### What problem does this PR solve? fixes https://github.com/infiniflow/ragflow/issues/12774 Add a CLI tool for migrating RAGFlow data from Elasticsearch to OceanBase, enabling users to switch their document storage backend. - Automatic discovery and migration of all `ragflow_*` indices - Schema conversion with vector dimension auto-detection - Batch processing with progress tracking and resume capability - Data consistency validation and migration report generation **Note**: Due to network issues, I was unable to pull the required Docker images (Elasticsearch, OceanBase) to run the full end-to-end verification. Unit tests have been verified to pass. I will complete the e2e verification when network conditions allow, and submit a follow-up PR if any fixes are needed. ```bash ============================= test session starts ============================== platform darwin -- Python 3.13.6, pytest-9.0.2, pluggy-1.6.0 rootdir: /Users/sevenc/code/ai/oceanbase/ragflow/tools/es-to-oceanbase-migration configfile: pyproject.toml testpaths: tests plugins: anyio-4.12.1, asyncio-1.3.0, cov-7.0.0 collected 86 items tests/test_progress.py::TestMigrationProgress::test_create_basic_progress PASSED [ 1%] tests/test_progress.py::TestMigrationProgress::test_create_progress_with_counts PASSED [ 2%] tests/test_progress.py::TestMigrationProgress::test_progress_default_values PASSED [ 3%] tests/test_progress.py::TestMigrationProgress::test_progress_status_values PASSED [ 4%] tests/test_progress.py::TestProgressManager::test_create_progress_manager PASSED [ 5%] tests/test_progress.py::TestProgressManager::test_create_progress_manager_creates_dir PASSED [ 6%] tests/test_progress.py::TestProgressManager::test_create_progress PASSED [ 8%] tests/test_progress.py::TestProgressManager::test_save_and_load_progress PASSED [ 9%] tests/test_progress.py::TestProgressManager::test_load_nonexistent_progress PASSED [ 10%] tests/test_progress.py::TestProgressManager::test_delete_progress PASSED [ 11%] tests/test_progress.py::TestProgressManager::test_update_progress PASSED [ 12%] tests/test_progress.py::TestProgressManager::test_update_progress_multiple_batches PASSED [ 13%] tests/test_progress.py::TestProgressManager::test_mark_completed PASSED [ 15%] tests/test_progress.py::TestProgressManager::test_mark_failed PASSED [ 16%] tests/test_progress.py::TestProgressManager::test_mark_paused PASSED [ 17%] tests/test_progress.py::TestProgressManager::test_can_resume_running PASSED [ 18%] tests/test_progress.py::TestProgressManager::test_can_resume_paused PASSED [ 19%] tests/test_progress.py::TestProgressManager::test_can_resume_completed PASSED [ 20%] tests/test_progress.py::TestProgressManager::test_can_resume_nonexistent PASSED [ 22%] tests/test_progress.py::TestProgressManager::test_get_resume_info PASSED [ 23%] tests/test_progress.py::TestProgressManager::test_get_resume_info_nonexistent PASSED [ 24%] tests/test_progress.py::TestProgressManager::test_progress_file_path PASSED [ 25%] tests/test_progress.py::TestProgressManager::test_progress_file_content PASSED [ 26%] tests/test_schema.py::TestRAGFlowSchemaConverter::test_analyze_ragflow_mapping PASSED [ 27%] tests/test_schema.py::TestRAGFlowSchemaConverter::test_detect_vector_size PASSED [ 29%] tests/test_schema.py::TestRAGFlowSchemaConverter::test_unknown_fields PASSED [ 30%] tests/test_schema.py::TestRAGFlowSchemaConverter::test_get_column_definitions PASSED [ 31%] tests/test_schema.py::TestRAGFlowDataConverter::test_convert_basic_document PASSED [ 32%] tests/test_schema.py::TestRAGFlowDataConverter::test_convert_with_vector PASSED [ 33%] tests/test_schema.py::TestRAGFlowDataConverter::test_convert_array_fields PASSED [ 34%] tests/test_schema.py::TestRAGFlowDataConverter::test_convert_json_fields PASSED [ 36%] tests/test_schema.py::TestRAGFlowDataConverter::test_convert_unknown_fields_to_extra PASSED [ 37%] tests/test_schema.py::TestRAGFlowDataConverter::test_convert_kb_id_list PASSED [ 38%] tests/test_schema.py::TestRAGFlowDataConverter::test_convert_content_with_weight_dict PASSED [ 39%] tests/test_schema.py::TestRAGFlowDataConverter::test_convert_batch PASSED [ 40%] tests/test_schema.py::TestVectorFieldPattern::test_valid_patterns PASSED [ 41%] tests/test_schema.py::TestVectorFieldPattern::test_invalid_patterns PASSED [ 43%] tests/test_schema.py::TestVectorFieldPattern::test_extract_dimension PASSED [ 44%] tests/test_schema.py::TestConstants::test_array_columns PASSED [ 45%] tests/test_schema.py::TestConstants::test_json_columns