Files
ragflow/rag/utils/infinity_conn.py
Lynn 17b8bb62b6 Feat: message manage (#12083)
### What problem does this PR solve?

Message CRUD.

Issue #4213 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-23 21:16:25 +08:00

581 lines
27 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import json
import copy
from infinity.common import InfinityException, SortType
from infinity.errors import ErrorCode
from common.decorator import singleton
import pandas as pd
from common.constants import PAGERANK_FLD, TAG_FLD
from common.doc_store.doc_store_base import MatchExpr, MatchTextExpr, MatchDenseExpr, FusionExpr, OrderByExpr
from common.doc_store.infinity_conn_base import InfinityConnectionBase
@singleton
class InfinityConnection(InfinityConnectionBase):
"""
Dataframe and fields convert
"""
@staticmethod
def field_keyword(field_name: str):
# Treat "*_kwd" tag-like columns as keyword lists except knowledge_graph_kwd; source_id is also keyword-like.
if field_name == "source_id" or (
field_name.endswith("_kwd") and field_name not in ["knowledge_graph_kwd", "docnm_kwd", "important_kwd",
"question_kwd"]):
return True
return False
def convert_select_fields(self, output_fields: list[str]) -> list[str]:
for i, field in enumerate(output_fields):
if field in ["docnm_kwd", "title_tks", "title_sm_tks"]:
output_fields[i] = "docnm"
elif field in ["important_kwd", "important_tks"]:
output_fields[i] = "important_keywords"
elif field in ["question_kwd", "question_tks"]:
output_fields[i] = "questions"
elif field in ["content_with_weight", "content_ltks", "content_sm_ltks"]:
output_fields[i] = "content"
elif field in ["authors_tks", "authors_sm_tks"]:
output_fields[i] = "authors"
return list(set(output_fields))
@staticmethod
def convert_matching_field(field_weight_str: str) -> str:
tokens = field_weight_str.split("^")
field = tokens[0]
if field == "docnm_kwd" or field == "title_tks":
field = "docnm@ft_docnm_rag_coarse"
elif field == "title_sm_tks":
field = "docnm@ft_docnm_rag_fine"
elif field == "important_kwd":
field = "important_keywords@ft_important_keywords_rag_coarse"
elif field == "important_tks":
field = "important_keywords@ft_important_keywords_rag_fine"
elif field == "question_kwd":
field = "questions@ft_questions_rag_coarse"
elif field == "question_tks":
field = "questions@ft_questions_rag_fine"
elif field == "content_with_weight" or field == "content_ltks":
field = "content@ft_content_rag_coarse"
elif field == "content_sm_ltks":
field = "content@ft_content_rag_fine"
elif field == "authors_tks":
field = "authors@ft_authors_rag_coarse"
elif field == "authors_sm_tks":
field = "authors@ft_authors_rag_fine"
tokens[0] = field
return "^".join(tokens)
"""
CRUD operations
"""
def search(
self,
select_fields: list[str],
highlight_fields: list[str],
condition: dict,
match_expressions: list[MatchExpr],
order_by: OrderByExpr,
offset: int,
limit: int,
index_names: str | list[str],
knowledgebase_ids: list[str],
agg_fields: list[str] | None = None,
rank_feature: dict | None = None,
) -> tuple[pd.DataFrame, int]:
"""
BUG: Infinity returns empty for a highlight field if the query string doesn't use that field.
