(Base):
_FACTORY_NAME = "DeerAPI"
def __init__(self, key, model_name, base_url="https://api.deerapi.com/v1", **kwargs):
if not base_url:
base_url = "https://api.deerapi.com/v1"
super().__init__(key, model_name, base_url, **kwargs)
class LiteLLMBase(ABC):
_FACTORY_NAME = [
"Tongyi-Qianwen",
"Bedrock",
"Moonshot",
"xAI",
"DeepInfra",
"Groq",
"Cohere",
"Gemini",
"DeepSeek",
"NVIDIA",
"TogetherAI",
"Anthropic",
"Ollama",
"LongCat",
"CometAPI",
"SILICONFLOW",
"OpenRouter",
"StepFun",
"PPIO",
"PerfXCloud",
"Upstage",
"NovitaAI",
"01.AI",
"GiteeAI",
"302.AI",
"Jiekou.AI",
]
def __init__(self, key, model_name, base_url=None, **kwargs):
self.timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))
self.provider = kwargs.get("provider", "")
self.prefix = LITELLM_PROVIDER_PREFIX.get(self.provider, "")
self.model_name = f"{self.prefix}{model_name}"
self.api_key = key
self.base_url = (base_url or FACTORY_DEFAULT_BASE_URL.get(self.provider, "")).rstrip("/")
# Configure retry parameters
self.max_retries = kwargs.get("max_retries", int(os.environ.get("LLM_MAX_RETRIES", 5)))
self.base_delay = kwargs.get("retry_interval", float(os.environ.get("LLM_BASE_DELAY", 2.0)))
self.max_rounds = kwargs.get("max_rounds", 5)
self.is_tools = False
self.tools = []
self.toolcall_sessions = {}
# Factory specific fields
if self.provider == SupportedLiteLLMProvider.Bedrock:
self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
self.bedrock_region = json.loads(key).get("bedrock_region", "")
elif self.provider == SupportedLiteLLMProvider.OpenRouter:
self.api_key = json.loads(key).get("api_key", "")
self.provider_order = json.loads(key).get("provider_order", "")
def _get_delay(self):
"""Calculate retry delay time"""
return self.base_delay * random.uniform(10, 150)
def _classify_error(self, error):
"""Classify error based on error message content"""
error_str = str(error).lower()
keywords_mapping = [
(["quota", "capacity", "credit", "billing", "balance", "欠费"], LLMErrorCode.ERROR_QUOTA),
(["rate limit", "429", "tpm limit", "too many requests", "requests per minute"], LLMErrorCode.ERROR_RATE_LIMIT),
(["auth", "key", "apikey", "401", "forbidden", "permission"], LLMErrorCode.ERROR_AUTHENTICATION),
(["invalid", "bad request", "400", "format", "malformed", "parameter"], LLMErrorCode.ERROR_INVALID_REQUEST),
(["server", "503", "502", "504", "500", "unavailable"], LLMErrorCode.ERROR_SERVER),
(["timeout", "timed out"], LLMErrorCode.ERROR_TIMEOUT),
(["connect", "network", "unreachable", "dns"], LLMErrorCode.ERROR_CONNECTION),
(["filter", "content", "policy", "blocked", "safety", "inappropriate"], LLMErrorCode.ERROR_CONTENT_FILTER),
(["model", "not found", "does not exist", "not available"], LLMErrorCode.ERROR_MODEL),
(["max rounds"], LLMErrorCode.ERROR_MODEL),
]
for words, code in keywords_mapping:
if re.search("({})".format("|".join(words)), error_str):
return code
return LLMErrorCode.ERROR_GENERIC
def _clean_conf(self, gen_conf):
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
return gen_conf
def _chat(self, history, gen_conf, **kwargs):
logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
if self.model_name.lower().find("qwen3") >= 0:
kwargs["extra_body"] = {"enable_thinking": False}
completion_args = self._construct_completion_args(history=history, stream=False, tools=False, **gen_conf)
response = litellm.completion(
**completion_args,
drop_params=True,
timeout=self.timeout,
)
