Files
ragflow/memory/utils/prompt_util.py
Lynn 17b8bb62b6 Feat: message manage (#12083)
### What problem does this PR solve?

Message CRUD.

Issue #4213 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-23 21:16:25 +08:00

202 lines
7.3 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Optional, List
from common.constants import MemoryType
from common.time_utils import current_timestamp
class PromptAssembler:
SYSTEM_BASE_TEMPLATE = """**Memory Extraction Specialist**
You are an expert at analyzing conversations to extract structured memory.
{type_specific_instructions}
**OUTPUT REQUIREMENTS:**
1. Output MUST be valid JSON
2. Follow the specified output format exactly
3. Each extracted item MUST have: content, valid_at, invalid_at
4. Timestamps in {timestamp_format} format
5. Only extract memory types specified above
6. Maximum {max_items} items per type
"""
TYPE_INSTRUCTIONS = {
MemoryType.SEMANTIC.name.lower(): """
**EXTRACT SEMANTIC KNOWLEDGE:**
- Universal facts, definitions, concepts, relationships
- Time-invariant, generally true information
- Examples: "The capital of France is Paris", "Water boils at 100°C"
**Timestamp Rules for Semantic Knowledge:**
- valid_at: When the fact became true (e.g., law enactment, discovery)
- invalid_at: When it becomes false (e.g., repeal, disproven) or empty if still true
- Default: valid_at = conversation time, invalid_at = "" for timeless facts
""",
MemoryType.EPISODIC.name.lower(): """
**EXTRACT EPISODIC KNOWLEDGE:**
- Specific experiences, events, personal stories
- Time-bound, person-specific, contextual
- Examples: "Yesterday I fixed the bug", "User reported issue last week"
**Timestamp Rules for Episodic Knowledge:**
- valid_at: Event start/occurrence time
- invalid_at: Event end time or empty if instantaneous
- Extract explicit times: "at 3 PM", "last Monday", "from X to Y"
""",
MemoryType.PROCEDURAL.name.lower(): """
**EXTRACT PROCEDURAL KNOWLEDGE:**
- Processes, methods, step-by-step instructions
- Goal-oriented, actionable, often includes conditions
- Examples: "To reset password, click...", "Debugging steps: 1)..."
**Timestamp Rules for Procedural Knowledge:**
- valid_at: When procedure becomes valid/effective
- invalid_at: When it expires/becomes obsolete or empty if current
- For version-specific: use release dates
- For best practices: invalid_at = ""
"""
}
OUTPUT_TEMPLATES = {
MemoryType.SEMANTIC.name.lower(): """
"semantic": [
{
"content": "Clear factual statement",
"valid_at": "timestamp or empty",
"invalid_at": "timestamp or empty"
}
]
""",
MemoryType.EPISODIC.name.lower(): """
"episodic": [
{
"content": "Narrative event description",
"valid_at": "event start timestamp",
"invalid_at": "event end timestamp or empty"
}
]
""",
MemoryType.PROCEDURAL.name.lower(): """
"procedural": [
{
"content": "Actionable instructions",
"valid_at": "procedure effective timestamp",
"invalid_at": "procedure expiration timestamp or empty"
}
]
"""
}
BASE_USER_PROMPT = """
**CONVERSATION:**
{conversation}
**CONVERSATION TIME:** {conversation_time}
**CURRENT TIME:** {current_time}
"""
@classmethod
def assemble_system_prompt(cls, config: dict) -> str:
types_to_extract = cls._get_types_to_extract(config["memory_type"])
type_instructions = cls._generate_type_instructions(types_to_extract)
output_format = cls._generate_output_format(types_to_extract)
full_prompt = cls.SYSTEM_BASE_TEMPLATE.format(
type_specific_instructions=type_instructions,
timestamp_format=config.get("timestamp_format", "ISO 8601"),
max_items=config.get("max_items_per_type", 5)
)
full_prompt += f"\n**REQUIRED OUTPUT FORMAT (JSON):**\n```json\n{{\n{output_format}\n}}\n```\n"
examples = cls._generate_examples(types_to_extract)
if examples:
full_prompt += f"\n**EXAMPLES:**\n{examples}\n"
return full_prompt
@staticmethod
def _get_types_to_extract(requested_types: List[str]) -> List[str]:
types = set()
for rt in requested_types:
if rt in [e.name.lower() for e in MemoryType] and rt != MemoryType.RAW.name.lower():
types.add(rt)
return list(types)
@classmethod
def _generate_type_instructions(cls, types_to_extract: List[str]) -> str:
target_types = set(types_to_extract)
instructions = [cls.TYPE_INSTRUCTIONS[mt] for mt in target_types]
return "\n".join(instructions)
@classmethod
def _generate_output_format(cls, types_to_extract: List[str]) -> str:
target_types = set(types_to_extract)
output_parts = [cls.OUTPUT_TEMPLATES[mt] for mt in target_types]
return ",\n".join(output_parts)
@staticmethod
def _generate_examples(types_to_extract: list[str]) -> str:
examples = []
if MemoryType.SEMANTIC.name.lower() in types_to_extract:
examples.append("""
**Semantic Example:**
Input: "Python lists are mutable and support various operations."
Output: {"semantic": [{"content": "Python lists are mutable data structures", "valid_at": "2024-01-15T10:00:00", "invalid_at": ""}]}
""")
if MemoryType.EPISODIC.name.lower() in types_to_extract:
examples.append("""
**Episodic Example:**
Input: "I deployed the new feature yesterday afternoon."
Output: {"episodic": [{"content": "User deployed new feature", "valid_at": "2024-01-14T14:00:00", "invalid_at": "2024-01-14T18:00:00"}]}
""")
if MemoryType.PROCEDURAL.name.lower() in types_to_extract:
examples.append("""
**Procedural Example:**
Input: "To debug API errors: 1) Check logs 2) Verify endpoints 3) Test connectivity."
Output: {"procedural": [{"content": "API error debugging: 1. Check logs 2. Verify endpoints 3. Test connectivity", "valid_at": "2024-01-15T10:00:00", "invalid_at": ""}]}
""")
return "\n".join(examples)
@classmethod
def assemble_user_prompt(
cls,
conversation: str,
conversation_time: Optional[str] = None,
current_time: Optional[str] = None
) -> str:
return cls.BASE_USER_PROMPT.format(
conversation=conversation,
conversation_time=conversation_time or "Not specified",
current_time=current_time or current_timestamp(),
)
@classmethod
def get_raw_user_prompt(cls):
return cls.BASE_USER_PROMPT