"""
if isinstance(index_names, str):
index_names = index_names.split(",")
assert isinstance(index_names, list) and len(index_names) > 0
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
df_list = list()
table_list = list()
output = select_fields.copy()
output = self.convert_select_fields(output)
if agg_fields is None:
agg_fields = []
for essential_field in ["id"] + agg_fields:
if essential_field not in output:
output.append(essential_field)
score_func = ""
score_column = ""
for matchExpr in match_expressions:
if isinstance(matchExpr, MatchTextExpr):
score_func = "score()"
score_column = "SCORE"
break
if not score_func:
for matchExpr in match_expressions:
if isinstance(matchExpr, MatchDenseExpr):
score_func = "similarity()"
score_column = "SIMILARITY"
break
if match_expressions:
if score_func not in output:
output.append(score_func)
if PAGERANK_FLD not in output:
output.append(PAGERANK_FLD)
output = [f for f in output if f != "_score"]
if limit <= 0:
# ElasticSearch default limit is 10000
limit = 10000
# Prepare expressions common to all tables
filter_cond = None
filter_fulltext = ""
if condition:
table_found = False
for indexName in index_names:
for kb_id in knowledgebase_ids:
table_name = f"{indexName}_{kb_id}"
try:
filter_cond = self.equivalent_condition_to_str(condition, db_instance.get_table(table_name))
table_found = True
break
except Exception:
pass
if table_found:
break
if not table_found:
self.logger.error(f"No valid tables found for indexNames {index_names} and knowledgebaseIds {knowledgebase_ids}")
return pd.DataFrame(), 0
for matchExpr in match_expressions:
if isinstance(matchExpr, MatchTextExpr):
if filter_cond and "filter" not in matchExpr.extra_options:
matchExpr.extra_options.update({"filter": filter_cond})
matchExpr.fields = [self.convert_matching_field(field) for field in matchExpr.fields]
fields = ",".join(matchExpr.fields)
filter_fulltext = f"filter_fulltext('{fields}', '{matchExpr.matching_text}')"
if filter_cond:
filter_fulltext = f"({filter_cond}) AND {filter_fulltext}"
minimum_should_match = matchExpr.extra_options.get("minimum_should_match", 0.0)
if isinstance(minimum_should_match, float):
str_minimum_should_match = str(int(minimum_should_match * 100)) + "%"
matchExpr.extra_options["minimum_should_match"] = str_minimum_should_match
# Add rank_feature support
if rank_feature and "rank_features" not in matchExpr.extra_options:
# Convert rank_feature dict to Infinity's rank_features string format
# Format: "field^feature_name^weight,field^feature_name^weight"
rank_features_list = []
for feature_name, weight in rank_feature.items():
# Use TAG_FLD as the field containing rank features
rank_features_list.append(f"{TAG_FLD}^{feature_name}^{weight}")
if rank_features_list:
matchExpr.extra_options["rank_features"] = ",".join(rank_features_list)
for k, v in matchExpr.extra_options.items():
if not isinstance(v, str):
matchExpr.extra_options[k] = str(v)
self.logger.debug(f"INFINITY search MatchTextExpr: {json.dumps(matchExpr.__dict__)}")
elif isinstance(matchExpr, MatchDenseExpr):
if filter_fulltext and "filter" not in matchExpr.extra_options:
matchExpr.extra_options.update({"filter": filter_fulltext})
for k, v in matchExpr.extra_options.items():
if not isinstance(v, str):
matchExpr.extra_options[k] = str(v)
similarity = matchExpr.extra_options.get("similarity")
if similarity:
matchExpr.extra_options["threshold"] = similarity
del matchExpr.extra_options["similarity"]
self.logger.debug(f"INFINITY search MatchDenseExpr: {json.dumps(matchExpr.__dict__)}")
elif isinstance(matchExpr, FusionExpr):
if matchExpr.method == "weighted_sum":
# The default is "minmax" which gives a zero score for the last doc.
matchExpr.fusion_params["normalize"] = "atan"
self.logger.debug(f"INFINITY search FusionExpr: {json.dumps(matchExpr.__dict__)}")
order_by_expr_list = list()