# response = self.client.chat.completions.create(model=self.model_name, messages=history, **gen_conf, **kwargs)
if any([not response.choices, not response.choices[0].message, not response.choices[0].message.content]):
return "", 0
ans = response.choices[0].message.content.strip()
if response.choices[0].finish_reason == "length":
ans = self._length_stop(ans)
return ans, total_token_count_from_response(response)
def _chat_streamly(self, history, gen_conf, **kwargs):
logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
reasoning_start = False
completion_args = self._construct_completion_args(history=history, stream=True, tools=False, **gen_conf)
stop = kwargs.get("stop")
if stop:
completion_args["stop"] = stop
response = litellm.completion(
**completion_args,
drop_params=True,
timeout=self.timeout,
)
for resp in response:
if not hasattr(resp, "choices") or not resp.choices:
continue
delta = resp.choices[0].delta
if not hasattr(delta, "content") or delta.content is None:
delta.content = ""
if kwargs.get("with_reasoning", True) and hasattr(delta, "reasoning_content") and delta.reasoning_content:
ans = ""
if not reasoning_start:
reasoning_start = True
ans = "<think>"
ans += delta.reasoning_content + "</think>"
else:
reasoning_start = False
ans = delta.content
tol = total_token_count_from_response(resp)
if not tol:
tol = num_tokens_from_string(delta.content)
finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
if finish_reason == "length":
if is_chinese(ans):
ans += LENGTH_NOTIFICATION_CN
else:
ans += LENGTH_NOTIFICATION_EN
yield ans, tol
def _length_stop(self, ans):
if is_chinese([ans]):
return ans + LENGTH_NOTIFICATION_CN
return ans + LENGTH_NOTIFICATION_EN
@property
def _retryable_errors(self) -> set[str]:
return {
LLMErrorCode.ERROR_RATE_LIMIT,
LLMErrorCode.ERROR_SERVER,
}
def _should_retry(self, error_code: str) -> bool:
return error_code in self._retryable_errors
def _exceptions(self, e, attempt) -> str | None:
logging.exception("OpenAI chat_with_tools")
# Classify the error
error_code = self._classify_error(e)
if attempt == self.max_retries:
error_code = LLMErrorCode.ERROR_MAX_RETRIES
if self._should_retry(error_code):
delay = self._get_delay()
logging.warning(f"Error: {error_code}. Retrying in {delay:.2f} seconds... (Attempt {attempt + 1}/{self.max_retries})")
time.sleep(delay)
return None
return f"{ERROR_PREFIX}: {error_code} - {str(e)}"
def _verbose_tool_use(self, name, args, res):
return "<tool_call>" + json.dumps({"name": name, "args": args, "result": res}, ensure_ascii=False, indent=2) + "</tool_call>"
def _append_history(self, hist, tool_call, tool_res):
hist.append(
{
"role": "assistant",
"tool_calls": [
{
"index": tool_call.index,
"id": tool_call.id,
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments,
},
"type": "function",
},
],
}
)
try:
if isinstance(tool_res, dict):
tool_res = json.dumps(tool_res, ensure_ascii=False)
finally:
hist.append({"role": "tool", "tool_call_id": tool_call.id, "content": str(tool_res)})
return hist
def bind_tools(self, toolcall_session, tools):
if not (toolcall_session and tools):
return
self.is_tools = True
self.toolcall_session = toolcall_session
self.tools = tools
def _construct_completion_args(self, history, stream: bool, tools: bool, **kwargs):
completion_args = {
"model": self.model_name,
"messages": history,
"api_key": self.api_key,
"num_retries": self.max_retries,
**kwargs,
}
if stream:
completion_args.update(
{
"stream": stream,
}
)
if tools and self.tools:
completion_args.update(
{
"tools": self.tools,
"tool_choice": "auto",
}
)
