Files
ragflow/rag/flow/parser/parser.py
aidan 33a189f620 Feat: add TCADP Parser (#10775)
### What problem does this PR solve?

This PR adds a new TCADP (Tencent Cloud Advanced Document Processing)
parser to RAGFlow, enabling users to leverage Tencent Cloud's document
parsing capabilities for more accurate and structured document
processing. The implementation includes:
New TCADP Parser: A complete implementation of Tencent Cloud's document
parsing API without SDK dependency
Configuration Support: Added configuration options in service_conf.yaml
for Tencent Cloud API credentials
Frontend Integration: Updated UI components to support the new TCADP
parser option
Error Handling: Comprehensive error handling and retry mechanisms for
API calls
Result Processing: Support for both SSE streaming and JSON response
formats from Tencent Cloud API

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-10-27 15:14:58 +08:00

595 lines
24 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import json
import os
import random
from functools import partial
import trio
import numpy as np
from PIL import Image
from api.db import LLMType
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMBundle
from api.utils import get_uuid
from api.utils.base64_image import image2id
from deepdoc.parser import ExcelParser
from deepdoc.parser.mineru_parser import MinerUParser
from deepdoc.parser.pdf_parser import PlainParser, RAGFlowPdfParser, VisionParser
from deepdoc.parser.tcadp_parser import TCADPParser
from rag.app.naive import Docx
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.parser.schema import ParserFromUpstream
from rag.llm.cv_model import Base as VLM
from rag.utils.storage_factory import STORAGE_IMPL
class ParserParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.allowed_output_format = {
"pdf": [
"json",
"markdown",
],
"spreadsheet": [
"json",
"markdown",
"html",
],
"word": [
"json",
"markdown",
],
"slides": [
"json",
],
"image": [
"text"
],
"email": ["text", "json"],
"text&markdown": [
"text",
"json"
],
"audio": [
"json"
],
"video": [],
}
self.setups = {
"pdf": {
"parse_method": "deepdoc", # deepdoc/plain_text/tcadp_parser/vlm
"lang": "Chinese",
"suffix": [
"pdf",
],
"output_format": "json",
},
"spreadsheet": {
"output_format": "html",
"suffix": [
"xls",
"xlsx",
"csv",
],
},
"word": {
"suffix": [
"doc",
"docx",
],
"output_format": "json",
},
"text&markdown": {
"suffix": ["md", "markdown", "mdx", "txt"],
"output_format": "json",
},
"slides": {
"suffix": [
"pptx",
],
"output_format": "json",
},
"image": {
"parse_method": "ocr",
"llm_id": "",
"lang": "Chinese",
"system_prompt": "",
"suffix": ["jpg", "jpeg", "png", "gif"],
"output_format": "text",
},
"email": {
"suffix": [
"eml", "msg"
],
"fields": ["from", "to", "cc", "bcc", "date", "subject", "body", "attachments", "metadata"],
"output_format": "json",
},
"audio": {
"suffix":[
"da",
"wave",
"wav",
"mp3",
"aac",
"flac",
"ogg",
"aiff",
"au",
"midi",
"wma",
"realaudio",
"vqf",
"oggvorbis",
"ape"
],
"output_format": "text",
},
"video": {
"suffix":[
"mp4",
"avi",
"mkv"
],
"output_format": "text",
},
}
def check(self):
pdf_config = self.setups.get("pdf", {})
if pdf_config:
pdf_parse_method = pdf_config.get("parse_method", "")
self.check_empty(pdf_parse_method, "Parse method abnormal.")