if order_by.fields:
for order_field in order_by.fields:
if order_field[1] == 0:
order_by_expr_list.append((order_field[0], SortType.Asc))
else:
order_by_expr_list.append((order_field[0], SortType.Desc))
total_hits_count = 0
# Scatter search tables and gather the results
for indexName in index_names:
for knowledgebaseId in knowledgebase_ids:
table_name = f"{indexName}_{knowledgebaseId}"
try:
table_instance = db_instance.get_table(table_name)
except Exception:
continue
table_list.append(table_name)
builder = table_instance.output(output)
if len(match_expressions) > 0:
for matchExpr in match_expressions:
if isinstance(matchExpr, MatchTextExpr):
fields = ",".join(matchExpr.fields)
builder = builder.match_text(
fields,
matchExpr.matching_text,
matchExpr.topn,
matchExpr.extra_options.copy(),
)
elif isinstance(matchExpr, MatchDenseExpr):
builder = builder.match_dense(
matchExpr.vector_column_name,
matchExpr.embedding_data,
matchExpr.embedding_data_type,
matchExpr.distance_type,
matchExpr.topn,
matchExpr.extra_options.copy(),
)
elif isinstance(matchExpr, FusionExpr):
builder = builder.fusion(matchExpr.method, matchExpr.topn, matchExpr.fusion_params)
else:
if filter_cond and len(filter_cond) > 0:
builder.filter(filter_cond)
if order_by.fields:
builder.sort(order_by_expr_list)
builder.offset(offset).limit(limit)
kb_res, extra_result = builder.option({"total_hits_count": True}).to_df()
if extra_result:
total_hits_count += int(extra_result["total_hits_count"])
self.logger.debug(f"INFINITY search table: {str(table_name)}, result: {str(kb_res)}")
df_list.append(kb_res)
self.connPool.release_conn(inf_conn)
res = self.concat_dataframes(df_list, output)
if match_expressions:
res["_score"] = res[score_column] + res[PAGERANK_FLD]
res = res.sort_values(by="_score", ascending=False).reset_index(drop=True)
res = res.head(limit)
self.logger.debug(f"INFINITY search final result: {str(res)}")
return res, total_hits_count
def get(self, chunk_id: str, index_name: str, knowledgebase_ids: list[str]) -> dict | None:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
df_list = list()
assert isinstance(knowledgebase_ids, list)
table_list = list()
for knowledgebaseId in knowledgebase_ids:
table_name = f"{index_name}_{knowledgebaseId}"
table_list.append(table_name)
try:
table_instance = db_instance.get_table(table_name)
except Exception:
self.logger.warning(f"Table not found: {table_name}, this dataset isn't created in Infinity. Maybe it is created in other document engine.")
continue
kb_res, _ = table_instance.output(["*"]).filter(f"id = '{chunk_id}'").to_df()
self.logger.debug(f"INFINITY get table: {str(table_list)}, result: {str(kb_res)}")
df_list.append(kb_res)
self.connPool.release_conn(inf_conn)
res = self.concat_dataframes(df_list, ["id"])
fields = set(res.columns.tolist())
for field in ["docnm_kwd", "title_tks", "title_sm_tks", "important_kwd", "important_tks", "question_kwd", "question_tks","content_with_weight", "content_ltks", "content_sm_ltks", "authors_tks", "authors_sm_tks"]:
fields.add(field)
res_fields = self.get_fields(res, list(fields))
return res_fields.get(chunk_id, None)
def insert(self, documents: list[dict], index_name: str, knowledgebase_id: str = None) -> list[str]:
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{index_name}_{knowledgebase_id}"
try:
table_instance = db_instance.get_table(table_name)
except InfinityException as e:
# src/common/status.cppm, kTableNotExist = 3022
if e.error_code != ErrorCode.TABLE_NOT_EXIST:
raise
vector_size = 0
patt = re.compile(r"q_(?P<vector_size>\d+)_vec")
for k in documents[0].keys():
m = patt.match(k)
if m:
vector_size = int(m.group("vector_size"))
break
if vector_size == 0:
raise ValueError("Cannot infer vector size from documents")
self.create_idx(index_name, knowledgebase_id, vector_size)
table_instance = db_instance.get_table(table_name)