if self.provider in FACTORY_DEFAULT_BASE_URL:
completion_args.update({"api_base": self.base_url})
elif self.provider == SupportedLiteLLMProvider.Bedrock:
completion_args.pop("api_key", None)
completion_args.pop("api_base", None)
completion_args.update(
{
"aws_access_key_id": self.bedrock_ak,
"aws_secret_access_key": self.bedrock_sk,
"aws_region_name": self.bedrock_region,
}
)
if self.provider == SupportedLiteLLMProvider.OpenRouter:
if self.provider_order:
def _to_order_list(x):
if x is None:
return []
if isinstance(x, str):
return [s.strip() for s in x.split(",") if s.strip()]
if isinstance(x, (list, tuple)):
return [str(s).strip() for s in x if str(s).strip()]
return []
extra_body = {}
provider_cfg = {}
provider_order = _to_order_list(self.provider_order)
provider_cfg["order"] = provider_order
provider_cfg["allow_fallbacks"] = False
extra_body["provider"] = provider_cfg
completion_args.update({"extra_body": extra_body})
return completion_args
def chat_with_tools(self, system: str, history: list, gen_conf: dict = {}):
gen_conf = self._clean_conf(gen_conf)
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
ans = ""
tk_count = 0
hist = deepcopy(history)
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries + 1):
history = deepcopy(hist) # deepcopy is required here
try:
for _ in range(self.max_rounds + 1):
logging.info(f"{self.tools=}")
completion_args = self._construct_completion_args(history=history, stream=False, tools=True, **gen_conf)
response = litellm.completion(
**completion_args,
drop_params=True,
timeout=self.timeout,
)
tk_count += total_token_count_from_response(response)
if not hasattr(response, "choices") or not response.choices or not response.choices[0].message:
raise Exception(f"500 response structure error. Response: {response}")
message = response.choices[0].message
if not hasattr(message, "tool_calls") or not message.tool_calls:
if hasattr(message, "reasoning_content") and message.reasoning_content:
ans += f"<think>{message.reasoning_content}</think>"
ans += message.content or ""
if response.choices[0].finish_reason == "length":
ans = self._length_stop(ans)
return ans, tk_count
for tool_call in message.tool_calls:
logging.info(f"Response {tool_call=}")
name = tool_call.function.name
try:
args = json_repair.loads(tool_call.function.arguments)
tool_response = self.toolcall_session.tool_call(name, args)
history = self._append_history(history, tool_call, tool_response)
ans += self._verbose_tool_use(name, args, tool_response)
except Exception as e:
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
history.append({"role": "tool", "tool_call_id": tool_call.id, "content": f"Tool call error: \n{tool_call}\nException:\n" + str(e)})
ans += self._verbose_tool_use(name, {}, str(e))
logging.warning(f"Exceed max rounds: {self.max_rounds}")
history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
response, token_count = self._chat(history, gen_conf)
ans += response
tk_count += token_count
return ans, tk_count
except Exception as e:
e = self._exceptions(e, attempt)
if e:
return e, tk_count
assert False, "Shouldn't be here."
def chat(self, system, history, gen_conf={}, **kwargs):
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
gen_conf = self._clean_conf(gen_conf)
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries + 1):
try:
response = self._chat(history, gen_conf, **kwargs)
return response
except Exception as e:
e = self._exceptions(e, attempt)
if e:
return e, 0
assert False, "Shouldn't be here."
