Files
ragflow/rag/prompts/generator.py
Jin Hai 4eb7659499 Fix bug: broken import from rag.prompts.prompts (#10217)
### What problem does this PR solve?

Fix broken imports

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: jinhai <haijin.chn@gmail.com>
2025-09-23 10:19:25 +08:00

439 lines
17 KiB
Python

#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import re
from copy import deepcopy
from typing import Tuple
import jinja2
import json_repair
from api.utils import hash_str2int
from rag.prompts.template import load_prompt
from rag.settings import TAG_FLD
from rag.utils import encoder, num_tokens_from_string
STOP_TOKEN="<|STOP|>"
COMPLETE_TASK="complete_task"
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
def chunks_format(reference):
return [
{
"id": get_value(chunk, "chunk_id", "id"),
"content": get_value(chunk, "content", "content_with_weight"),
"document_id": get_value(chunk, "doc_id", "document_id"),
"document_name": get_value(chunk, "docnm_kwd", "document_name"),
"dataset_id": get_value(chunk, "kb_id", "dataset_id"),
"image_id": get_value(chunk, "image_id", "img_id"),
"positions": get_value(chunk, "positions", "position_int"),
"url": chunk.get("url"),
"similarity": chunk.get("similarity"),
"vector_similarity": chunk.get("vector_similarity"),
"term_similarity": chunk.get("term_similarity"),
"doc_type": chunk.get("doc_type_kwd"),
}
for chunk in reference.get("chunks", [])
]
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg:
tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts:
total += m["count"]
return total
c = count()
if c < max_length:
return c, msg
msg_ = [m for m in msg if m["role"] == "system"]
if len(msg) > 1:
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length:
return c, msg
ll = num_tokens_from_string(msg_[0]["content"])
ll2 = num_tokens_from_string(msg_[-1]["content"])
if ll / (ll + ll2) > 0.8:
m = msg_[0]["content"]
m = encoder.decode(encoder.encode(m)[: max_length - ll2])
msg[0]["content"] = m
return max_length, msg
m = msg_[-1]["content"]
m = encoder.decode(encoder.encode(m)[: max_length - ll2])
msg[-1]["content"] = m
return max_length, msg
def kb_prompt(kbinfos, max_tokens, hash_id=False):
from api.db.services.document_service import DocumentService
knowledges = [get_value(ck, "content", "content_with_weight") for ck in kbinfos["chunks"]]
kwlg_len = len(knowledges)
used_token_count = 0
chunks_num = 0
for i, c in enumerate(knowledges):
if not c:
continue
used_token_count += num_tokens_from_string(c)
chunks_num += 1
if max_tokens * 0.97 < used_token_count:
knowledges = knowledges[:i]
logging.warning(f"Not all the retrieval into prompt: {len(knowledges)}/{kwlg_len}")
break
docs = DocumentService.get_by_ids([get_value(ck, "doc_id", "document_id") for ck in kbinfos["chunks"][:chunks_num]])
docs = {d.id: d.meta_fields for d in docs}
def draw_node(k, line):
if line is not None and not isinstance(line, str):
line = str(line)
if not line:
return ""
return f"\n├── {k}: " + re.sub(r"\n+", " ", line, flags=re.DOTALL)
knowledges = []
for i, ck in enumerate(kbinfos["chunks"][:chunks_num]):
cnt = "\nID: {}".format(i if not hash_id else hash_str2int(get_value(ck, "id", "chunk_id"), 100))
cnt += draw_node("Title", get_value(ck, "docnm_kwd", "document_name"))
cnt += draw_node("URL", ck['url']) if "url" in ck else ""
for k, v in docs.get(get_value(ck, "doc_id", "document_id"), {}).items():
cnt += draw_node(k, v)
cnt += "\n└── Content:\n"
cnt += get_value(ck, "content", "content_with_weight")
knowledges.append(cnt)
return knowledges
CITATION_PROMPT_TEMPLATE = load_prompt("citation_prompt")
CITATION_PLUS_TEMPLATE = load_prompt("citation_plus")
CONTENT_TAGGING_PROMPT_TEMPLATE = load_prompt("content_tagging_prompt")
CROSS_LANGUAGES_SYS_PROMPT_TEMPLATE = load_prompt("cross_languages_sys_prompt")
CROSS_LANGUAGES_USER_PROMPT_TEMPLATE = load_prompt("cross_languages_user_prompt")
FULL_QUESTION_PROMPT_TEMPLATE = load_prompt("full_question_prompt")
KEYWORD_PROMPT_TEMPLATE = load_prompt("keyword_prompt")
QUESTION_PROMPT_TEMPLATE = load_prompt("question_prompt")
VISION_LLM_DESCRIBE_PROMPT = load_prompt("vision_llm_describe_prompt")
VISION_LLM_FIGURE_DESCRIBE_PROMPT = load_prompt("vision_llm_figure_describe_prompt")
ANALYZE_TASK_SYSTEM = load_prompt("analyze_task_system")
ANALYZE_TASK_USER = load_prompt("analyze_task_user")
NEXT_STEP = load_prompt("next_step")
REFLECT = load_prompt("reflect")
SUMMARY4MEMORY = load_prompt("summary4memory")
RANK_MEMORY = load_prompt("rank_memory")
