mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 12:32:30 +08:00
### What problem does this PR solve? Currently, if we want to restrict the allowed factories users can use we need to delete from the database table manually. The proposal of this PR is to include a variable to that, if set, will restrict the LLM factories the users can see and add. This allow us to not touch the llm_factories.json or the database if the LLM factory is already inserted. Obs.: All the lint changes were from the pre-commit hook which I did not change. ### Type of change - [X] New Feature (non-breaking change which adds functionality)
374 lines
16 KiB
Python
374 lines
16 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
import json
|
|
import os
|
|
from flask import request
|
|
from flask_login import login_required, current_user
|
|
from api.db.services.tenant_llm_service import LLMFactoriesService, TenantLLMService
|
|
from api.db.services.llm_service import LLMService
|
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
|
from common.constants import StatusEnum, LLMType
|
|
from api.db.db_models import TenantLLM
|
|
from api.utils.api_utils import get_json_result, get_allowed_llm_factories
|
|
from common.base64_image import test_image
|
|
from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
|
|
|
|
|
|
@manager.route("/factories", methods=["GET"]) # noqa: F821
|
|
@login_required
|
|
def factories():
|
|
try:
|
|
fac = get_allowed_llm_factories()
|
|
fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
|
|
llms = LLMService.get_all()
|
|
mdl_types = {}
|
|
for m in llms:
|
|
if m.status != StatusEnum.VALID.value:
|
|
continue
|
|
if m.fid not in mdl_types:
|
|
mdl_types[m.fid] = set([])
|
|
mdl_types[m.fid].add(m.model_type)
|
|
for f in fac:
|
|
f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK, LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
|
|
return get_json_result(data=fac)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/set_api_key", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory", "api_key")
|
|
def set_api_key():
|
|
req = request.json
|
|
# test if api key works
|
|
chat_passed, embd_passed, rerank_passed = False, False, False
|
|
factory = req["llm_factory"]
|
|
extra = {"provider": factory}
|
|
msg = ""
|
|
for llm in LLMService.query(fid=factory):
|
|
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
|
|
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
|
|
mdl = EmbeddingModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"))
|
|
try:
|
|
arr, tc = mdl.encode(["Test if the api key is available"])
|
|
if len(arr[0]) == 0:
|
|
raise Exception("Fail")
|
|
embd_passed = True
|
|
except Exception as e:
|
|
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
|
|
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
|
|
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
|
|
mdl = ChatModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"), **extra)
|
|
try:
|
|
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {"temperature": 0.9, "max_tokens": 50})
|
|
if m.find("**ERROR**") >= 0:
|
|
raise Exception(m)
|
|
chat_passed = True
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(e)
|
|
elif not rerank_passed and llm.model_type == LLMType.RERANK:
|
|
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
|
|
mdl = RerankModel[factory](req["api_key"], llm.llm_name, base_url=req.get("base_url"))
|
|
try:
|
|
arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
|
|
if len(arr) == 0 or tc == 0:
|
|
raise Exception("Fail")
|
|
rerank_passed = True
|
|
logging.debug(f"passed model rerank {llm.llm_name}")
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({llm.fid}/{llm.llm_name}) using this api key." + str(e)
|
|
if any([embd_passed, chat_passed, rerank_passed]):
|
|
msg = ""
|
|
break
|
|
|
|
if msg:
|
|
return get_data_error_result(message=msg)
|
|
|
|
llm_config = {"api_key": req["api_key"], "api_base": req.get("base_url", "")}
|
|
for n in ["model_type", "llm_name"]:
|
|
if n in req:
|
|
llm_config[n] = req[n]
|
|
|
|
for llm in LLMService.query(fid=factory):
|
|