if pdf_parse_method.lower() not in ["deepdoc", "plain_text", "mineru", "tcadp parser"]:
self.check_empty(pdf_config.get("lang", ""), "PDF VLM language")
pdf_output_format = pdf_config.get("output_format", "")
self.check_valid_value(pdf_output_format, "PDF output format abnormal.", self.allowed_output_format["pdf"])
spreadsheet_config = self.setups.get("spreadsheet", "")
if spreadsheet_config:
spreadsheet_output_format = spreadsheet_config.get("output_format", "")
self.check_valid_value(spreadsheet_output_format, "Spreadsheet output format abnormal.", self.allowed_output_format["spreadsheet"])
doc_config = self.setups.get("word", "")
if doc_config:
doc_output_format = doc_config.get("output_format", "")
self.check_valid_value(doc_output_format, "Word processer document output format abnormal.", self.allowed_output_format["word"])
slides_config = self.setups.get("slides", "")
if slides_config:
slides_output_format = slides_config.get("output_format", "")
self.check_valid_value(slides_output_format, "Slides output format abnormal.", self.allowed_output_format["slides"])
image_config = self.setups.get("image", "")
if image_config:
image_parse_method = image_config.get("parse_method", "")
if image_parse_method not in ["ocr"]:
self.check_empty(image_config.get("lang", ""), "Image VLM language")
text_config = self.setups.get("text&markdown", "")
if text_config:
text_output_format = text_config.get("output_format", "")
self.check_valid_value(text_output_format, "Text output format abnormal.", self.allowed_output_format["text&markdown"])
audio_config = self.setups.get("audio", "")
if audio_config:
self.check_empty(audio_config.get("llm_id"), "Audio VLM")
video_config = self.setups.get("video", "")
if video_config:
self.check_empty(video_config.get("llm_id"), "Video VLM")
email_config = self.setups.get("email", "")
if email_config:
email_output_format = email_config.get("output_format", "")
self.check_valid_value(email_output_format, "Email output format abnormal.", self.allowed_output_format["email"])
def get_input_form(self) -> dict[str, dict]:
return {}
class Parser(ProcessBase):
component_name = "Parser"
def _pdf(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PDF.")
conf = self._param.setups["pdf"]
self.set_output("output_format", conf["output_format"])
if conf.get("parse_method").lower() == "deepdoc":
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
elif conf.get("parse_method").lower() == "plain_text":
lines, _ = PlainParser()(blob)
bboxes = [{"text": t} for t, _ in lines]
elif conf.get("parse_method").lower() == "mineru":
mineru_executable = os.environ.get("MINERU_EXECUTABLE", "mineru")
pdf_parser = MinerUParser(mineru_path=mineru_executable)
if not pdf_parser.check_installation():
raise RuntimeError("MinerU not found. Please install it via: pip install -U 'mineru[core]'.")
lines, _ = pdf_parser.parse_pdf(
filepath=name,
binary=blob,
callback=self.callback,
output_dir=os.environ.get("MINERU_OUTPUT_DIR", ""),
delete_output=bool(int(os.environ.get("MINERU_DELETE_OUTPUT", 1))),
)
bboxes = []
for t, poss in lines:
box = {
"image": pdf_parser.crop(poss, 1),
"positions": [[pos[0][-1], *pos[1:]] for pos in pdf_parser.extract_positions(poss)],
"text": t,
}
bboxes.append(box)
elif conf.get("parse_method").lower() == "tcadp parser":
# ADP is a document parsing tool using Tencent Cloud API
tcadp_parser = TCADPParser()
sections, _ = tcadp_parser.parse_pdf(
filepath=name,
binary=blob,
callback=self.callback,
file_type="PDF",
file_start_page=1,
file_end_page=1000
)
bboxes = []
for section, position_tag in sections:
if position_tag:
# Extract position information from TCADP's position tag
# Format: @@{page_number}\t{x0}\t{x1}\t{top}\t{bottom}##
import re
match = re.match(r"@@([0-9-]+)\t([0-9.]+)\t([0-9.]+)\t([0-9.]+)\t([0-9.]+)##", position_tag)
if match:
pn, x0, x1, top, bott = match.groups()
bboxes.append({
"page_number": int(pn.split('-')[0]), # Take the first page number
"x0": float(x0),
"x1": float(x1),
"top": float(top),
"bottom": float(bott),
"text": section
})
else:
# If no position info, add as text without position
bboxes.append({"text": section})
else:
bboxes.append({"text": section})
else:
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("parse_method"), lang=self._param.setups["pdf"].get("lang"))
lines, _ = VisionParser(vision_model=vision_model)(blob, callback=self.callback)
bboxes = []
for t, poss in lines:
for pn, x0, x1, top, bott in RAGFlowPdfParser.extract_positions(poss):
bboxes.append({"page_number": int(pn[0]), "x0": float(x0), "x1": float(x1), "top": float(top), "bottom": float(bott), "text": t})
if conf.get("output_format") == "json":
self.set_output("json", bboxes)