# embedding fields can't have a default value....
embedding_clmns = []
clmns = table_instance.show_columns().rows()
for n, ty, _, _ in clmns:
r = re.search(r"Embedding\([a-z]+,([0-9]+)\)", ty)
if not r:
continue
embedding_clmns.append((n, int(r.group(1))))
docs = copy.deepcopy(documents)
for d in docs:
assert "_id" not in d
assert "id" in d
for k, v in list(d.items()):
if k == "docnm_kwd":
d["docnm"] = v
elif k == "title_kwd":
if not d.get("docnm_kwd"):
d["docnm"] = self.list2str(v)
elif k == "title_sm_tks":
if not d.get("docnm_kwd"):
d["docnm"] = self.list2str(v)
elif k == "important_kwd":
d["important_keywords"] = self.list2str(v)
elif k == "important_tks":
if not d.get("important_kwd"):
d["important_keywords"] = v
elif k == "content_with_weight":
d["content"] = v
elif k == "content_ltks":
if not d.get("content_with_weight"):
d["content"] = v
elif k == "content_sm_ltks":
if not d.get("content_with_weight"):
d["content"] = v
elif k == "authors_tks":
d["authors"] = v
elif k == "authors_sm_tks":
if not d.get("authors_tks"):
d["authors"] = v
elif k == "question_kwd":
d["questions"] = self.list2str(v, "\n")
elif k == "question_tks":
if not d.get("question_kwd"):
d["questions"] = self.list2str(v)
elif self.field_keyword(k):
if isinstance(v, list):
d[k] = "###".join(v)
else:
d[k] = v
elif re.search(r"_feas$", k):
d[k] = json.dumps(v)
elif k == "kb_id":
if isinstance(d[k], list):
d[k] = d[k][0] # since d[k] is a list, but we need a str
elif k == "position_int":
assert isinstance(v, list)
arr = [num for row in v for num in row]
d[k] = "_".join(f"{num:08x}" for num in arr)
elif k in ["page_num_int", "top_int"]:
assert isinstance(v, list)
d[k] = "_".join(f"{num:08x}" for num in v)
else:
d[k] = v
for k in ["docnm_kwd", "title_tks", "title_sm_tks", "important_kwd", "important_tks", "content_with_weight", "content_ltks", "content_sm_ltks", "authors_tks", "authors_sm_tks", "question_kwd", "question_tks"]:
if k in d:
del d[k]
for n, vs in embedding_clmns:
if n in d:
continue
d[n] = [0] * vs
ids = ["'{}'".format(d["id"]) for d in docs]
str_ids = ", ".join(ids)
str_filter = f"id IN ({str_ids})"
table_instance.delete(str_filter)
# for doc in documents:
# logger.info(f"insert position_int: {doc['position_int']}")
# logger.info(f"InfinityConnection.insert {json.dumps(documents)}")
table_instance.insert(docs)
self.connPool.release_conn(inf_conn)
self.logger.debug(f"INFINITY inserted into {table_name} {str_ids}.")
return []
def update(self, condition: dict, new_value: dict, index_name: str, knowledgebase_id: str) -> bool:
# if 'position_int' in newValue:
# logger.info(f"update position_int: {newValue['position_int']}")
inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName)
table_name = f"{index_name}_{knowledgebase_id}"
table_instance = db_instance.get_table(table_name)
# if "exists" in condition:
# del condition["exists"]
clmns = {}
if table_instance:
for n, ty, de, _ in table_instance.show_columns().rows():
clmns[n] = (ty, de)
filter = self.equivalent_condition_to_str(condition, table_instance)
removeValue = {}
for k, v in list(new_value.items()):
if k == "docnm_kwd":
new_value["docnm"] = self.list2str(v)
elif k == "title_kwd":
if not new_value.get("docnm_kwd"):
new_value["docnm"] = self.list2str(v)
elif k == "title_sm_tks":
if not new_value.get("docnm_kwd"):
new_value["docnm"] = v
elif k == "important_kwd":
new_value["important_keywords"] = self.list2str(v)
elif k == "important_tks":
if not new_value.get("important_kwd"):
new_value["important_keywords"] = v
elif k == "content_with_weight":
new_value["content"] = v
elif k == "content_ltks":
if not new_value.get("content_with_weight"):
new_value["content"] = v
elif k == "content_sm_ltks":
if not new_value.get("content_with_weight"):
new_value["content"] = v
elif k == "authors_tks":
new_value["authors"] = v
elif k == "authors_sm_tks":
if not new_value.get("authors_tks"):
new_value["authors"] = v
elif k == "question_kwd":
new_value["questions"] = "\n".join(v)
elif k == "question_tks":
if not new_value.get("question_kwd"):
new_value["questions"] = self.list2str(v)
elif self.field_keyword(k):
if isinstance(v, list):
new_value[k] = "###".join(v)
else:
new_value[k] = v
elif re.search(r"_feas$", k):
new_value[k] = json.dumps(v)
elif k == "kb_id":
if isinstance(new_value[k], list):
new_value[k] = new_value[k][0] # since d[k] is a list, but we need a str
elif k == "position_int":
assert isinstance(v, list)
arr = [num for row in v for num in row]
new_value[k] = "_".join(f"{num:08x}" for num in arr)
elif k in ["page_num_int", "top_int"]:
assert isinstance(v, list)
new_value[k] = "_".join(f"{num:08x}" for num in v)
elif k == "remove":
if isinstance(v, str):
assert v in clmns, f"'{v}' should be in '{clmns}'."
