Files
ragflow/deepdoc/vision/ocr.py
apps-lycusinc 678392c040 feat(deepdoc): add configurable ONNX thread counts and GPU memory shrinkage (#12777)
### What problem does this PR solve?

This PR addresses critical memory and CPU resource management issues in
high-concurrency environments (multi-worker setups):

GPU Memory Exhaustion (OOM): Currently, onnxruntime-gpu uses an
aggressive memory arena that does not effectively release VRAM back to
the system after a task completes. In multi-process worker setups ($WS >
4), this leads to BFCArena allocation failures and OOM errors as workers
"hoard" VRAM even when idle. This PR introduces an optional GPU Memory
Arena Shrinkage toggle to mitigate this issue.

CPU Oversubscription: ONNX intra_op and inter_op thread counts are
currently hardcoded to 2. When running many workers, this causes
significant CPU context-switching overhead and degrades performance.
This PR makes these values configurable to match the host's actual CPU
core density.

Multi-GPU Support: The memory management logic has been improved to
dynamically target the correct device_id, ensuring stability on systems
with multiple GPUs.

Transparency: Added detailed initialization logs to help administrators
verify and troubleshoot their ONNX session configurations.

 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: shakeel <shakeel@lollylaw.com>
2026-01-23 11:36:28 +08:00