if conf.get("output_format") == "markdown":
mkdn = ""
for b in bboxes:
if b.get("layout_type", "") == "title":
mkdn += "\n## "
if b.get("layout_type", "") == "figure":
mkdn += "\n![Image]({})".format(VLM.image2base64(b["image"]))
continue
mkdn += b.get("text", "") + "\n"
self.set_output("markdown", mkdn)
def _spreadsheet(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
conf = self._param.setups["spreadsheet"]
self.set_output("output_format", conf["output_format"])
spreadsheet_parser = ExcelParser()
if conf.get("output_format") == "html":
htmls = spreadsheet_parser.html(blob, 1000000000)
self.set_output("html", htmls[0])
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", spreadsheet_parser.markdown(blob))
def _word(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
conf = self._param.setups["word"]
self.set_output("output_format", conf["output_format"])
docx_parser = Docx()
if conf.get("output_format") == "json":
sections, tbls = docx_parser(name, binary=blob)
sections = [{"text": section[0], "image": section[1]} for section in sections if section]
sections.extend([{"text": tb, "image": None} for ((_,tb), _) in tbls])
self.set_output("json", sections)
elif conf.get("output_format") == "markdown":
markdown_text = docx_parser.to_markdown(name, binary=blob)
self.set_output("markdown", markdown_text)
def _slides(self, name, blob):
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PowerPoint Document")
conf = self._param.setups["slides"]
self.set_output("output_format", conf["output_format"])
ppt_parser = ppt_parser()
txts = ppt_parser(blob, 0, 100000, None)
sections = [{"text": section} for section in txts if section.strip()]
# json
assert conf.get("output_format") == "json", "have to be json for ppt"
if conf.get("output_format") == "json":
self.set_output("json", sections)
def _markdown(self, name, blob):
from functools import reduce
from rag.app.naive import Markdown as naive_markdown_parser
from rag.nlp import concat_img
self.callback(random.randint(1, 5) / 100.0, "Start to work on a markdown.")
conf = self._param.setups["text&markdown"]
self.set_output("output_format", conf["output_format"])
markdown_parser = naive_markdown_parser()
sections, tables = markdown_parser(name, blob, separate_tables=False)
if conf.get("output_format") == "json":
json_results = []
for section_text, _ in sections:
json_result = {
"text": section_text,
}
images = markdown_parser.get_pictures(section_text) if section_text else None
if images:
# If multiple images found, combine them using concat_img
combined_image = reduce(concat_img, images) if len(images) > 1 else images[0]
json_result["image"] = combined_image
json_results.append(json_result)
self.set_output("json", json_results)
else:
self.set_output("text", "\n".join([section_text for section_text, _ in sections]))
def _image(self, name, blob):
from deepdoc.vision import OCR
self.callback(random.randint(1, 5) / 100.0, "Start to work on an image.")
conf = self._param.setups["image"]
self.set_output("output_format", conf["output_format"])
img = Image.open(io.BytesIO(blob)).convert("RGB")
if conf["parse_method"] == "ocr":
# use ocr, recognize chars only
ocr = OCR()
bxs = ocr(np.array(img)) # return boxes and recognize result
txt = "\n".join([t[0] for _, t in bxs if t[0]])
else:
lang = conf["lang"]
# use VLM to describe the picture
cv_model = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT, llm_name=conf["parse_method"], lang=lang)
img_binary = io.BytesIO()
img.save(img_binary, format="JPEG")
img_binary.seek(0)
system_prompt = conf.get("system_prompt")
if system_prompt:
txt = cv_model.describe_with_prompt(img_binary.read(), system_prompt)
else:
txt = cv_model.describe(img_binary.read())
self.set_output("text", txt)
def _audio(self, name, blob):
import os
import tempfile
self.callback(random.randint(1, 5) / 100.0, "Start to work on an audio.")
conf = self._param.setups["audio"]
self.set_output("output_format", conf["output_format"])
_, ext = os.path.splitext(name)
with tempfile.NamedTemporaryFile(suffix=ext) as tmpf:
tmpf.write(blob)
tmpf.flush()
tmp_path = os.path.abspath(tmpf.name)
seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT)
txt = seq2txt_mdl.transcription(tmp_path)
self.set_output("text", txt)
def _video(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on an video.")
conf = self._param.setups["video"]
self.set_output("output_format", conf["output_format"])
cv_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.IMAGE2TEXT)
txt = cv_mdl.chat(system="", history=[], gen_conf={}, video_bytes=blob, filename=name)
self.set_output("text", txt)
def _email(self, name, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on an email.")