PASSED [ 46%] tests/test_schema.py::TestConstants::test_ragflow_columns_completeness PASSED [ 47%] tests/test_schema.py::TestConstants::test_fts_columns PASSED [ 48%] tests/test_schema.py::TestConstants::test_ragflow_columns_types PASSED [ 50%] tests/test_schema.py::TestRAGFlowSchemaConverterEdgeCases::test_empty_mapping PASSED [ 51%] tests/test_schema.py::TestRAGFlowSchemaConverterEdgeCases::test_mapping_without_properties PASSED [ 52%] tests/test_schema.py::TestRAGFlowSchemaConverterEdgeCases::test_multiple_vector_fields PASSED [ 53%] tests/test_schema.py::TestRAGFlowSchemaConverterEdgeCases::test_get_column_definitions_without_analysis PASSED [ 54%] tests/test_schema.py::TestRAGFlowSchemaConverterEdgeCases::test_get_vector_fields PASSED [ 55%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_empty_document PASSED [ 56%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_document_without_source PASSED [ 58%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_boolean_to_integer PASSED [ 59%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_invalid_integer PASSED [ 60%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_float_field PASSED [ 61%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_array_with_special_characters PASSED [ 62%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_already_json_array PASSED [ 63%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_single_value_to_array PASSED [ 65%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_detect_vector_fields_from_document PASSED [ 66%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_with_default_values PASSED [ 67%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_list_content PASSED [ 68%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_convert_batch_empty PASSED [ 69%] tests/test_schema.py::TestRAGFlowDataConverterEdgeCases::test_existing_extra_field_merged PASSED [ 70%] tests/test_verify.py::TestVerificationResult::test_create_basic_result PASSED [ 72%] tests/test_verify.py::TestVerificationResult::test_result_default_values PASSED [ 73%] tests/test_verify.py::TestVerificationResult::test_result_with_counts PASSED [ 74%] tests/test_verify.py::TestMigrationVerifier::test_verify_counts_match PASSED [ 75%] tests/test_verify.py::TestMigrationVerifier::test_verify_counts_mismatch PASSED [ 76%] tests/test_verify.py::TestMigrationVerifier::test_verify_samples_all_match PASSED [ 77%] tests/test_verify.py::TestMigrationVerifier::test_verify_samples_some_missing PASSED [ 79%] tests/test_verify.py::TestMigrationVerifier::test_verify_samples_data_mismatch PASSED [ 80%] tests/test_verify.py::TestMigrationVerifier::test_values_equal_none_values PASSED [ 81%] tests/test_verify.py::TestMigrationVerifier::test_values_equal_array_columns PASSED [ 82%] tests/test_verify.py::TestMigrationVerifier::test_values_equal_json_columns PASSED [ 83%] tests/test_verify.py::TestMigrationVerifier::test_values_equal_kb_id_list PASSED [ 84%] tests/test_verify.py::TestMigrationVerifier::test_values_equal_content_with_weight_dict PASSED [ 86%] tests/test_verify.py::TestMigrationVerifier::test_determine_result_passed PASSED [ 87%] tests/test_verify.py::TestMigrationVerifier::test_determine_result_failed_count PASSED [ 88%] tests/test_verify.py::TestMigrationVerifier::test_determine_result_failed_samples PASSED [ 89%] tests/test_verify.py::TestMigrationVerifier::test_generate_report PASSED [ 90%] tests/test_verify.py::TestMigrationVerifier::test_generate_report_with_missing PASSED [ 91%] tests/test_verify.py::TestMigrationVerifier::test_generate_report_with_mismatches PASSED [ 93%] tests/test_verify.py::TestValueComparison::test_string_comparison PASSED [ 94%] tests/test_verify.py::TestValueComparison::test_integer_comparison PASSED [ 95%] tests/test_verify.py::TestValueComparison::test_float_comparison PASSED [ 96%] tests/test_verify.py::TestValueComparison::test_boolean_comparison PASSED [ 97%] tests/test_verify.py::TestValueComparison::test_empty_array_comparison PASSED [ 98%] tests/test_verify.py::TestValueComparison::test_nested_json_comparison PASSED [100%] ======================= 86 passed, 88 warnings in 0.66s ======================== ``` ### Type of change - [ ] Bug Fix (non-breaking change which fixes an issue) - [x] New Feature (non-breaking change which adds functionality) - [ ] Documentation Update - [ ] Refactoring - [ ] Performance Improvement - [ ] Other (please describe):
Document | Roadmap | Twitter | Discord | Demo
📕 Table of Contents
💡 What is RAGFlow?
