# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from concurrent.futures import ThreadPoolExecutor, as_completed from PIL import Image from common.constants import LLMType from api.db.services.llm_service import LLMBundle from common.connection_utils import timeout from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk from rag.prompts.generator import vision_llm_figure_describe_prompt def vision_figure_parser_figure_data_wrapper(figures_data_without_positions): return [ ( (figure_data[1], [figure_data[0]]), [(0, 0, 0, 0, 0)], ) for figure_data in figures_data_without_positions if isinstance(figure_data[1], Image.Image) ] def vision_figure_parser_docx_wrapper(sections,tbls,callback=None,**kwargs): try: vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT) callback(0.7, "Visual model detected. Attempting to enhance figure extraction...") except Exception: vision_model = None if vision_model: figures_data = vision_figure_parser_figure_data_wrapper(sections) try: docx_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures_data, **kwargs) boosted_figures = docx_vision_parser(callback=callback) tbls.extend(boosted_figures) except Exception as e: callback(0.8, f"Visual model error: {e}. Skipping figure parsing enhancement.") return tbls def vision_figure_parser_pdf_wrapper(tbls,callback=None,**kwargs): try: vision_model = LLMBundle(kwargs["tenant_id"], LLMType.IMAGE2TEXT) callback(0.7, "Visual model detected. Attempting to enhance figure extraction...") except Exception: vision_model = None if vision_model: def is_figure_item(item): return ( isinstance(item[0][0], Image.Image) and isinstance(item[0][1], list) ) figures_data = [item for item in tbls if is_figure_item(item)] try: docx_vision_parser = VisionFigureParser(vision_model=vision_model, figures_data=figures_data, **kwargs) boosted_figures = docx_vision_parser(callback=callback) tbls = [item for item in tbls if not is_figure_item(item)] tbls.extend(boosted_figures) except Exception as e: callback(0.8, f"Visual model error: {e}. Skipping figure parsing enhancement.") return tbls shared_executor = ThreadPoolExecutor(max_workers=10) class VisionFigureParser: def __init__(self, vision_model, figures_data, *args, **kwargs): self.vision_model = vision_model self._extract_figures_info(figures_data) assert len(self.figures) == len(self.descriptions) assert not self.positions or (len(self.figures) == len(self.positions)) def _extract_figures_info(self, figures_data): self.figures = [] self.descriptions = [] self.positions = [] for item in figures_data: # position if len(item) == 2 and isinstance(item[0], tuple) and len(item[0]) == 2 and isinstance(item[1], list) and isinstance(item[1][0], tuple) and len(item[1][0]) == 5: img_desc = item[0] assert len(img_desc) == 2 and isinstance(img_desc[0], Image.Image) and isinstance(img_desc[1], list), "Should be (figure, [description])" self.figures.append(img_desc[0]) self.descriptions.append(img_desc[1]) self.positions.append(item[1]) else: assert len(item) == 2 and isinstance(item[0], Image.Image) and isinstance(item[1], list), f"Unexpected form of figure data: get {len(item)=}, {item=}" self.figures.append(item[0]) self.descriptions.append(item[1]) def _assemble(self): self.assembled = [] self.has_positions = len(self.positions) != 0 for i in range(len(self.figures)): figure = self.figures[i] desc = self.descriptions[i] pos = self.positions[i] if self.has_positions else None figure_desc = (figure, desc) if pos is not None: self.assembled.append((figure_desc, pos)) else: self.assembled.append((figure_desc,)) return self.assembled def __call__(self, **kwargs): callback = kwargs.get("callback", lambda prog, msg: None) @timeout(30, 3) def process(figure_idx, figure_binary): description_text = picture_vision_llm_chunk( binary=figure_binary, vision_model=self.vision_model, prompt=vision_llm_figure_describe_prompt(), callback=callback, ) return figure_idx, description_text futures = [] for idx, img_binary in enumerate(self.figures or []): futures.append(shared_executor.submit(process, idx, img_binary)) for future in as_completed(futures): figure_num, txt = future.result() if txt: self.descriptions[figure_num] = txt + "\n".join(self.descriptions[figure_num]) self._assemble() return self.assembled