758 lines
28 KiB
Python

#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import gc
import logging
import copy
import time
import os
from huggingface_hub import snapshot_download
from common.file_utils import get_project_base_directory
from common.misc_utils import pip_install_torch
from common import settings
from .operators import * # noqa: F403
from . import operators
import math
import numpy as np
import cv2
import onnxruntime as ort
from .postprocess import build_post_process
loaded_models = {}
def transform(data, ops=None):
""" transform """
if ops is None:
ops = []
for op in ops:
data = op(data)
if data is None:
return None
return data
def create_operators(op_param_list, global_config=None):
"""
create operators based on the config
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(
op_param_list, list), ('operator config should be a list')
ops = []
for operator in op_param_list:
assert isinstance(operator,
dict) and len(operator) == 1, "yaml format error"
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
if global_config is not None:
param.update(global_config)
op = getattr(operators, op_name)(**param)
ops.append(op)
return ops
def load_model(model_dir, nm, device_id: int | None = None):
model_file_path = os.path.join(model_dir, nm + ".onnx")
model_cached_tag = model_file_path + str(device_id) if device_id is not None else model_file_path
global loaded_models
loaded_model = loaded_models.get(model_cached_tag)
if loaded_model:
logging.info(f"load_model {model_file_path} reuses cached model")
return loaded_model
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
def cuda_is_available():
try:
pip_install_torch()
import torch
target_id = 0 if device_id is None else device_id
if torch.cuda.is_available() and torch.cuda.device_count() > target_id:
return True
except Exception:
return False
return False
options = ort.SessionOptions()
options.enable_cpu_mem_arena = False
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
# Prevent CPU oversubscription by allowing explicit thread control in multi-worker environments
options.intra_op_num_threads = int(os.environ.get("OCR_INTRA_OP_NUM_THREADS", "2"))
options.inter_op_num_threads = int(os.environ.get("OCR_INTER_OP_NUM_THREADS", "2"))
# https://github.com/microsoft/onnxruntime/issues/9509#issuecomment-951546580
# Shrink GPU memory after execution
run_options = ort.RunOptions()
if cuda_is_available():
gpu_mem_limit_mb = int(os.environ.get("OCR_GPU_MEM_LIMIT_MB", "2048"))
arena_strategy = os.environ.get("OCR_ARENA_EXTEND_STRATEGY", "kNextPowerOfTwo")
provider_device_id = 0 if device_id is None else device_id
cuda_provider_options = {
"device_id": provider_device_id, # Use specific GPU
"gpu_mem_limit": max(gpu_mem_limit_mb, 0) * 1024 * 1024,
"arena_extend_strategy": arena_strategy, # gpu memory allocation strategy
}
sess = ort.InferenceSession(
model_file_path,
options=options,
providers=['CUDAExecutionProvider'],
provider_options=[cuda_provider_options]
)
# Explicit arena shrinkage for GPU to release VRAM back to the system after each run
if os.environ.get("OCR_GPUMEM_ARENA_SHRINKAGE") == "1":
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", f"gpu:{provider_device_id}")
logging.info(
f"load_model {model_file_path} enabled GPU memory arena shrinkage on device {provider_device_id}")
logging.info(f"load_model {model_file_path} uses GPU (device {provider_device_id}, gpu_mem_limit={cuda_provider_options['gpu_mem_limit']}, arena_strategy={arena_strategy})")
else:
sess = ort.InferenceSession(
model_file_path,
options=options,
providers=['CPUExecutionProvider'])
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
logging.info(f"load_model {model_file_path} uses CPU")
loaded_model = (sess, run_options)
loaded_models[model_cached_tag] = loaded_model
return loaded_model
class TextRecognizer:
def __init__(self, model_dir, device_id: int | None = None):
self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")]
self.rec_batch_num = 16
postprocess_params = {
'name': 'CTCLabelDecode',
"character_dict_path": os.path.join(model_dir, "ocr.res"),
"use_space_char": True
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.run_options = load_model(model_dir, 'rec', device_id)
self.input_tensor = self.predictor.get_inputs()[0]
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[2]
imgW = int((imgH * max_wh_ratio))
w = self.input_tensor.shape[3:][0]
if isinstance(w, str):
pass
elif w is not None and w > 0:
imgW = w
h, w = img.shape[:2]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def resize_norm_img_vl(self, img, image_shape):
imgC, imgH, imgW = image_shape
img = img[:, :, ::-1] # bgr2rgb
resized_image = cv2.resize(
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
return resized_image
def resize_norm_img_srn(self, img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(self, image_shape, num_heads, max_text_length):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
(feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
(max_text_length, 1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(
gsrm_slf_attn_bias1,
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
[-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(
gsrm_slf_attn_bias2,
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
encoder_word_pos = encoder_word_pos[np.newaxis, :]
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
return [
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
def process_image_srn(self, img, image_shape, num_heads, max_text_length):