RAGFlow is a leading open-source Retrieval-Augmented Generation (RAG) engine that fuses cutting-edge RAG with Agent capabilities to create a superior context layer for LLMs. It offers a streamlined RAG workflow adaptable to enterprises of any scale. Powered by a converged context engine and pre-built agent templates, RAGFlow enables developers to transform complex data into high-fidelity, production-ready AI systems with exceptional efficiency and precision.
🎮 Demo
Try our demo at https://demo.ragflow.io.
🔥 Latest Updates
- 2025-12-26 Supports 'Memory' for AI agent.
- 2025-11-19 Supports Gemini 3 Pro.
- 2025-11-12 Supports data synchronization from Confluence, S3, Notion, Discord, Google Drive.
- 2025-10-23 Supports MinerU & Docling as document parsing methods.
- 2025-10-15 Supports orchestrable ingestion pipeline.
- 2025-08-08 Supports OpenAI's latest GPT-5 series models.
- 2025-08-01 Supports agentic workflow and MCP.
- 2025-05-23 Adds a Python/JavaScript code executor component to Agent.
- 2025-05-05 Supports cross-language query.
- 2025-03-19 Supports using a multi-modal model to make sense of images within PDF or DOCX files.
🎉 Stay Tuned
⭐️ Star our repository to stay up-to-date with exciting new features and improvements! Get instant notifications for new releases! 🌟
🌟 Key Features
🍭 "Quality in, quality out"
- Deep document understanding-based knowledge extraction from unstructured data with complicated formats.
- Finds "needle in a data haystack" of literally unlimited tokens.
🍱 Template-based chunking
- Intelligent and explainable.
- Plenty of template options to choose from.
🌱 Grounded citations with reduced hallucinations
- Visualization of text chunking to allow human intervention.
- Quick view of the key references and traceable citations to support grounded answers.
🍔 Compatibility with heterogeneous data sources
- Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.
🛀 Automated and effortless RAG workflow
- Streamlined RAG orchestration catered to both personal and large businesses.
- Configurable LLMs as well as embedding models.
- Multiple recall paired with fused re-ranking.
- Intuitive APIs for seamless integration with business.
🔎 System Architecture
🎬 Get Started
📝 Prerequisites
- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
- gVisor: Required only if you intend to use the code executor (sandbox) feature of RAGFlow.
Tip
If you have not installed Docker on your local machine (Windows, Mac, or Linux), see Install Docker Engine.
🚀 Start up the server
-
Ensure
vm.max_map_count>= 262144:To check the value of
vm.max_map_count:$ sysctl vm.max_map_countReset
vm.max_map_countto a value at least 262144 if it is not.# In this case, we set it to 262144: $ sudo sysctl -w vm.max_map_count=262144This change will be reset after a system reboot. To ensure your change remains permanent, add or update the
vm.max_map_countvalue in /etc/sysctl.conf accordingly:vm.max_map_count=262144 -
Clone the repo:
$ git clone https://github.com/infiniflow/ragflow.git -
Start up the server using the pre-built Docker images:
Caution
All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64. If you are on an ARM64 platform, follow this guide to build a Docker image compatible with your system.
The command below downloads the
v0.23.1edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different fromv0.23.1, update theRAGFLOW_IMAGEvariable accordingly in docker/.env before usingdocker composeto start the server.
$ cd ragflow/docker
# git checkout v0.23.1
# Optional: use a stable tag (see releases: https://github.com/infiniflow/ragflow/releases)
# This step ensures the **entrypoint.sh** file in the code matches the Docker image version.
# Use CPU for DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate DeepDoc tasks:
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
Note: Prior to
v0.22.0, we provided both images with embedding models and slim images without embedding models. Details as follows:
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|---|---|---|---|
| v0.21.1 | ≈9 | ✔️ | Stable release |
| v0.21.1-slim | ≈2 | ❌ | Stable release |
Starting with
v0.22.0, we ship only the slim edition and no longer append the -slim suffix to the image tag.