email_content = {}
conf = self._param.setups["email"]
self.set_output("output_format", conf["output_format"])
target_fields = conf["fields"]
_, ext = os.path.splitext(name)
if ext == ".eml":
# handle eml file
from email import policy
from email.parser import BytesParser
msg = BytesParser(policy=policy.default).parse(io.BytesIO(blob))
email_content['metadata'] = {}
# handle header info
for header, value in msg.items():
# get fields like from, to, cc, bcc, date, subject
if header.lower() in target_fields:
email_content[header.lower()] = value
# get metadata
elif header.lower() not in ["from", "to", "cc", "bcc", "date", "subject"]:
email_content["metadata"][header.lower()] = value
# get body
if "body" in target_fields:
body_text, body_html = [], []
def _add_content(m, content_type):
if content_type == "text/plain":
body_text.append(
m.get_payload(decode=True).decode(m.get_content_charset())
)
elif content_type == "text/html":
body_html.append(
m.get_payload(decode=True).decode(m.get_content_charset())
)
elif "multipart" in content_type:
if m.is_multipart():
for part in m.iter_parts():
_add_content(part, part.get_content_type())
_add_content(msg, msg.get_content_type())
email_content["text"] = "\n".join(body_text)
email_content["text_html"] = "\n".join(body_html)
# get attachment
if "attachments" in target_fields:
attachments = []
for part in msg.iter_attachments():
content_disposition = part.get("Content-Disposition")
if content_disposition:
dispositions = content_disposition.strip().split(";")
if dispositions[0].lower() == "attachment":
filename = part.get_filename()
payload = part.get_payload(decode=True).decode(part.get_content_charset())
attachments.append({
"filename": filename,
"payload": payload,
})
email_content["attachments"] = attachments
else:
# handle msg file
import extract_msg
print("handle a msg file.")
msg = extract_msg.Message(blob)
# handle header info
basic_content = {
"from": msg.sender,
"to": msg.to,
"cc": msg.cc,
"bcc": msg.bcc,
"date": msg.date,
"subject": msg.subject,
}
email_content.update({k: v for k, v in basic_content.items() if k in target_fields})
# get metadata
email_content['metadata'] = {
'message_id': msg.messageId,
'in_reply_to': msg.inReplyTo,
}
# get body
if "body" in target_fields:
email_content["text"] = msg.body[0] if isinstance(msg.body, list) and msg.body else msg.body
if not email_content["text"] and msg.htmlBody:
email_content["text"] = msg.htmlBody[0] if isinstance(msg.htmlBody, list) and msg.htmlBody else msg.htmlBody
# get attachments
if "attachments" in target_fields:
attachments = []
for t in msg.attachments:
attachments.append({
"filename": t.name,
"payload": t.data.decode("utf-8")
})
email_content["attachments"] = attachments
if conf["output_format"] == "json":
self.set_output("json", [email_content])
else:
content_txt = ''
for k, v in email_content.items():
if isinstance(v, str):
# basic info
content_txt += f'{k}:{v}' + "\n"
elif isinstance(v, dict):
# metadata
content_txt += f'{k}:{json.dumps(v)}' + "\n"
elif isinstance(v, list):
# attachments or others
for fb in v:
if isinstance(fb, dict):
# attachments
content_txt += f'{fb["filename"]}:{fb["payload"]}' + "\n"
else:
# str, usually plain text
content_txt += fb
self.set_output("text", content_txt)
async def _invoke(self, **kwargs):
function_map = {
"pdf": self._pdf,
"text&markdown": self._markdown,
"spreadsheet": self._spreadsheet,
"slides": self._slides,
"word": self._word,
"image": self._image,
"audio": self._audio,
"video": self._video,
"email": self._email,
}
try:
from_upstream = ParserFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
name = from_upstream.name
if self._canvas._doc_id:
b, n = File2DocumentService.get_storage_address(doc_id=self._canvas._doc_id)
blob = STORAGE_IMPL.get(b, n)
else:
blob = FileService.get_blob(from_upstream.file["created_by"], from_upstream.file["id"])
done = False
for p_type, conf in self._param.setups.items():
if from_upstream.name.split(".")[-1].lower() not in conf.get("suffix", []):
continue
await trio.to_thread.run_sync(function_map[p_type], name, blob)
done = True
break
if not done:
raise Exception("No suitable for file extension: `.%s`" % from_upstream.name.split(".")[-1].lower())
outs = self.output()
async with trio.open_nursery() as nursery:
for d in outs.get("json", []):
nursery.start_soon(image2id, d, partial(STORAGE_IMPL.put, tenant_id=self._canvas._tenant_id), get_uuid())