mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
252 lines
11 KiB
Python
252 lines
11 KiB
Python
#
|
|
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import logging
|
|
from langfuse import Langfuse
|
|
from api import settings
|
|
from api.db import LLMType
|
|
from api.db.db_models import DB, LLMFactories, TenantLLM
|
|
from api.db.services.common_service import CommonService
|
|
from api.db.services.langfuse_service import TenantLangfuseService
|
|
from api.db.services.user_service import TenantService
|
|
from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
|
|
|
|
|
|
class LLMFactoriesService(CommonService):
|
|
model = LLMFactories
|
|
|
|
|
|
class TenantLLMService(CommonService):
|
|
model = TenantLLM
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_api_key(cls, tenant_id, model_name):
|
|
mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
|
|
if not fid:
|
|
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
|
|
else:
|
|
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
|
|
|
|
if (not objs) and fid:
|
|
if fid == "LocalAI":
|
|
mdlnm += "___LocalAI"
|
|
elif fid == "HuggingFace":
|
|
mdlnm += "___HuggingFace"
|
|
elif fid == "OpenAI-API-Compatible":
|
|
mdlnm += "___OpenAI-API"
|
|
elif fid == "VLLM":
|
|
mdlnm += "___VLLM"
|
|
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
|
|
if not objs:
|
|
return
|
|
return objs[0]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_my_llms(cls, tenant_id):
|
|
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
|
|
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
|
|
|
return list(objs)
|
|
|
|
@staticmethod
|
|
def split_model_name_and_factory(model_name):
|
|
arr = model_name.split("@")
|
|
if len(arr) < 2:
|
|
return model_name, None
|
|
if len(arr) > 2:
|
|
return "@".join(arr[0:-1]), arr[-1]
|
|
|
|
# model name must be xxx@yyy
|
|
try:
|
|
model_factories = settings.FACTORY_LLM_INFOS
|
|
model_providers = set([f["name"] for f in model_factories])
|
|
if arr[-1] not in model_providers:
|
|
return model_name, None
|
|
return arr[0], arr[-1]
|
|
except Exception as e:
|
|
logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
|
|
return model_name, None
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_model_config(cls, tenant_id, llm_type, llm_name=None):
|
|
from api.db.services.llm_service import LLMService
|
|
e, tenant = TenantService.get_by_id(tenant_id)
|
|
if not e:
|
|
raise LookupError("Tenant not found")
|
|
|
|
if llm_type == LLMType.EMBEDDING.value:
|
|
mdlnm = tenant.embd_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.SPEECH2TEXT.value:
|
|
mdlnm = tenant.asr_id
|
|
elif llm_type == LLMType.IMAGE2TEXT.value:
|
|
mdlnm = tenant.img2txt_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.CHAT.value:
|
|
mdlnm = tenant.llm_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.RERANK:
|
|
mdlnm = tenant.rerank_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.TTS:
|
|
mdlnm = tenant.tts_id if not llm_name else llm_name
|
|
else:
|
|
assert False, "LLM type error"
|
|
|
|
model_config = cls.get_api_key(tenant_id, mdlnm)
|
|
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
|
|
if not model_config: # for some cases seems fid mismatch
|
|
model_config = cls.get_api_key(tenant_id, mdlnm)
|
|
if model_config:
|
|
model_config = model_config.to_dict()
|
|
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
|
|
if not llm and fid: # for some cases seems fid mismatch
|
|
llm = LLMService.query(llm_name=mdlnm)
|
|
if llm:
|
|
model_config["is_tools"] = llm[0].is_tools
|
|
if not model_config:
|
|
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
|
|
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
|
|
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
|
|
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
|
|
if not model_config:
|
|
if mdlnm == "flag-embedding":
|
|
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
|
|
else:
|
|
if not mdlnm:
|
|
raise LookupError(f"Type of {llm_type} model is not set.")
