mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-24 15:36:50 +08:00
### What problem does this PR solve? Message CRUD. Issue #4213 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
234 lines
10 KiB
Python
234 lines
10 KiB
Python
#
|
|
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
from typing import List
|
|
|
|
from common.time_utils import current_timestamp, timestamp_to_date, format_iso_8601_to_ymd_hms
|
|
from common.constants import MemoryType, LLMType
|
|
from common.doc_store.doc_store_base import FusionExpr
|
|
from api.db.services.memory_service import MemoryService
|
|
from api.db.services.tenant_llm_service import TenantLLMService
|
|
from api.db.services.llm_service import LLMBundle
|
|
from api.utils.memory_utils import get_memory_type_human
|
|
from memory.services.messages import MessageService
|
|
from memory.services.query import MsgTextQuery, get_vector
|
|
from memory.utils.prompt_util import PromptAssembler
|
|
from memory.utils.msg_util import get_json_result_from_llm_response
|
|
from rag.utils.redis_conn import REDIS_CONN
|
|
|
|
|
|
async def save_to_memory(memory_id: str, message_dict: dict):
|
|
"""
|
|
:param memory_id:
|
|
:param message_dict: {
|
|
"user_id": str,
|
|
"agent_id": str,
|
|
"session_id": str,
|
|
"user_input": str,
|
|
"agent_response": str
|
|
}
|
|
"""
|
|
memory = MemoryService.get_by_memory_id(memory_id)
|
|
if not memory:
|
|
return False, f"Memory '{memory_id}' not found."
|
|
|
|
tenant_id = memory.tenant_id
|
|
extracted_content = await extract_by_llm(
|
|
tenant_id,
|
|
memory.llm_id,
|
|
{"temperature": memory.temperature},
|
|
get_memory_type_human(memory.memory_type),
|
|
message_dict.get("user_input", ""),
|
|
message_dict.get("agent_response", "")
|
|
) if memory.memory_type != MemoryType.RAW.value else [] # if only RAW, no need to extract
|
|
raw_message_id = REDIS_CONN.generate_auto_increment_id(namespace="memory")
|
|
message_list = [{
|
|
"message_id": raw_message_id,
|
|
"message_type": MemoryType.RAW.name.lower(),
|
|
"source_id": 0,
|
|
"memory_id": memory_id,
|
|
"user_id": "",
|
|
"agent_id": message_dict["agent_id"],
|
|
"session_id": message_dict["session_id"],
|
|
"content": f"User Input: {message_dict.get('user_input')}\nAgent Response: {message_dict.get('agent_response')}",
|
|
"valid_at": timestamp_to_date(current_timestamp()),
|
|
"invalid_at": None,
|
|
"forget_at": None,
|
|
"status": True
|
|
}, *[{
|
|
"message_id": REDIS_CONN.generate_auto_increment_id(namespace="memory"),
|
|
"message_type": content["message_type"],
|
|
"source_id": raw_message_id,
|
|
"memory_id": memory_id,
|
|
"user_id": "",
|
|
"agent_id": message_dict["agent_id"],
|
|
"session_id": message_dict["session_id"],
|
|
"content": content["content"],
|
|
"valid_at": content["valid_at"],
|
|
"invalid_at": content["invalid_at"] if content["invalid_at"] else None,
|
|
"forget_at": None,
|
|
"status": True
|
|
} for content in extracted_content]]
|
|
embedding_model = LLMBundle(tenant_id, llm_type=LLMType.EMBEDDING, llm_name=memory.embd_id)
|
|
vector_list, _ = embedding_model.encode([msg["content"] for msg in message_list])
|
|
for idx, msg in enumerate(message_list):
|
|
msg["content_embed"] = vector_list[idx]
|
|
vector_dimension = len(vector_list[0])
|
|
if not MessageService.has_index(tenant_id, memory_id):
|
|
created = MessageService.create_index(tenant_id, memory_id, vector_size=vector_dimension)
|
|
if not created:
|
|
return False, "Failed to create message index."