norm_img = self.resize_norm_img_srn(img, image_shape)
norm_img = norm_img[np.newaxis, :]
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
self.srn_other_inputs(image_shape, num_heads, max_text_length)
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
encoder_word_pos = encoder_word_pos.astype(np.int64)
gsrm_word_pos = gsrm_word_pos.astype(np.int64)
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2)
def resize_norm_img_sar(self, img, image_shape,
width_downsample_ratio=0.25):
imgC, imgH, imgW_min, imgW_max = image_shape
h = img.shape[0]
w = img.shape[1]
valid_ratio = 1.0
# make sure new_width is an integral multiple of width_divisor.
width_divisor = int(1 / width_downsample_ratio)
# resize
ratio = w / float(h)
resize_w = math.ceil(imgH * ratio)
if resize_w % width_divisor != 0:
resize_w = round(resize_w / width_divisor) * width_divisor
if imgW_min is not None:
resize_w = max(imgW_min, resize_w)
if imgW_max is not None:
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
resize_w = min(imgW_max, resize_w)
resized_image = cv2.resize(img, (resize_w, imgH))
resized_image = resized_image.astype('float32')
# norm
if image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
resize_shape = resized_image.shape
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
padding_im[:, :, 0:resize_w] = resized_image
pad_shape = padding_im.shape
return padding_im, resize_shape, pad_shape, valid_ratio
def resize_norm_img_spin(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# return padding_im
img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
img = np.array(img, np.float32)
img = np.expand_dims(img, -1)
img = img.transpose((2, 0, 1))
mean = [127.5]
std = [127.5]
mean = np.array(mean, dtype=np.float32)
std = np.array(std, dtype=np.float32)
mean = np.float32(mean.reshape(1, -1))
stdinv = 1 / np.float32(std.reshape(1, -1))
img -= mean
img *= stdinv
return img
def resize_norm_img_svtr(self, img, image_shape):
imgC, imgH, imgW = image_shape
resized_image = cv2.resize(
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
return resized_image
def resize_norm_img_abinet(self, img, image_shape):
imgC, imgH, imgW = image_shape
resized_image = cv2.resize(
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
resized_image = resized_image.astype('float32')
resized_image = resized_image / 255.
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
resized_image = (
resized_image - mean[None, None, ...]) / std[None, None, ...]
resized_image = resized_image.transpose((2, 0, 1))
resized_image = resized_image.astype('float32')
return resized_image
def norm_img_can(self, img, image_shape):
img = cv2.cvtColor(
img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
if self.rec_image_shape[0] == 1:
h, w = img.shape
_, imgH, imgW = self.rec_image_shape
if h < imgH or w < imgW:
padding_h = max(imgH - h, 0)
padding_w = max(imgW - w, 0)
img_padded = np.pad(img, ((0, padding_h), (0, padding_w)),
'constant',
constant_values=(255))
img = img_padded
img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w
img = img.astype('float32')
return img
def close(self):
# close session and release manually
logging.info('Close text recognizer.')
if hasattr(self, "predictor"):
del self.predictor
gc.collect()
def __call__(self, img_list):
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the recognition process
indices = np.argsort(np.array(width_list))
rec_res = [['', 0.0]] * img_num
batch_num = self.rec_batch_num
st = time.time()
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
imgC, imgH, imgW = self.rec_image_shape[:3]
max_wh_ratio = imgW / imgH
# max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[indices[ino]],
max_wh_ratio)
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
input_dict = {}
input_dict[self.input_tensor.name] = norm_img_batch
for i in range(100000):
try:
outputs = self.predictor.run(None, input_dict, self.run_options)
break
except Exception as e:
if i >= 3:
raise e
time.sleep(5)
preds = outputs[0]
rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
return rec_res, time.time() - st
def __del__(self):
self.close()
class TextDetector:
def __init__(self, model_dir, device_id: int | None = None):
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': 960,
'limit_type': "max",
}
}, {
'NormalizeImage': {
'std': [0.229, 0.224, 0.225],
'mean': [0.485, 0.456, 0.406],
'scale': '1./255.',
'order': 'hwc'
}
}, {
'ToCHWImage': None
}, {
'KeepKeys': {
'keep_keys': ['image', 'shape']
}
}]
postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000,
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.run_options = load_model(model_dir, 'det', device_id)
self.input_tensor = self.predictor.get_inputs()[0]
img_h, img_w = self.input_tensor.shape[2:]
if isinstance(img_h, str) or isinstance(img_w, str):
pass
elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
pre_process_list[0] = {
'DetResizeForTest': {
'image_shape': [img_h, img_w]
}
}
self.preprocess_op = create_operators(pre_process_list)
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
diff = np.diff(np.array(tmp), axis=1)
rect[1] = tmp[np.argmin(diff)]
rect[3] = tmp[np.argmax(diff)]
return rect
def clip_det_res(self, points, img_height, img_width):
for pno in range(points.shape[0]):
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
return points
def filter_tag_det_res(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
if isinstance(box, list):
box = np.array(box)
box = self.order_points_clockwise(box)
box = self.clip_det_res(box, img_height, img_width)