-
Check the server status after having the server up and running:
$ docker logs -f docker-ragflow-cpu-1The following output confirms a successful launch of the system:
____ ___ ______ ______ __ / __ \ / | / ____// ____// /____ _ __ / /_/ // /| | / / __ / /_ / // __ \| | /| / / / _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ / /_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/ * Running on all addresses (0.0.0.0)If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a
network abnormalerror because, at that moment, your RAGFlow may not be fully initialized. -
In your web browser, enter the IP address of your server and log in to RAGFlow.
With the default settings, you only need to enter
http://IP_OF_YOUR_MACHINE(sans port number) as the default HTTP serving port80can be omitted when using the default configurations. -
In service_conf.yaml.template, select the desired LLM factory in
user_default_llmand update theAPI_KEYfield with the corresponding API key.See llm_api_key_setup for more information.
The show is on!
🔧 Configurations
When it comes to system configurations, you will need to manage the following files:
- .env: Keeps the fundamental setups for the system, such as
SVR_HTTP_PORT,MYSQL_PASSWORD, andMINIO_PASSWORD. - service_conf.yaml.template: Configures the back-end services. The environment variables in this file will be automatically populated when the Docker container starts. Any environment variables set within the Docker container will be available for use, allowing you to customize service behavior based on the deployment environment.
- docker-compose.yml: The system relies on docker-compose.yml to start up.
The ./docker/README file provides a detailed description of the environment settings and service configurations which can be used as
${ENV_VARS}in the service_conf.yaml.template file.
To update the default HTTP serving port (80), go to docker-compose.yml and change 80:80
to <YOUR_SERVING_PORT>:80.
Updates to the above configurations require a reboot of all containers to take effect:
$ docker compose -f docker-compose.yml up -d
Switch doc engine from Elasticsearch to Infinity
RAGFlow uses Elasticsearch by default for storing full text and vectors. To switch to Infinity, follow these steps:
-
Stop all running containers:
$ docker compose -f docker/docker-compose.yml down -v
Warning
-vwill delete the docker container volumes, and the existing data will be cleared.
-
Set
DOC_ENGINEin docker/.env toinfinity. -
Start the containers:
$ docker compose -f docker-compose.yml up -d
Warning
Switching to Infinity on a Linux/arm64 machine is not yet officially supported.
🔧 Build a Docker image
This image is approximately 2 GB in size and relies on external LLM and embedding services.
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
Or if you are behind a proxy, you can pass proxy arguments:
docker build --platform linux/amd64 \
--build-arg http_proxy=http://YOUR_PROXY:PORT \
--build-arg https_proxy=http://YOUR_PROXY:PORT \
-f Dockerfile -t infiniflow/ragflow:nightly .
🔨 Launch service from source for development
-
Install
uvandpre-commit, or skip this step if they are already installed:pipx install uv pre-commit -
Clone the source code and install Python dependencies:
git clone https://github.com/infiniflow/ragflow.git cd ragflow/ uv sync --python 3.12 # install RAGFlow dependent python modules uv run download_deps.py pre-commit install -
Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:
docker compose -f docker/docker-compose-base.yml up -dAdd the following line to
/etc/hoststo resolve all hosts specified in docker/.env to127.0.0.1:127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager -
If you cannot access HuggingFace, set the
HF_ENDPOINTenvironment variable to use a mirror site:export HF_ENDPOINT=https://hf-mirror.com -
If your operating system does not have jemalloc, please install it as follows:
# Ubuntu sudo apt-get install libjemalloc-dev # CentOS sudo yum install jemalloc # OpenSUSE sudo zypper install jemalloc # macOS sudo brew install jemalloc -
Launch backend service:
source .venv/bin/activate export PYTHONPATH=$(pwd) bash docker/launch_backend_service.sh -
Install frontend dependencies:
cd web npm install -
Launch frontend service:
npm run devThe following output confirms a successful launch of the system:
-
Stop RAGFlow front-end and back-end service after development is complete:
pkill -f "ragflow_server.py|task_executor.py"
📚 Documentation
📜 Roadmap
See the RAGFlow Roadmap 2026
🏄 Community
🙌 Contributing
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our Contribution Guidelines first.