llm_config["max_tokens"] = llm.max_tokens
|
|
if not TenantLLMService.filter_update([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm.llm_name], llm_config):
|
|
TenantLLMService.save(
|
|
tenant_id=current_user.id,
|
|
llm_factory=factory,
|
|
llm_name=llm.llm_name,
|
|
model_type=llm.model_type,
|
|
api_key=llm_config["api_key"],
|
|
api_base=llm_config["api_base"],
|
|
max_tokens=llm_config["max_tokens"],
|
|
)
|
|
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/add_llm", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory")
|
|
def add_llm():
|
|
req = request.json
|
|
factory = req["llm_factory"]
|
|
api_key = req.get("api_key", "x")
|
|
llm_name = req.get("llm_name")
|
|
|
|
if factory not in get_allowed_llm_factories():
|
|
return get_data_error_result(message=f"LLM factory {factory} is not allowed")
|
|
|
|
def apikey_json(keys):
|
|
nonlocal req
|
|
return json.dumps({k: req.get(k, "") for k in keys})
|
|
|
|
if factory == "VolcEngine":
|
|
# For VolcEngine, due to its special authentication method
|
|
# Assemble ark_api_key endpoint_id into api_key
|
|
api_key = apikey_json(["ark_api_key", "endpoint_id"])
|
|
|
|
elif factory == "Tencent Hunyuan":
|
|
req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
|
|
return set_api_key()
|
|
|
|
elif factory == "Tencent Cloud":
|
|
req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
|
|
return set_api_key()
|
|
|
|
elif factory == "Bedrock":
|
|
# For Bedrock, due to its special authentication method
|
|
# Assemble bedrock_ak, bedrock_sk, bedrock_region
|
|
api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
|
|
|
|
elif factory == "LocalAI":
|
|
llm_name += "___LocalAI"
|
|
|
|
elif factory == "HuggingFace":
|
|
llm_name += "___HuggingFace"
|
|
|
|
elif factory == "OpenAI-API-Compatible":
|
|
llm_name += "___OpenAI-API"
|
|
|
|
elif factory == "VLLM":
|
|
llm_name += "___VLLM"
|
|
|
|
elif factory == "XunFei Spark":
|
|
if req["model_type"] == "chat":
|
|
api_key = req.get("spark_api_password", "")
|
|
elif req["model_type"] == "tts":
|
|
api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
|
|
|
|
elif factory == "BaiduYiyan":
|
|
api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
|
|
|
|
elif factory == "Fish Audio":
|
|
api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
|
|
|
|
elif factory == "Google Cloud":
|
|
api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
|
|
|
|
elif factory == "Azure-OpenAI":
|
|
api_key = apikey_json(["api_key", "api_version"])
|
|
|
|
elif factory == "OpenRouter":
|
|
api_key = apikey_json(["api_key", "provider_order"])
|
|
|
|
llm = {
|
|
"tenant_id": current_user.id,
|
|
"llm_factory": factory,
|
|
"model_type": req["model_type"],
|
|
"llm_name": llm_name,
|
|
"api_base": req.get("api_base", ""),
|
|
"api_key": api_key,
|
|
"max_tokens": req.get("max_tokens"),
|
|
}
|
|
|
|
msg = ""
|
|
mdl_nm = llm["llm_name"].split("___")[0]
|
|
extra = {"provider": factory}
|
|
if llm["model_type"] == LLMType.EMBEDDING.value:
|
|
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
|
|
mdl = EmbeddingModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
|
|
try:
|
|
arr, tc = mdl.encode(["Test if the api key is available"])
|
|
if len(arr[0]) == 0:
|
|
raise Exception("Fail")
|
|
except Exception as e:
|
|
msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
|
|
elif llm["model_type"] == LLMType.CHAT.value:
|
|
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
|
|
mdl = ChatModel[factory](
|
|
key=llm["api_key"],
|
|
model_name=mdl_nm,
|
|
base_url=llm["api_base"],
|
|
**extra,
|
|
)
|
|
try:
|
|
m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {"temperature": 0.9})
|
|
if not tc and m.find("**ERROR**:") >= 0:
|
|
raise Exception(m)
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
|
elif llm["model_type"] == LLMType.RERANK:
|
|
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
|
|
try:
|
|
mdl = RerankModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
|
|
arr, tc = mdl.similarity("Hello~ RAGFlower!", ["Hi, there!", "Ohh, my friend!"])
|
|
if len(arr) == 0:
|
|
raise Exception("Not known.")