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= 3 or rect_height <= 3:
continue
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
if isinstance(box, list):
box = np.array(box)
box = self.clip_det_res(box, img_height, img_width)
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def close(self):
logging.info("Close text detector.")
if hasattr(self, "predictor"):
del self.predictor
gc.collect()
def __call__(self, img):
ori_im = img.copy()
data = {'image': img}
st = time.time()
data = transform(data, self.preprocess_op)
img, shape_list = data
if img is None:
return None, 0
img = np.expand_dims(img, axis=0)
shape_list = np.expand_dims(shape_list, axis=0)
img = img.copy()
input_dict = {}
input_dict[self.input_tensor.name] = img
for i in range(100000):
try:
outputs = self.predictor.run(None, input_dict, self.run_options)
break
except Exception as e:
if i >= 3:
raise e
time.sleep(5)
post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
dt_boxes = post_result[0]['points']
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
return dt_boxes, time.time() - st
def __del__(self):
self.close()
class OCR:
def __init__(self, model_dir=None):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not model_dir:
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
# Append muti-gpus task to the list
if settings.PARALLEL_DEVICES > 0:
self.text_detector = []
self.text_recognizer = []
for device_id in range(settings.PARALLEL_DEVICES):
self.text_detector.append(TextDetector(model_dir, device_id))
self.text_recognizer.append(TextRecognizer(model_dir, device_id))
else:
self.text_detector = [TextDetector(model_dir)]
self.text_recognizer = [TextRecognizer(model_dir)]
except Exception:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
if settings.PARALLEL_DEVICES > 0:
self.text_detector = []
self.text_recognizer = []
for device_id in range(settings.PARALLEL_DEVICES):
self.text_detector.append(TextDetector(model_dir, device_id))
self.text_recognizer.append(TextRecognizer(model_dir, device_id))
else:
self.text_detector = [TextDetector(model_dir)]
self.text_recognizer = [TextRecognizer(model_dir)]
self.drop_score = 0.5
self.crop_image_res_index = 0
def get_rotate_crop_image(self, img, points):
"""
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
"""
assert len(points) == 4, "shape of points must be 4*2"
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
# Try original orientation
rec_result = self.text_recognizer[0]([dst_img])
text, score = rec_result[0][0]
best_score = score
best_img = dst_img
# Try clockwise 90° rotation
rotated_cw = np.rot90(dst_img, k=3)
rec_result = self.text_recognizer[0]([rotated_cw])
rotated_cw_text, rotated_cw_score = rec_result[0][0]
if rotated_cw_score > best_score:
best_score = rotated_cw_score
best_img = rotated_cw
# Try counter-clockwise 90° rotation
rotated_ccw = np.rot90(dst_img, k=1)
rec_result = self.text_recognizer[0]([rotated_ccw])
rotated_ccw_text, rotated_ccw_score = rec_result[0][0]
if rotated_ccw_score > best_score:
best_img = rotated_ccw
# Use the best image
dst_img = best_img
return dst_img
def sorted_boxes(self, dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
for j in range(i, -1, -1):
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
(_boxes[j + 1][0][0] < _boxes[j][0][0]):
tmp = _boxes[j]
_boxes[j] = _boxes[j + 1]
_boxes[j + 1] = tmp
else:
break
return _boxes
def detect(self, img, device_id: int | None = None):
if device_id is None:
device_id = 0
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if img is None:
return None, None, time_dict
start = time.time()
dt_boxes, elapse = self.text_detector[device_id](img)
time_dict['det'] = elapse
if dt_boxes is None:
end = time.time()
time_dict['all'] = end - start
return None, None, time_dict
return zip(self.sorted_boxes(dt_boxes), [
("", 0) for _ in range(len(dt_boxes))])
def recognize(self, ori_im, box, device_id: int | None = None):
if device_id is None:
device_id = 0
img_crop = self.get_rotate_crop_image(ori_im, box)
rec_res, elapse = self.text_recognizer[device_id]([img_crop])
text, score = rec_res[0]
if score < self.drop_score:
return ""
return text
def recognize_batch(self, img_list, device_id: int | None = None):
if device_id is None:
device_id = 0
rec_res, elapse = self.text_recognizer[device_id](img_list)
texts = []
for i in range(len(rec_res)):
text, score = rec_res[i]
if score < self.drop_score:
text = ""
texts.append(text)
return texts
def __call__(self, img, device_id = 0, cls=True):
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if device_id is None:
device_id = 0
if img is None:
return None, None, time_dict
start = time.time()
ori_im = img.copy()
dt_boxes, elapse = self.text_detector[device_id](img)
time_dict['det'] = elapse
if dt_boxes is None:
end = time.time()
time_dict['all'] = end - start
return None, None, time_dict
img_crop_list = []
dt_boxes = self.sorted_boxes(dt_boxes)
for bno in range(len(dt_boxes)):
tmp_box = copy.deepcopy(dt_boxes[bno])
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop)
rec_res, elapse = self.text_recognizer[device_id](img_crop_list)
time_dict['rec'] = elapse
filter_boxes, filter_rec_res = [], []
for box, rec_result in zip(dt_boxes, rec_res):
text, score = rec_result
if score >= self.drop_score:
filter_boxes.append(box)
filter_rec_res.append(rec_result)
end = time.time()
time_dict['all'] = end - start
# for bno in range(len(img_crop_list)):
# print(f"{bno}, {rec_res[bno]}")
return list(zip([a.tolist() for a in filter_boxes], filter_rec_res))