META_FILTER = load_prompt("meta_filter")
ASK_SUMMARY = load_prompt("ask_summary")
PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip_blocks=True)
def citation_prompt(user_defined_prompts: dict={}) -> str:
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("citation_guidelines", CITATION_PROMPT_TEMPLATE))
return template.render()
def citation_plus(sources: str) -> str:
template = PROMPT_JINJA_ENV.from_string(CITATION_PLUS_TEMPLATE)
return template.render(example=citation_prompt(), sources=sources)
def keyword_extraction(chat_mdl, content, topn=3):
template = PROMPT_JINJA_ENV.from_string(KEYWORD_PROMPT_TEMPLATE)
rendered_prompt = template.render(content=content, topn=topn)
msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def question_proposal(chat_mdl, content, topn=3):
template = PROMPT_JINJA_ENV.from_string(QUESTION_PROMPT_TEMPLATE)
rendered_prompt = template.render(content=content, topn=topn)
msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.2})
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def full_question(tenant_id=None, llm_id=None, messages=[], language=None, chat_mdl=None):
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
if not chat_mdl:
if TenantLLMService.llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
conv = []
for m in messages:
if m["role"] not in ["user", "assistant"]:
continue
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
conversation = "\n".join(conv)
today = datetime.date.today().isoformat()
yesterday = (datetime.date.today() - datetime.timedelta(days=1)).isoformat()
tomorrow = (datetime.date.today() + datetime.timedelta(days=1)).isoformat()
template = PROMPT_JINJA_ENV.from_string(FULL_QUESTION_PROMPT_TEMPLATE)
rendered_prompt = template.render(
today=today,
yesterday=yesterday,
tomorrow=tomorrow,
conversation=conversation,
language=language,
)
ans = chat_mdl.chat(rendered_prompt, [{"role": "user", "content": "Output: "}])
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
def cross_languages(tenant_id, llm_id, query, languages=[]):
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
if llm_id and TenantLLMService.llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
rendered_sys_prompt = PROMPT_JINJA_ENV.from_string(CROSS_LANGUAGES_SYS_PROMPT_TEMPLATE).render()
rendered_user_prompt = PROMPT_JINJA_ENV.from_string(CROSS_LANGUAGES_USER_PROMPT_TEMPLATE).render(query=query, languages=languages)
ans = chat_mdl.chat(rendered_sys_prompt, [{"role": "user", "content": rendered_user_prompt}], {"temperature": 0.2})
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
if ans.find("**ERROR**") >= 0:
return query
return "\n".join([a for a in re.sub(r"(^Output:|\n+)", "", ans, flags=re.DOTALL).split("===") if a.strip()])
def content_tagging(chat_mdl, content, all_tags, examples, topn=3):
template = PROMPT_JINJA_ENV.from_string(CONTENT_TAGGING_PROMPT_TEMPLATE)
for ex in examples:
ex["tags_json"] = json.dumps(ex[TAG_FLD], indent=2, ensure_ascii=False)
rendered_prompt = template.render(
topn=topn,
all_tags=all_tags,
examples=examples,
content=content,
)
msg = [{"role": "system", "content": rendered_prompt}, {"role": "user", "content": "Output: "}]
_, msg = message_fit_in(msg, chat_mdl.max_length)
kwd = chat_mdl.chat(rendered_prompt, msg[1:], {"temperature": 0.5})
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
if kwd.find("**ERROR**") >= 0:
raise Exception(kwd)
try:
obj = json_repair.loads(kwd)
except json_repair.JSONDecodeError:
try:
result = kwd.replace(rendered_prompt[:-1], "").replace("user", "").replace("model", "").strip()
result = "{" + result.split("{")[1].split("}")[0] + "}"
obj = json_repair.loads(result)
except Exception as e:
logging.exception(f"JSON parsing error: {result} -> {e}")
raise e
res = {}
for k, v in obj.items():
try:
if int(v) > 0:
res[str(k)] = int(v)
except Exception:
pass
return res
def vision_llm_describe_prompt(page=None) -> str:
template = PROMPT_JINJA_ENV.from_string(VISION_LLM_DESCRIBE_PROMPT)
return template.render(page=page)
def vision_llm_figure_describe_prompt() -> str:
template = PROMPT_JINJA_ENV.from_string(VISION_LLM_FIGURE_DESCRIBE_PROMPT)
return template.render()
def tool_schema(tools_description: list[dict], complete_task=False):
if not tools_description:
return ""
desc = {}
if complete_task:
desc[COMPLETE_TASK] = {
"type": "function",
"function": {
"name": COMPLETE_TASK,
"description": "When you have the final answer and are ready to complete the task, call this function with your answer",