|
|
|
|
new_msg_size = sum([MessageService.calculate_message_size(m) for m in message_list])
|
|
current_memory_size = get_memory_size_cache(memory_id, tenant_id)
|
|
if new_msg_size + current_memory_size > memory.memory_size:
|
|
size_to_delete = current_memory_size + new_msg_size - memory.memory_size
|
|
if memory.forgetting_policy == "fifo":
|
|
message_ids_to_delete, delete_size = MessageService.pick_messages_to_delete_by_fifo(memory_id, tenant_id, size_to_delete)
|
|
MessageService.delete_message({"message_id": message_ids_to_delete}, tenant_id, memory_id)
|
|
decrease_memory_size_cache(memory_id, tenant_id, delete_size)
|
|
else:
|
|
return False, "Failed to insert message into memory. Memory size reached limit and cannot decide which to delete."
|
|
fail_cases = MessageService.insert_message(message_list, tenant_id, memory_id)
|
|
if fail_cases:
|
|
return False, "Failed to insert message into memory. Details: " + "; ".join(fail_cases)
|
|
|
|
increase_memory_size_cache(memory_id, tenant_id, new_msg_size)
|
|
return True, "Message saved successfully."
|
|
|
|
|
|
async def extract_by_llm(tenant_id: str, llm_id: str, extract_conf: dict, memory_type: List[str], user_input: str,
|
|
agent_response: str, system_prompt: str = "", user_prompt: str="") -> List[dict]:
|
|
llm_type = TenantLLMService.llm_id2llm_type(llm_id)
|
|
if not llm_type:
|
|
raise RuntimeError(f"Unknown type of LLM '{llm_id}'")
|
|
if not system_prompt:
|
|
system_prompt = PromptAssembler.assemble_system_prompt({"memory_type": memory_type})
|
|
conversation_content = f"User Input: {user_input}\nAgent Response: {agent_response}"
|
|
conversation_time = timestamp_to_date(current_timestamp())
|
|
user_prompts = []
|
|
if user_prompt:
|
|
user_prompts.append({"role": "user", "content": user_prompt})
|
|
user_prompts.append({"role": "user", "content": f"Conversation: {conversation_content}\nConversation Time: {conversation_time}\nCurrent Time: {conversation_time}"})
|
|
else:
|
|
user_prompts.append({"role": "user", "content": PromptAssembler.assemble_user_prompt(conversation_content, conversation_time, conversation_time)})
|
|
llm = LLMBundle(tenant_id, llm_type, llm_id)
|
|
res = await llm.async_chat(system_prompt, user_prompts, extract_conf)
|
|
res_json = get_json_result_from_llm_response(res)
|
|
return [{
|
|
"content": extracted_content["content"],
|
|
"valid_at": format_iso_8601_to_ymd_hms(extracted_content["valid_at"]),
|
|
"invalid_at": format_iso_8601_to_ymd_hms(extracted_content["invalid_at"]) if extracted_content.get("invalid_at") else "",
|
|
"message_type": message_type
|
|
} for message_type, extracted_content_list in res_json.items() for extracted_content in extracted_content_list]
|
|
|
|
|
|
def query_message(filter_dict: dict, params: dict):
|
|
"""
|
|
:param filter_dict: {
|
|
"memory_id": List[str],
|
|
"agent_id": optional
|
|
"session_id": optional
|
|
}
|
|
:param params: {
|
|
"query": question str,
|
|
"similarity_threshold": float,
|
|
"keywords_similarity_weight": float,
|
|
"top_n": int
|
|
}
|
|
"""
|
|
memory_ids = filter_dict["memory_id"]
|
|
memory_list = MemoryService.get_by_ids(memory_ids)
