mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-24 15:36:50 +08:00
### What problem does this PR solve? Message CRUD. Issue #4213 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
374 lines
16 KiB
Python
374 lines
16 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import re
|
|
import json
|
|
import time
|
|
|
|
import copy
|
|
from elasticsearch_dsl import UpdateByQuery, Q, Search
|
|
from elastic_transport import ConnectionTimeout
|
|
from common.decorator import singleton
|
|
from common.doc_store.doc_store_base import MatchTextExpr, OrderByExpr, MatchExpr, MatchDenseExpr, FusionExpr
|
|
from common.doc_store.es_conn_base import ESConnectionBase
|
|
from common.float_utils import get_float
|
|
from common.constants import PAGERANK_FLD, TAG_FLD
|
|
|
|
ATTEMPT_TIME = 2
|
|
|
|
|
|
@singleton
|
|
class ESConnection(ESConnectionBase):
|
|
|
|
"""
|
|
CRUD operations
|
|
"""
|
|
|
|
def search(
|
|
self, select_fields: list[str],
|
|
highlight_fields: list[str],
|
|
condition: dict,
|
|
match_expressions: list[MatchExpr],
|
|
order_by: OrderByExpr,
|
|
offset: int,
|
|
limit: int,
|
|
index_names: str | list[str],
|
|
knowledgebase_ids: list[str],
|
|
agg_fields: list[str] | None = None,
|
|
rank_feature: dict | None = None
|
|
):
|
|
"""
|
|
Refers to https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
|
|
"""
|
|
if isinstance(index_names, str):
|
|
index_names = index_names.split(",")
|
|
assert isinstance(index_names, list) and len(index_names) > 0
|
|
assert "_id" not in condition
|
|
|
|
bool_query = Q("bool", must=[])
|
|
condition["kb_id"] = knowledgebase_ids
|
|
for k, v in condition.items():
|
|
if k == "available_int":
|
|
if v == 0:
|
|
bool_query.filter.append(Q("range", available_int={"lt": 1}))
|
|
else:
|
|
bool_query.filter.append(
|
|
Q("bool", must_not=Q("range", available_int={"lt": 1})))
|
|
continue
|
|
if not v:
|
|
continue
|
|
if isinstance(v, list):
|
|
bool_query.filter.append(Q("terms", **{k: v}))
|
|
elif isinstance(v, str) or isinstance(v, int):
|
|
bool_query.filter.append(Q("term", **{k: v}))
|
|
else:
|
|
raise Exception(
|
|
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
|
|
|
|
s = Search()
|
|
vector_similarity_weight = 0.5
|
|
for m in match_expressions:
|
|
if isinstance(m, FusionExpr) and m.method == "weighted_sum" and "weights" in m.fusion_params:
|
|
assert len(match_expressions) == 3 and isinstance(match_expressions[0], MatchTextExpr) and isinstance(match_expressions[1],
|
|
MatchDenseExpr) and isinstance(
|
|
match_expressions[2], FusionExpr)
|
|
weights = m.fusion_params["weights"]
|
|
vector_similarity_weight = get_float(weights.split(",")[1])
|
|
for m in match_expressions:
|
|
if isinstance(m, MatchTextExpr):
|