"parameters": {
"type": "object",
"properties": {"answer":{"type":"string", "description": "The final answer to the user's question"}},
"required": ["answer"]
}
}
}
for tool in tools_description:
desc[tool["function"]["name"]] = tool
return "\n\n".join([f"## {i+1}. {fnm}\n{json.dumps(des, ensure_ascii=False, indent=4)}" for i, (fnm, des) in enumerate(desc.items())])
def form_history(history, limit=-6):
context = ""
for h in history[limit:]:
if h["role"] == "system":
continue
role = "USER"
if h["role"].upper()!= role:
role = "AGENT"
context += f"\n{role}: {h['content'][:2048] + ('...' if len(h['content'])>2048 else '')}"
return context
def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict], user_defined_prompts: dict={}):
tools_desc = tool_schema(tools_description)
context = ""
if user_defined_prompts.get("task_analysis"):
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts["task_analysis"])
else:
template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_SYSTEM + "\n\n" + ANALYZE_TASK_USER)
context = template.render(task=task_name, context=context, agent_prompt=prompt, tools_desc=tools_desc)
kwd = chat_mdl.chat(context, [{"role": "user", "content": "Please analyze it."}])
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
if kwd.find("**ERROR**") >= 0:
return ""
return kwd
def next_step(chat_mdl, history:list, tools_description: list[dict], task_desc, user_defined_prompts: dict={}):
if not tools_description:
return ""
desc = tool_schema(tools_description)
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("plan_generation", NEXT_STEP))
user_prompt = "\nWhat's the next tool to call? If ready OR IMPOSSIBLE TO BE READY, then call `complete_task`."
hist = deepcopy(history)
if hist[-1]["role"] == "user":
hist[-1]["content"] += user_prompt
else:
hist.append({"role": "user", "content": user_prompt})
json_str = chat_mdl.chat(template.render(task_analysis=task_desc, desc=desc, today=datetime.datetime.now().strftime("%Y-%m-%d")),
hist[1:], stop=["<|stop|>"])
tk_cnt = num_tokens_from_string(json_str)
json_str = re.sub(r"^.*</think>", "", json_str, flags=re.DOTALL)
return json_str, tk_cnt
def reflect(chat_mdl, history: list[dict], tool_call_res: list[Tuple], user_defined_prompts: dict={}):
tool_calls = [{"name": p[0], "result": p[1]} for p in tool_call_res]
goal = history[1]["content"]
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("reflection", REFLECT))
user_prompt = template.render(goal=goal, tool_calls=tool_calls)
hist = deepcopy(history)
if hist[-1]["role"] == "user":
hist[-1]["content"] += user_prompt
else:
hist.append({"role": "user", "content": user_prompt})
_, msg = message_fit_in(hist, chat_mdl.max_length)
ans = chat_mdl.chat(msg[0]["content"], msg[1:])
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
return """
**Observation**
{}
**Reflection**
{}
""".format(json.dumps(tool_calls, ensure_ascii=False, indent=2), ans)
def form_message(system_prompt, user_prompt):
return [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}]
def tool_call_summary(chat_mdl, name: str, params: dict, result: str, user_defined_prompts: dict={}) -> str:
template = PROMPT_JINJA_ENV.from_string(SUMMARY4MEMORY)
system_prompt = template.render(name=name,
params=json.dumps(params, ensure_ascii=False, indent=2),
result=result)
user_prompt = "→ Summary: "
_, msg = message_fit_in(form_message(system_prompt, user_prompt), chat_mdl.max_length)
ans = chat_mdl.chat(msg[0]["content"], msg[1:])
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[str], user_defined_prompts: dict={}):
template = PROMPT_JINJA_ENV.from_string(RANK_MEMORY)
system_prompt = template.render(goal=goal, sub_goal=sub_goal, results=[{"i": i, "content": s} for i,s in enumerate(tool_call_summaries)])
user_prompt = " → rank: "
_, msg = message_fit_in(form_message(system_prompt, user_prompt), chat_mdl.max_length)
ans = chat_mdl.chat(msg[0]["content"], msg[1:], stop="<|stop|>")
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
sys_prompt = PROMPT_JINJA_ENV.from_string(META_FILTER).render(
current_date=datetime.datetime.today().strftime('%Y-%m-%d'),
metadata_keys=json.dumps(meta_data),
user_question=query
)
user_prompt = "Generate filters:"
ans = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}])
ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
try:
ans = json_repair.loads(ans)
assert isinstance(ans, list), ans
return ans
except Exception:
logging.exception(f"Loading json failure: {ans}")
return []