|
|
if not memory_list:
|
|
return []
|
|
|
|
condition_dict = {k: v for k, v in filter_dict.items() if v}
|
|
uids = [memory.tenant_id for memory in memory_list]
|
|
|
|
question = params["query"]
|
|
question = question.strip()
|
|
memory = memory_list[0]
|
|
embd_model = LLMBundle(memory.tenant_id, llm_type=LLMType.EMBEDDING, llm_name=memory.embd_id)
|
|
match_dense = get_vector(question, embd_model, similarity=params["similarity_threshold"])
|
|
match_text, _ = MsgTextQuery().question(question, min_match=0.3)
|
|
keywords_similarity_weight = params.get("keywords_similarity_weight", 0.7)
|
|
fusion_expr = FusionExpr("weighted_sum", params["top_n"], {"weights": ",".join([str(keywords_similarity_weight), str(1 - keywords_similarity_weight)])})
|
|
|
|
return MessageService.search_message(memory_ids, condition_dict, uids, [match_text, match_dense, fusion_expr], params["top_n"])
|
|
|
|
|
|
def init_message_id_sequence():
|
|
message_id_redis_key = "id_generator:memory"
|
|
if REDIS_CONN.exist(message_id_redis_key):
|
|
current_max_id = REDIS_CONN.get(message_id_redis_key)
|
|
logging.info(f"No need to init message_id sequence, current max id is {current_max_id}.")
|
|
else:
|
|
max_id = 1
|
|
exist_memory_list = MemoryService.get_all_memory()
|
|
if not exist_memory_list:
|
|
REDIS_CONN.set(message_id_redis_key, max_id)
|
|
else:
|
|
max_id = MessageService.get_max_message_id(
|
|
uid_list=[m.tenant_id for m in exist_memory_list],
|
|
memory_ids=[m.id for m in exist_memory_list]
|
|
)
|
|
REDIS_CONN.set(message_id_redis_key, max_id)
|
|
logging.info(f"Init message_id sequence done, current max id is {max_id}.")
|
|
|
|
|
|
def get_memory_size_cache(memory_id: str, uid: str):
|
|
redis_key = f"memory_{memory_id}"
|
|
if REDIS_CONN.exists(redis_key):
|
|
return REDIS_CONN.get(redis_key)
|
|
else:
|
|
memory_size_map = MessageService.calculate_memory_size(
|
|
[memory_id],
|
|
[uid]
|
|
)
|
|
memory_size = memory_size_map.get(memory_id, 0)
|
|
set_memory_size_cache(memory_id, memory_size)
|
|
return memory_size
|
|
|
|
|
|
def set_memory_size_cache(memory_id: str, size: int):
|
|
redis_key = f"memory_{memory_id}"
|
|
return REDIS_CONN.set(redis_key, size)
|
|
|
|
|
|
def increase_memory_size_cache(memory_id: str, uid: str, size: int):
|
|
current_value = get_memory_size_cache(memory_id, uid)
|
|
return set_memory_size_cache(memory_id, current_value + size)
|
|
|
|
|
|
def decrease_memory_size_cache(memory_id: str, uid: str, size: int):
|
|
current_value = get_memory_size_cache(memory_id, uid)
|
|
return set_memory_size_cache(memory_id, max(current_value - size, 0))
|
|
|
|
|
|
def init_memory_size_cache():
|
|
memory_list = MemoryService.get_all_memory()
|
|
if not memory_list:
|
|
logging.info("No memory found, no need to init memory size.")
|
|
else:
|
|
memory_size_map = MessageService.calculate_memory_size(
|
|
memory_ids=[m.id for m in memory_list],
|
|
uid_list=[m.tenant_id for m in memory_list],
|
|
)
|
|
for memory in memory_list:
|
|
memory_size = memory_size_map.get(memory.id, 0)
|
|
set_memory_size_cache(memory.id, memory_size)
|
|
logging.info("Memory size cache init done.")
|