|
minimum_should_match = m.extra_options.get("minimum_should_match", 0.0)
|
|
if isinstance(minimum_should_match, float):
|
|
minimum_should_match = str(int(minimum_should_match * 100)) + "%"
|
|
bool_query.must.append(Q("query_string", fields=m.fields,
|
|
type="best_fields", query=m.matching_text,
|
|
minimum_should_match=minimum_should_match,
|
|
boost=1))
|
|
bool_query.boost = 1.0 - vector_similarity_weight
|
|
|
|
elif isinstance(m, MatchDenseExpr):
|
|
assert (bool_query is not None)
|
|
similarity = 0.0
|
|
if "similarity" in m.extra_options:
|
|
similarity = m.extra_options["similarity"]
|
|
s = s.knn(m.vector_column_name,
|
|
m.topn,
|
|
m.topn * 2,
|
|
query_vector=list(m.embedding_data),
|
|
filter=bool_query.to_dict(),
|
|
similarity=similarity,
|
|
)
|
|
|
|
if bool_query and rank_feature:
|
|
for fld, sc in rank_feature.items():
|
|
if fld != PAGERANK_FLD:
|
|
fld = f"{TAG_FLD}.{fld}"
|
|
bool_query.should.append(Q("rank_feature", field=fld, linear={}, boost=sc))
|
|
|
|
if bool_query:
|
|
s = s.query(bool_query)
|
|
for field in highlight_fields:
|
|
s = s.highlight(field)
|
|
|
|
if order_by:
|
|
orders = list()
|
|
for field, order in order_by.fields:
|
|
order = "asc" if order == 0 else "desc"
|
|
if field in ["page_num_int", "top_int"]:
|
|
order_info = {"order": order, "unmapped_type": "float",
|
|
"mode": "avg", "numeric_type": "double"}
|
|
elif field.endswith("_int") or field.endswith("_flt"):
|
|
order_info = {"order": order, "unmapped_type": "float"}
|
|
else:
|
|
order_info = {"order": order, "unmapped_type": "text"}
|
|
orders.append({field: order_info})
|
|
s = s.sort(*orders)
|
|
if agg_fields:
|
|
for fld in agg_fields:
|
|
s.aggs.bucket(f'aggs_{fld}', 'terms', field=fld, size=1000000)
|
|
|
|
if limit > 0:
|
|
s = s[offset:offset + limit]
|
|
q = s.to_dict()
|
|
self.logger.debug(f"ESConnection.search {str(index_names)} query: " + json.dumps(q))
|
|
|
|
for i in range(ATTEMPT_TIME):
|
|
try:
|
|
#print(json.dumps(q, ensure_ascii=False))
|
|
res = self.es.search(index=index_names,
|
|
body=q,
|
|
timeout="600s",
|
|
# search_type="dfs_query_then_fetch",
|
|
track_total_hits=True,
|
|
_source=True)
|
|
if str(res.get("timed_out", "")).lower() == "true":
|
|
raise Exception("Es Timeout.")
|
|
self.logger.debug(f"ESConnection.search {str(index_names)} res: " + str(res))
|
|
return res
|
|
except ConnectionTimeout:
|
|
self.logger.exception("ES request timeout")
|
|
self._connect()
|
|
continue
|
|
except Exception as e:
|
|
self.logger.exception(f"ESConnection.search {str(index_names)} query: " + str(q) + str(e))
|
|
raise e
|
|
|
|
self.logger.error(f"ESConnection.search timeout for {ATTEMPT_TIME} times!")
|
|
raise Exception("ESConnection.search timeout.")