def _wrap_toolcall_message(self, stream):
final_tool_calls = {}
for chunk in stream:
for tool_call in chunk.choices[0].delta.tool_calls or []:
index = tool_call.index
if index not in final_tool_calls:
final_tool_calls[index] = tool_call
final_tool_calls[index].function.arguments += tool_call.function.arguments
return final_tool_calls
def chat_streamly_with_tools(self, system: str, history: list, gen_conf: dict = {}):
gen_conf = self._clean_conf(gen_conf)
tools = self.tools
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
total_tokens = 0
hist = deepcopy(history)
# Implement exponential backoff retry strategy
for attempt in range(self.max_retries + 1):
history = deepcopy(hist) # deepcopy is required here
try:
for _ in range(self.max_rounds + 1):
reasoning_start = False
logging.info(f"{tools=}")
completion_args = self._construct_completion_args(history=history, stream=True, tools=True, **gen_conf)
response = litellm.completion(
**completion_args,
drop_params=True,
timeout=self.timeout,
)
final_tool_calls = {}
answer = ""
for resp in response:
if not hasattr(resp, "choices") or not resp.choices:
continue
delta = resp.choices[0].delta
if hasattr(delta, "tool_calls") and delta.tool_calls:
for tool_call in delta.tool_calls:
index = tool_call.index
if index not in final_tool_calls:
if not tool_call.function.arguments:
tool_call.function.arguments = ""
final_tool_calls[index] = tool_call
else:
final_tool_calls[index].function.arguments += tool_call.function.arguments or ""
continue
if not hasattr(delta, "content") or delta.content is None:
delta.content = ""
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
ans = ""
if not reasoning_start:
reasoning_start = True
ans = "<think>"
ans += delta.reasoning_content + "</think>"
yield ans
else:
reasoning_start = False
answer += delta.content
yield delta.content
tol = total_token_count_from_response(resp)
if not tol:
total_tokens += num_tokens_from_string(delta.content)
else:
total_tokens += tol
finish_reason = getattr(resp.choices[0], "finish_reason", "")
if finish_reason == "length":
yield self._length_stop("")
if answer:
yield total_tokens
return
for tool_call in final_tool_calls.values():
name = tool_call.function.name
try:
args = json_repair.loads(tool_call.function.arguments)
yield self._verbose_tool_use(name, args, "Begin to call...")
tool_response = self.toolcall_session.tool_call(name, args)
history = self._append_history(history, tool_call, tool_response)
yield self._verbose_tool_use(name, args, tool_response)
except Exception as e:
logging.exception(msg=f"Wrong JSON argument format in LLM tool call response: {tool_call}")
history.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"content": f"Tool call error: \n{tool_call}\nException:\n{str(e)}",
}
)
yield self._verbose_tool_use(name, {}, str(e))
logging.warning(f"Exceed max rounds: {self.max_rounds}")
history.append({"role": "user", "content": f"Exceed max rounds: {self.max_rounds}"})
completion_args = self._construct_completion_args(history=history, stream=True, tools=True, **gen_conf)
response = litellm.completion(
**completion_args,
drop_params=True,
timeout=self.timeout,
)
for resp in response:
if not hasattr(resp, "choices") or not resp.choices:
continue
delta = resp.choices[0].delta
if not hasattr(delta, "content") or delta.content is None:
continue
tol = total_token_count_from_response(resp)
if not tol:
total_tokens += num_tokens_from_string(delta.content)
else:
total_tokens += tol
yield delta.content
yield total_tokens
return
except Exception as e:
e = self._exceptions(e, attempt)
if e:
yield e
yield total_tokens
return
assert False, "Shouldn't be here."
def chat_streamly(self, system, history, gen_conf: dict = {}, **kwargs):
if system and history and history[0].get("role") != "system":
history.insert(0, {"role": "system", "content": system})
gen_conf = self._clean_conf(gen_conf)
ans = ""
total_tokens = 0
try:
for delta_ans, tol in self._chat_streamly(history, gen_conf, **kwargs):
yield delta_ans
total_tokens += tol
except openai.APIError as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
def _calculate_dynamic_ctx(self, history):
"""Calculate dynamic context window size"""
def count_tokens(text):
"""Calculate token count for text"""
# Simple calculation: 1 token per ASCII character
# 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
total = 0
for char in text:
if ord(char) < 128: # ASCII characters
total += 1
else: # Non-ASCII characters (Chinese, Japanese, Korean, etc.)
total += 2
return total
# Calculate total tokens for all messages
total_tokens = 0
for message in history:
content = message.get("content", "")
# Calculate content tokens
content_tokens = count_tokens(content)
# Add role marker token overhead
role_tokens = 4
total_tokens += content_tokens + role_tokens
# Apply 1.2x buffer ratio
total_tokens_with_buffer = int(total_tokens * 1.2)
if total_tokens_with_buffer <= 8192:
ctx_size = 8192
else:
ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
ctx_size = ctx_multiplier * 8192
return ctx_size