# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import json import secrets from datetime import date import logging from common.constants import RAG_FLOW_SERVICE_NAME from common.file_utils import get_project_base_directory from common.config_utils import get_base_config, decrypt_database_config from common.misc_utils import pip_install_torch from common.constants import SVR_QUEUE_NAME, Storage import rag.utils import rag.utils.es_conn import rag.utils.infinity_conn import rag.utils.opensearch_conn from rag.utils.azure_sas_conn import RAGFlowAzureSasBlob from rag.utils.azure_spn_conn import RAGFlowAzureSpnBlob from rag.utils.minio_conn import RAGFlowMinio from rag.utils.opendal_conn import OpenDALStorage from rag.utils.s3_conn import RAGFlowS3 from rag.utils.oss_conn import RAGFlowOSS from rag.nlp import search LLM = None LLM_FACTORY = None LLM_BASE_URL = None CHAT_MDL = "" EMBEDDING_MDL = "" RERANK_MDL = "" ASR_MDL = "" IMAGE2TEXT_MDL = "" CHAT_CFG = "" EMBEDDING_CFG = "" RERANK_CFG = "" ASR_CFG = "" IMAGE2TEXT_CFG = "" API_KEY = None PARSERS = None HOST_IP = None HOST_PORT = None SECRET_KEY = None FACTORY_LLM_INFOS = None ALLOWED_LLM_FACTORIES = None DATABASE_TYPE = os.getenv("DB_TYPE", "mysql") DATABASE = decrypt_database_config(name=DATABASE_TYPE) # authentication AUTHENTICATION_CONF = None # client CLIENT_AUTHENTICATION = None HTTP_APP_KEY = None GITHUB_OAUTH = None FEISHU_OAUTH = None OAUTH_CONFIG = None DOC_ENGINE = os.getenv('DOC_ENGINE', 'elasticsearch') docStoreConn = None retriever = None kg_retriever = None # user registration switch REGISTER_ENABLED = 1 # sandbox-executor-manager SANDBOX_HOST = None STRONG_TEST_COUNT = int(os.environ.get("STRONG_TEST_COUNT", "8")) SMTP_CONF = None MAIL_SERVER = "" MAIL_PORT = 000 MAIL_USE_SSL = True MAIL_USE_TLS = False MAIL_USERNAME = "" MAIL_PASSWORD = "" MAIL_DEFAULT_SENDER = () MAIL_FRONTEND_URL = "" # move from rag.settings ES = {} INFINITY = {} AZURE = {} S3 = {} MINIO = {} OSS = {} OS = {} DOC_MAXIMUM_SIZE: int = 128 * 1024 * 1024 DOC_BULK_SIZE: int = 4 EMBEDDING_BATCH_SIZE: int = 16 PARALLEL_DEVICES: int = 0 STORAGE_IMPL_TYPE = os.getenv('STORAGE_IMPL', 'MINIO') STORAGE_IMPL = None def get_svr_queue_name(priority: int) -> str: if priority == 0: return SVR_QUEUE_NAME return f"{SVR_QUEUE_NAME}_{priority}" def get_svr_queue_names(): return [get_svr_queue_name(priority) for priority in [1, 0]] def _get_or_create_secret_key(): secret_key = os.environ.get("RAGFLOW_SECRET_KEY") if secret_key and len(secret_key) >= 32: return secret_key # Check if there's a configured secret key configured_key = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("secret_key") if configured_key and configured_key != str(date.today()) and len(configured_key) >= 32: return configured_key # Generate a new secure key and warn about it import logging new_key = secrets.token_hex(32) logging.warning(f"SECURITY WARNING: Using auto-generated SECRET_KEY. Generated key: {new_key}") return new_key class StorageFactory: storage_mapping = { Storage.MINIO: RAGFlowMinio, Storage.AZURE_SPN: RAGFlowAzureSpnBlob, Storage.AZURE_SAS: RAGFlowAzureSasBlob, Storage.AWS_S3: RAGFlowS3, Storage.OSS: RAGFlowOSS, Storage.OPENDAL: OpenDALStorage } @classmethod def create(cls, storage: Storage): return cls.storage_mapping[storage]() def init_settings(): global DATABASE_TYPE, DATABASE DATABASE_TYPE = os.getenv("DB_TYPE", "mysql") DATABASE = decrypt_database_config(name=DATABASE_TYPE) global ALLOWED_LLM_FACTORIES, LLM_FACTORY, LLM_BASE_URL llm_settings = get_base_config("user_default_llm", {}) or {} llm_default_models = llm_settings.get("default_models", {}) or {} LLM_FACTORY = llm_settings.get("factory", "") or "" LLM_BASE_URL = llm_settings.get("base_url", "") or "" ALLOWED_LLM_FACTORIES = llm_settings.get("allowed_factories", None) global REGISTER_ENABLED try: REGISTER_ENABLED = int(os.environ.get("REGISTER_ENABLED", "1")) except Exception: pass global FACTORY_LLM_INFOS try: with open(os.path.join(get_project_base_directory(), "conf", "llm_factories.json"), "r") as f: FACTORY_LLM_INFOS = json.load(f)["factory_llm_infos"] except Exception: FACTORY_LLM_INFOS = [] global API_KEY API_KEY = llm_settings.get("api_key") global PARSERS PARSERS = llm_settings.get( "parsers", "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag" ) global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL chat_entry = _parse_model_entry(llm_default_models.get("chat_model", CHAT_MDL)) embedding_entry = _parse_model_entry(llm_default_models.get("embedding_model", EMBEDDING_MDL)) rerank_entry = _parse_model_entry(llm_default_models.get("rerank_model", RERANK_MDL)) asr_entry = _parse_model_entry(llm_default_models.get("asr_model", ASR_MDL)) image2text_entry = _parse_model_entry(llm_default_models.get("image2text_model", IMAGE2TEXT_MDL)) global CHAT_CFG, EMBEDDING_CFG, RERANK_CFG, ASR_CFG, IMAGE2TEXT_CFG CHAT_CFG = _resolve_per_model_config(chat_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL) EMBEDDING_CFG = _resolve_per_model_config(embedding_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL) RERANK_CFG = _resolve_per_model_config(rerank_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL) ASR_CFG = _resolve_per_model_config(asr_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL) IMAGE2TEXT_CFG = _resolve_per_model_config(image2text_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL) CHAT_MDL = CHAT_CFG.get("model", "") or "" EMBEDDING_MDL = os.getenv("TEI_MODEL", "BAAI/bge-small-en-v1.5") if "tei-" in os.getenv("COMPOSE_PROFILES", "") else "" RERANK_MDL = RERANK_CFG.get("model", "") or "" ASR_MDL = ASR_CFG.get("model", "") or "" IMAGE2TEXT_MDL = IMAGE2TEXT_CFG.get("model", "") or "" global HOST_IP, HOST_PORT HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1") HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port") global SECRET_KEY SECRET_KEY = _get_or_create_secret_key() # authentication authentication_conf = get_base_config("authentication", {}) global CLIENT_AUTHENTICATION, HTTP_APP_KEY, GITHUB_OAUTH, FEISHU_OAUTH, OAUTH_CONFIG # client CLIENT_AUTHENTICATION = authentication_conf.get("client", {}).get("switch", False) HTTP_APP_KEY = authentication_conf.get("client", {}).get("http_app_key") GITHUB_OAUTH = get_base_config("oauth", {}).get("github") FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu") OAUTH_CONFIG = get_base_config("oauth", {}) global DOC_ENGINE, docStoreConn, ES, OS, INFINITY DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch") # DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch") lower_case_doc_engine = DOC_ENGINE.lower() if lower_case_doc_engine == "elasticsearch": ES = get_base_config("es", {}) docStoreConn = rag.utils.es_conn.ESConnection() elif lower_case_doc_engine == "infinity": INFINITY = get_base_config("infinity", {"uri": "infinity:23817"}) docStoreConn = rag.utils.infinity_conn.InfinityConnection() elif lower_case_doc_engine == "opensearch": OS = get_base_config("os", {}) docStoreConn = rag.utils.opensearch_conn.OSConnection() else: raise Exception(f"Not supported doc engine: {DOC_ENGINE}") global AZURE, S3, MINIO, OSS if STORAGE_IMPL_TYPE in ['AZURE_SPN', 'AZURE_SAS']: AZURE = get_base_config("azure", {}) elif STORAGE_IMPL_TYPE == 'AWS_S3': S3 = get_base_config("s3", {}) elif STORAGE_IMPL_TYPE == 'MINIO': MINIO = decrypt_database_config(name="minio") elif STORAGE_IMPL_TYPE == 'OSS': OSS = get_base_config("oss", {}) global STORAGE_IMPL STORAGE_IMPL = StorageFactory.create(Storage[STORAGE_IMPL_TYPE]) global retriever, kg_retriever retriever = search.Dealer(docStoreConn) from graphrag import search as kg_search kg_retriever = kg_search.KGSearch(docStoreConn) global SANDBOX_HOST if int(os.environ.get("SANDBOX_ENABLED", "0")): SANDBOX_HOST = os.environ.get("SANDBOX_HOST", "sandbox-executor-manager") global SMTP_CONF SMTP_CONF = get_base_config("smtp", {}) global MAIL_SERVER, MAIL_PORT, MAIL_USE_SSL, MAIL_USE_TLS, MAIL_USERNAME, MAIL_PASSWORD, MAIL_DEFAULT_SENDER, MAIL_FRONTEND_URL MAIL_SERVER = SMTP_CONF.get("mail_server", "") MAIL_PORT = SMTP_CONF.get("mail_port", 000) MAIL_USE_SSL = SMTP_CONF.get("mail_use_ssl", True) MAIL_USE_TLS = SMTP_CONF.get("mail_use_tls", False) MAIL_USERNAME = SMTP_CONF.get("mail_username", "") MAIL_PASSWORD = SMTP_CONF.get("mail_password", "") mail_default_sender = SMTP_CONF.get("mail_default_sender", []) if mail_default_sender and len(mail_default_sender) >= 2: MAIL_DEFAULT_SENDER = (mail_default_sender[0], mail_default_sender[1]) MAIL_FRONTEND_URL = SMTP_CONF.get("mail_frontend_url", "") global DOC_MAXIMUM_SIZE, DOC_BULK_SIZE, EMBEDDING_BATCH_SIZE DOC_MAXIMUM_SIZE = int(os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024)) DOC_BULK_SIZE = int(os.environ.get("DOC_BULK_SIZE", 4)) EMBEDDING_BATCH_SIZE = int(os.environ.get("EMBEDDING_BATCH_SIZE", 16)) def check_and_install_torch(): global PARALLEL_DEVICES try: pip_install_torch() import torch.cuda PARALLEL_DEVICES = torch.cuda.device_count() logging.info(f"found {PARALLEL_DEVICES} gpus") except Exception: logging.info("can't import package 'torch'") def _parse_model_entry(entry): if isinstance(entry, str): return {"name": entry, "factory": None, "api_key": None, "base_url": None} if isinstance(entry, dict): name = entry.get("name") or entry.get("model") or "" return { "name": name, "factory": entry.get("factory"), "api_key": entry.get("api_key"), "base_url": entry.get("base_url"), } return {"name": "", "factory": None, "api_key": None, "base_url": None} def _resolve_per_model_config(entry_dict, backup_factory, backup_api_key, backup_base_url): name = (entry_dict.get("name") or "").strip() m_factory = entry_dict.get("factory") or backup_factory or "" m_api_key = entry_dict.get("api_key") or backup_api_key or "" m_base_url = entry_dict.get("base_url") or backup_base_url or "" if name and "@" not in name and m_factory: name = f"{name}@{m_factory}" return { "model": name, "factory": m_factory, "api_key": m_api_key, "base_url": m_base_url, } def print_rag_settings(): logging.info(f"MAX_CONTENT_LENGTH: {DOC_MAXIMUM_SIZE}") logging.info(f"MAX_FILE_COUNT_PER_USER: {int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))}")