|
|
|
|
def insert(self, documents: list[dict], index_name: str, knowledgebase_id: str = None) -> list[str]:
|
|
# Refers to https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
|
|
operations = []
|
|
for d in documents:
|
|
assert "_id" not in d
|
|
assert "id" in d
|
|
d_copy = copy.deepcopy(d)
|
|
d_copy["kb_id"] = knowledgebase_id
|
|
meta_id = d_copy.pop("id", "")
|
|
operations.append(
|
|
{"index": {"_index": index_name, "_id": meta_id}})
|
|
operations.append(d_copy)
|
|
|
|
res = []
|
|
for _ in range(ATTEMPT_TIME):
|
|
try:
|
|
res = []
|
|
r = self.es.bulk(index=index_name, operations=operations,
|
|
refresh=False, timeout="60s")
|
|
if re.search(r"False", str(r["errors"]), re.IGNORECASE):
|
|
return res
|
|
|
|
for item in r["items"]:
|
|
for action in ["create", "delete", "index", "update"]:
|
|
if action in item and "error" in item[action]:
|
|
res.append(str(item[action]["_id"]) + ":" + str(item[action]["error"]))
|
|
return res
|
|
except ConnectionTimeout:
|
|
self.logger.exception("ES request timeout")
|
|
time.sleep(3)
|
|
self._connect()
|
|
continue
|
|
except Exception as e:
|
|
res.append(str(e))
|
|
self.logger.warning("ESConnection.insert got exception: " + str(e))
|
|
|
|
return res
|
|
|
|
def update(self, condition: dict, new_value: dict, index_name: str, knowledgebase_id: str) -> bool:
|
|
doc = copy.deepcopy(new_value)
|
|
doc.pop("id", None)
|
|
condition["kb_id"] = knowledgebase_id
|
|
if "id" in condition and isinstance(condition["id"], str):
|
|
# update specific single document
|
|
chunk_id = condition["id"]
|
|
for i in range(ATTEMPT_TIME):
|
|
for k in doc.keys():
|
|
if "feas" != k.split("_")[-1]:
|
|
continue
|
|
try:
|
|
self.es.update(index=index_name, id=chunk_id, script=f"ctx._source.remove(\"{k}\");")
|
|
except Exception:
|
|
self.logger.exception(f"ESConnection.update(index={index_name}, id={chunk_id}, doc={json.dumps(condition, ensure_ascii=False)}) got exception")
|
|
try:
|
|
self.es.update(index=index_name, id=chunk_id, doc=doc)
|
|
return True
|
|
except Exception as e:
|
|
self.logger.exception(
|
|
f"ESConnection.update(index={index_name}, id={chunk_id}, doc={json.dumps(condition, ensure_ascii=False)}) got exception: " + str(e))
|
|
break
|
|
return False
|
|
|
|
# update unspecific maybe-multiple documents
|
|
bool_query = Q("bool")
|
|
for k, v in condition.items():
|
|
if not isinstance(k, str) or not v:
|
|
continue
|
|
if k == "exists":
|
|
bool_query.filter.append(Q("exists", field=v))
|
|
continue
|
|
if isinstance(v, list):
|
|
bool_query.filter.append(Q("terms", **{k: v}))
|
|
elif isinstance(v, str) or isinstance(v, int):
|
|
bool_query.filter.append(Q("term", **{k: v}))
|
|
else:
|
|
raise Exception(
|
|
f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
|
|
scripts = []
|
|
params = {}
|
|
for k, v in new_value.items():
|
|
if k == "remove":
|
|
if isinstance(v, str):
|
|
scripts.append(f"ctx._source.remove('{v}');")
|
|
if isinstance(v, dict):
|
|
for kk, vv in v.items():
|
|
scripts.append(f"int i=ctx._source.{kk}.indexOf(params.p_{kk});ctx._source.{kk}.remove(i);")
|
|
params[f"p_{kk}"] = vv
|
|
continue
|
|
if k == "add":
|
|
if isinstance(v, dict):
|
|
for kk, vv in v.items():
|
|
scripts.append(f"ctx._source.{kk}.add(params.pp_{kk});")
|
|
params[f"pp_{kk}"] = vv.strip()
|
|
continue
|
|
if (not isinstance(k, str) or not v) and k != "available_int":
|
|
continue
|
|
if isinstance(v, str):
|
|
v = re.sub(r"(['\n\r]|\\.)", " ", v)
|
|
params[f"pp_{k}"] = v
|
|
scripts.append(f"ctx._source.{k}=params.pp_{k};")
|
|
elif isinstance(v, int) or isinstance(v, float):
|
|
scripts.append(f"ctx._source.{k}={v};")
|
|
elif isinstance(v, list):
|
|
scripts.append(f"ctx._source.{k}=params.pp_{k};")
|
|
params[f"pp_{k}"] = json.dumps(v, ensure_ascii=False)
|
|
else:
|
|
raise Exception(
|
|
f"newValue `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str.")