ty, de = clmns[v]
if ty.lower().find("cha"):
if not de:
de = ""
new_value[v] = de
else:
for kk, vv in v.items():
removeValue[kk] = vv
del new_value[k]
else:
new_value[k] = v
for k in ["docnm_kwd", "title_tks", "title_sm_tks", "important_kwd", "important_tks", "content_with_weight", "content_ltks", "content_sm_ltks", "authors_tks", "authors_sm_tks", "question_kwd", "question_tks"]:
if k in new_value:
del new_value[k]
remove_opt = {} # "[k,new_value]": [id_to_update, ...]
if removeValue:
col_to_remove = list(removeValue.keys())
row_to_opt = table_instance.output(col_to_remove + ["id"]).filter(filter).to_df()
self.logger.debug(f"INFINITY search table {str(table_name)}, filter {filter}, result: {str(row_to_opt[0])}")
row_to_opt = self.get_fields(row_to_opt, col_to_remove)
for id, old_v in row_to_opt.items():
for k, remove_v in removeValue.items():
if remove_v in old_v[k]:
new_v = old_v[k].copy()
new_v.remove(remove_v)
kv_key = json.dumps([k, new_v])
if kv_key not in remove_opt:
remove_opt[kv_key] = [id]
else:
remove_opt[kv_key].append(id)
self.logger.debug(f"INFINITY update table {table_name}, filter {filter}, newValue {new_value}.")
for update_kv, ids in remove_opt.items():
k, v = json.loads(update_kv)
table_instance.update(filter + " AND id in ({0})".format(",".join([f"'{id}'" for id in ids])), {k: "###".join(v)})
table_instance.update(filter, new_value)
self.connPool.release_conn(inf_conn)
return True
"""
Helper functions for search result
"""
def get_fields(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fields: list[str]) -> dict[str, dict]:
if isinstance(res, tuple):
res = res[0]
if not fields:
return {}
fields_all = fields.copy()
fields_all.append("id")
fields_all = set(fields_all)
if "docnm" in res.columns:
for field in ["docnm_kwd", "title_tks", "title_sm_tks"]:
if field in fields_all:
res[field] = res["docnm"]
if "important_keywords" in res.columns:
if "important_kwd" in fields_all:
res["important_kwd"] = res["important_keywords"].apply(lambda v: v.split())
if "important_tks" in fields_all:
res["important_tks"] = res["important_keywords"]
if "questions" in res.columns:
if "question_kwd" in fields_all:
res["question_kwd"] = res["questions"].apply(lambda v: v.splitlines())
if "question_tks" in fields_all:
res["question_tks"] = res["questions"]
if "content" in res.columns:
for field in ["content_with_weight", "content_ltks", "content_sm_ltks"]:
if field in fields_all:
res[field] = res["content"]
if "authors" in res.columns:
for field in ["authors_tks", "authors_sm_tks"]:
if field in fields_all:
res[field] = res["authors"]
column_map = {col.lower(): col for col in res.columns}
matched_columns = {column_map[col.lower()]: col for col in fields_all if col.lower() in column_map}
none_columns = [col for col in fields_all if col.lower() not in column_map]
res2 = res[matched_columns.keys()]
res2 = res2.rename(columns=matched_columns)
res2.drop_duplicates(subset=["id"], inplace=True)
for column in list(res2.columns):
k = column.lower()
if self.field_keyword(k):
res2[column] = res2[column].apply(lambda v: [kwd for kwd in v.split("###") if kwd])
elif re.search(r"_feas$", k):
res2[column] = res2[column].apply(lambda v: json.loads(v) if v else {})
elif k == "position_int":
def to_position_int(v):
if v:
arr = [int(hex_val, 16) for hex_val in v.split("_")]
v = [arr[i : i + 5] for i in range(0, len(arr), 5)]
else:
v = []
return v
res2[column] = res2[column].apply(to_position_int)
elif k in ["page_num_int", "top_int"]:
res2[column] = res2[column].apply(lambda v: [int(hex_val, 16) for hex_val in v.split("_")] if v else [])
else:
pass
for column in ["docnm", "important_keywords", "questions", "content", "authors"]:
if column in res2:
del res2[column]
for column in none_columns:
res2[column] = None
return res2.set_index("id").to_dict(orient="index")