|
|
raise LookupError("Model({}) not authorized".format(mdlnm))
|
|
return model_config
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
|
|
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
|
|
kwargs.update({"provider": model_config["llm_factory"]})
|
|
if llm_type == LLMType.EMBEDDING.value:
|
|
if model_config["llm_factory"] not in EmbeddingModel:
|
|
return
|
|
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
|
|
|
if llm_type == LLMType.RERANK:
|
|
if model_config["llm_factory"] not in RerankModel:
|
|
return
|
|
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
|
|
|
if llm_type == LLMType.IMAGE2TEXT.value:
|
|
if model_config["llm_factory"] not in CvModel:
|
|
return
|
|
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
|
|
|
|
if llm_type == LLMType.CHAT.value:
|
|
if model_config["llm_factory"] not in ChatModel:
|
|
return
|
|
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
|
|
|
|
if llm_type == LLMType.SPEECH2TEXT:
|
|
if model_config["llm_factory"] not in Seq2txtModel:
|
|
return
|
|
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
|
|
if llm_type == LLMType.TTS:
|
|
if model_config["llm_factory"] not in TTSModel:
|
|
return
|
|
return TTSModel[model_config["llm_factory"]](
|
|
model_config["api_key"],
|
|
model_config["llm_name"],
|
|
base_url=model_config["api_base"],
|
|
)
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
|
|
e, tenant = TenantService.get_by_id(tenant_id)
|
|
if not e:
|
|
logging.error(f"Tenant not found: {tenant_id}")
|
|
return 0
|
|
|
|
llm_map = {
|
|
LLMType.EMBEDDING.value: tenant.embd_id if not llm_name else llm_name,
|
|
LLMType.SPEECH2TEXT.value: tenant.asr_id,
|
|
LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
|
|
LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
|
|
LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
|
|
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
|
|
}
|
|
|
|
mdlnm = llm_map.get(llm_type)
|
|
if mdlnm is None:
|
|
logging.error(f"LLM type error: {llm_type}")
|
|
return 0
|
|
|
|
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
|
|
|
|
try:
|
|
num = (
|
|
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
|
|
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
|
|
.execute()
|
|
)
|
|
except Exception:
|
|
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
|
|
return 0
|
|
|
|
return num
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_openai_models(cls):
|
|
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
|
|
return list(objs)
|
|
|
|
@staticmethod
|
|
def llm_id2llm_type(llm_id: str) -> str | None:
|
|
from api.db.services.llm_service import LLMService
|
|
llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
|
|
llm_factories = settings.FACTORY_LLM_INFOS
|
|
for llm_factory in llm_factories:
|
|
for llm in llm_factory["llm"]:
|
|
if llm_id == llm["llm_name"]:
|
|
return llm["model_type"].split(",")[-1]
|
|
|
|
for llm in LLMService.query(llm_name=llm_id):
|
|
return llm.model_type
|
|
|
|
llm = TenantLLMService.get_or_none(llm_name=llm_id)
|
|
if llm:
|
|
return llm.model_type
|
|
for llm in TenantLLMService.query(llm_name=llm_id):
|
|
return llm.model_type
|
|
|
|
|
|
class LLM4Tenant:
|
|
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
|
|
self.tenant_id = tenant_id
|
|
self.llm_type = llm_type
|
|
self.llm_name = llm_name
|
|
self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang, **kwargs)
|
|
assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
|
|
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
|
|
self.max_length = model_config.get("max_tokens", 8192)
|
|
|
|
self.is_tools = model_config.get("is_tools", False)
|
|
self.verbose_tool_use = kwargs.get("verbose_tool_use")
|
|
|
|
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
|
|
self.langfuse = None
|
|
if langfuse_keys:
|
|
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
|
|
if langfuse.auth_check():
|
|
self.langfuse = langfuse
|
|
trace_id = self.langfuse.create_trace_id()
|
|
self.trace_context = {"trace_id": trace_id} |