|
|
ubq = UpdateByQuery(
|
|
index=index_name).using(
|
|
self.es).query(bool_query)
|
|
ubq = ubq.script(source="".join(scripts), params=params)
|
|
ubq = ubq.params(refresh=True)
|
|
ubq = ubq.params(slices=5)
|
|
ubq = ubq.params(conflicts="proceed")
|
|
|
|
for _ in range(ATTEMPT_TIME):
|
|
try:
|
|
_ = ubq.execute()
|
|
return True
|
|
except ConnectionTimeout:
|
|
self.logger.exception("ES request timeout")
|
|
time.sleep(3)
|
|
self._connect()
|
|
continue
|
|
except Exception as e:
|
|
self.logger.error("ESConnection.update got exception: " + str(e) + "\n".join(scripts))
|
|
break
|
|
return False
|
|
|
|
def delete(self, condition: dict, index_name: str, knowledgebase_id: str) -> int:
|
|
assert "_id" not in condition
|
|
condition["kb_id"] = knowledgebase_id
|
|
if "id" in condition:
|
|
chunk_ids = condition["id"]
|
|
if not isinstance(chunk_ids, list):
|
|
chunk_ids = [chunk_ids]
|
|
if not chunk_ids: # when chunk_ids is empty, delete all
|
|
qry = Q("match_all")
|
|
else:
|
|
qry = Q("ids", values=chunk_ids)
|
|
else:
|
|
qry = Q("bool")
|
|
for k, v in condition.items():
|
|
if k == "exists":
|
|
qry.filter.append(Q("exists", field=v))
|
|
|
|
elif k == "must_not":
|
|
if isinstance(v, dict):
|
|
for kk, vv in v.items():
|
|
if kk == "exists":
|
|
qry.must_not.append(Q("exists", field=vv))
|
|
|
|
elif isinstance(v, list):
|
|
qry.must.append(Q("terms", **{k: v}))
|
|
elif isinstance(v, str) or isinstance(v, int):
|
|
qry.must.append(Q("term", **{k: v}))
|
|
else:
|
|
raise Exception("Condition value must be int, str or list.")
|
|
self.logger.debug("ESConnection.delete query: " + json.dumps(qry.to_dict()))
|
|
for _ in range(ATTEMPT_TIME):
|
|
try:
|
|
res = self.es.delete_by_query(
|
|
index=index_name,
|
|
body=Search().query(qry).to_dict(),
|
|
refresh=True)
|
|
return res["deleted"]
|
|
except ConnectionTimeout:
|
|
self.logger.exception("ES request timeout")
|
|
time.sleep(3)
|
|
self._connect()
|
|
continue
|
|
except Exception as e:
|
|
self.logger.warning("ESConnection.delete got exception: " + str(e))
|
|
if re.search(r"(not_found)", str(e), re.IGNORECASE):
|
|
return 0
|
|
return 0
|
|
|
|
"""
|
|
Helper functions for search result
|
|
"""
|
|
|
|
def get_fields(self, res, fields: list[str]) -> dict[str, dict]:
|
|
res_fields = {}
|
|
if not fields:
|
|
return {}
|
|
for d in self._get_source(res):
|
|
m = {n: d.get(n) for n in fields if d.get(n) is not None}
|
|
for n, v in m.items():
|
|
if isinstance(v, list):
|
|
m[n] = v
|
|
continue
|
|
if n == "available_int" and isinstance(v, (int, float)):
|
|
m[n] = v
|
|
continue
|
|
if not isinstance(v, str):
|
|
m[n] = str(m[n])
|
|
# if n.find("tks") > 0:
|
|
# m[n] = remove_redundant_spaces(m[n])
|
|
|
|
if m:
|
|
res_fields[d["id"]] = m
|
|
return res_fields
|