|
|
except KeyError:
|
|
msg += f"{factory} dose not support this model({factory}/{mdl_nm})"
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
|
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
|
|
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
|
|
mdl = CvModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
|
|
try:
|
|
image_data = test_image
|
|
m, tc = mdl.describe(image_data)
|
|
if not tc and m.find("**ERROR**:") >= 0:
|
|
raise Exception(m)
|
|
except Exception as e:
|
|
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
|
elif llm["model_type"] == LLMType.TTS:
|
|
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
|
|
mdl = TTSModel[factory](key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"])
|
|
try:
|
|
for resp in mdl.tts("Hello~ RAGFlower!"):
|
|
pass
|
|
except RuntimeError as e:
|
|
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)
|
|
else:
|
|
# TODO: check other type of models
|
|
pass
|
|
|
|
if msg:
|
|
return get_data_error_result(message=msg)
|
|
|
|
if not TenantLLMService.filter_update([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
|
|
TenantLLMService.save(**llm)
|
|
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/delete_llm", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory", "llm_name")
|
|
def delete_llm():
|
|
req = request.json
|
|
TenantLLMService.filter_delete([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/enable_llm", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory", "llm_name")
|
|
def enable_llm():
|
|
req = request.json
|
|
TenantLLMService.filter_update(
|
|
[TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]], {"status": str(req.get("status", "1"))}
|
|
)
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/delete_factory", methods=["POST"]) # noqa: F821
|
|
@login_required
|
|
@validate_request("llm_factory")
|
|
def delete_factory():
|
|
req = request.json
|
|
TenantLLMService.filter_delete([TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
|
|
return get_json_result(data=True)
|
|
|
|
|
|
@manager.route("/my_llms", methods=["GET"]) # noqa: F821
|
|
@login_required
|
|
def my_llms():
|
|
try:
|
|
include_details = request.args.get("include_details", "false").lower() == "true"
|
|
|
|
if include_details:
|
|
res = {}
|
|
objs = TenantLLMService.query(tenant_id=current_user.id)
|
|
factories = LLMFactoriesService.query(status=StatusEnum.VALID.value)
|
|
|
|
for o in objs:
|
|
o_dict = o.to_dict()
|
|
factory_tags = None
|
|
for f in factories:
|
|
if f.name == o_dict["llm_factory"]:
|
|
factory_tags = f.tags
|
|
break
|
|
|
|
if o_dict["llm_factory"] not in res:
|
|
res[o_dict["llm_factory"]] = {"tags": factory_tags, "llm": []}
|
|
|
|
res[o_dict["llm_factory"]]["llm"].append(
|
|
{
|
|
"type": o_dict["model_type"],
|
|
"name": o_dict["llm_name"],
|
|
"used_token": o_dict["used_tokens"],
|
|
"api_base": o_dict["api_base"] or "",
|
|
"max_tokens": o_dict["max_tokens"] or 8192,
|
|
"status": o_dict["status"] or "1",
|
|
}
|
|
)
|
|
else:
|
|
res = {}
|
|
for o in TenantLLMService.get_my_llms(current_user.id):
|
|
if o["llm_factory"] not in res:
|
|
res[o["llm_factory"]] = {"tags": o["tags"], "llm": []}
|
|
res[o["llm_factory"]]["llm"].append({"type": o["model_type"], "name": o["llm_name"], "used_token": o["used_tokens"], "status": o["status"]})
|
|
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route("/list", methods=["GET"]) # noqa: F821
|
|
@login_required
|
|
def list_app():
|
|
self_deployed = ["FastEmbed", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
|
|
weighted = []
|
|
model_type = request.args.get("model_type")
|
|
try:
|
|
objs = TenantLLMService.query(tenant_id=current_user.id)
|
|
facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key and o.status == StatusEnum.VALID.value])
|
|
status = {(o.llm_name + "@" + o.llm_factory) for o in objs if o.status == StatusEnum.VALID.value}
|
|
llms = LLMService.get_all()
|
|
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted and (m.llm_name + "@" + m.fid) in status]
|
|
for m in llms:
|
|
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
|
|
if "tei-" in os.getenv("COMPOSE_PROFILES", "") and m["model_type"] == LLMType.EMBEDDING and m["fid"] == "Builtin" and m["llm_name"] == os.getenv("TEI_MODEL", ""):
|
|
m["available"] = True
|
|
|
|
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
|
|
for o in objs:
|
|
if o.llm_name + "@" + o.llm_factory in llm_set:
|
|
continue
|
|
llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
|
|
|
|
res = {}
|
|
for m in llms:
|
|
if model_type and m["model_type"].find(model_type) < 0:
|
|
continue
|
|
if m["fid"] not in res:
|
|
res[m["fid"]] = []
|
|
res[m["fid"]].append(m)
|
|
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
return server_error_response(e)
|