{ "id": 27, "title": { "en": "Interactive Agent", "zh": "可交互的 Agent" }, "description": { "en": "During the Agent’s execution, users can actively intervene and interact with the Agent to adjust or guide its output, ensuring the final result aligns with their intentions.", "zh": "在 Agent 的运行过程中,用户可以随时介入,与 Agent 进行交互,以调整或引导生成结果,使最终输出更符合预期。" }, "canvas_type": "Agent", "dsl": { "components": { "Agent:LargeFliesMelt": { "downstream": [ "UserFillUp:GoldBroomsRelate" ], "obj": { "component_name": "Agent", "params": { "cite": true, "delay_after_error": 1, "description": "", "exception_default_value": "", "exception_goto": [], "exception_method": "", "frequencyPenaltyEnabled": false, "frequency_penalty": 0.7, "llm_id": "qwen-turbo@Tongyi-Qianwen", "maxTokensEnabled": false, "max_retries": 3, "max_rounds": 1, "max_tokens": 256, "mcp": [], "message_history_window_size": 12, "outputs": { "content": { "type": "string", "value": "" }, "structured": {} }, "presencePenaltyEnabled": false, "presence_penalty": 0.4, "prompts": [ { "content": "User query:{sys.query}", "role": "user" } ], "sys_prompt": "\nYou are the Planning Agent in a multi-agent RAG workflow.\nYour sole job is to design a crisp, executable Search Plan for the next agent. Do not search or answer the user’s question.\n\n\nUnderstand the user’s task and decompose it into evidence-seeking steps.\nProduce high-quality queries and retrieval settings tailored to the task type (fact lookup, multi-hop reasoning, comparison, statistics, how-to, etc.).\nIdentify missing information that would materially change the plan (≤3 concise questions).\nOptimize for source trustworthiness, diversity, and recency; define stopping criteria to avoid over-searching.\nAnswer in 150 words.\n", "temperature": 0.1, "temperatureEnabled": false, "tools": [], "topPEnabled": false, "top_p": 0.3, "user_prompt": "", "visual_files_var": "" } }, "upstream": [ "begin" ] }, "Agent:TangyWordsType": { "downstream": [ "Message:FreshWallsStudy" ], "obj": { "component_name": "Agent", "params": { "cite": true, "delay_after_error": 1, "description": "", "exception_default_value": "", "exception_goto": [], "exception_method": "", "frequencyPenaltyEnabled": false, "frequency_penalty": 0.7, "llm_id": "qwen-turbo@Tongyi-Qianwen", "maxTokensEnabled": false, "max_retries": 3, "max_rounds": 1, "max_tokens": 256, "mcp": [], "message_history_window_size": 12, "outputs": { "content": { "type": "string", "value": "" }, "structured": {} }, "presencePenaltyEnabled": false, "presence_penalty": 0.4, "prompts": [ { "content": "Search Plan: {Agent:LargeFliesMelt@content}\n\n\n\nAwait Response feedback:{UserFillUp:GoldBroomsRelate@instructions}\n", "role": "user" } ], "sys_prompt": "\nYou are the Search Agent.\nYour job is to execute the approved Search Plan, integrate the Await Response feedback, retrieve evidence, and produce a well-grounded answer.\n\n\nTranslate the plan + feedback into concrete searches.\nCollect diverse, trustworthy, and recent evidence meeting the plan’s evidence bar.\nSynthesize a concise answer; include citations next to claims they support.\nIf evidence is insufficient or conflicting, clearly state limitations and propose next steps.\n\n \nRetrieval: You must use Retrieval to do the search.\n \n", "temperature": 0.1, "temperatureEnabled": false, "tools": [ { "component_name": "Retrieval", "name": "Retrieval", "params": { "cross_languages": [], "description": "", "empty_response": "", "kb_ids": [], "keywords_similarity_weight": 0.7, "outputs": { "formalized_content": { "type": "string", "value": "" }, "json": { "type": "Array", "value": [] } }, "rerank_id": "", "similarity_threshold": 0.2, "toc_enhance": false, "top_k": 1024, "top_n": 8, "use_kg": false } } ], "topPEnabled": false, "top_p": 0.3, "user_prompt": "", "visual_files_var": "" } }, "upstream": [ "UserFillUp:GoldBroomsRelate" ] }, "Message:FreshWallsStudy": { "downstream": [], "obj": { "component_name": "Message", "params": { "content": [ "{Agent:TangyWordsType@content}" ] } }, "upstream": [ "Agent:TangyWordsType" ] }, "UserFillUp:GoldBroomsRelate": { "downstream": [ "Agent:TangyWordsType" ], "obj": { "component_name": "UserFillUp", "params": { "enable_tips": true, "inputs": { "instructions": { "name": "instructions", "optional": false, "options": [], "type": "paragraph" } }, "outputs": { "instructions": { "name": "instructions", "optional": false, "options": [], "type": "paragraph" } }, "tips": "Here is my search plan:\n{Agent:LargeFliesMelt@content}\nAre you okay with it?" } }, "upstream": [ "Agent:LargeFliesMelt" ] }, "begin": { "downstream": [ "Agent:LargeFliesMelt" ], "obj": { "component_name": "Begin", "params": {} }, "upstream": [] } }, "globals": { "sys.conversation_turns": 0, "sys.files": [], "sys.query": "", "sys.user_id": "" }, "graph": { "edges": [ { "data": { "isHovered": false }, "id": "xy-edge__beginstart-Agent:LargeFliesMeltend", "source": "begin", "sourceHandle": "start", "target": "Agent:LargeFliesMelt", "targetHandle": "end" }, { "data": { "isHovered": false }, "id": "xy-edge__Agent:LargeFliesMeltstart-UserFillUp:GoldBroomsRelateend", "source": "Agent:LargeFliesMelt", "sourceHandle": "start", "target": "UserFillUp:GoldBroomsRelate", "targetHandle": "end" }, { "data": { "isHovered": false }, "id": "xy-edge__UserFillUp:GoldBroomsRelatestart-Agent:TangyWordsTypeend", "source": "UserFillUp:GoldBroomsRelate", "sourceHandle": "start", "target": "Agent:TangyWordsType", "targetHandle": "end" }, { "id": "xy-edge__Agent:TangyWordsTypetool-Tool:NastyBatsGoend", "source": "Agent:TangyWordsType", "sourceHandle": "tool", "target": "Tool:NastyBatsGo", "targetHandle": "end" }, { "id": "xy-edge__Agent:TangyWordsTypestart-Message:FreshWallsStudyend", "source": "Agent:TangyWordsType", "sourceHandle": "start", "target": "Message:FreshWallsStudy", "targetHandle": "end" } ], "nodes": [ { "data": { "label": "Begin", "name": "begin" }, "dragging": false, "id": "begin", "measured": { "height": 50, "width": 200 }, "position": { "x": 154.9008789064451, "y": 119.51001744285344 }, "selected": false, "sourcePosition": "left", "targetPosition": "right", "type": "beginNode" }, { "data": { "form": { "cite": true, "delay_after_error": 1, "description": "", "exception_default_value": "", "exception_goto": [], "exception_method": "", "frequencyPenaltyEnabled": false, "frequency_penalty": 0.7, "llm_id": "qwen-turbo@Tongyi-Qianwen", "maxTokensEnabled": false, "max_retries": 3, "max_rounds": 1, "max_tokens": 256, "mcp": [], "message_history_window_size": 12, "outputs": { "content": { "type": "string", "value": "" }, "structured": {} }, "presencePenaltyEnabled": false, "presence_penalty": 0.4, "prompts": [ { "content": "User query:{sys.query}", "role": "user" } ], "sys_prompt": "\nYou are the Planning Agent in a multi-agent RAG workflow.\nYour sole job is to design a crisp, executable Search Plan for the next agent. Do not search or answer the user’s question.\n\n\nUnderstand the user’s task and decompose it into evidence-seeking steps.\nProduce high-quality queries and retrieval settings tailored to the task type (fact lookup, multi-hop reasoning, comparison, statistics, how-to, etc.).\nIdentify missing information that would materially change the plan (≤3 concise questions).\nOptimize for source trustworthiness, diversity, and recency; define stopping criteria to avoid over-searching.\nAnswer in 150 words.\n", "temperature": 0.1, "temperatureEnabled": false, "tools": [], "topPEnabled": false, "top_p": 0.3, "user_prompt": "", "visual_files_var": "" }, "label": "Agent", "name": "Planning Agent" }, "dragging": false, "id": "Agent:LargeFliesMelt", "measured": { "height": 90, "width": 200 }, "position": { "x": 443.96309330796714, "y": 104.61370811205677 }, "selected": false, "sourcePosition": "right", "targetPosition": "left", "type": "agentNode" }, { "data": { "form": { "enable_tips": true, "inputs": { "instructions": { "name": "instructions", "optional": false, "options": [], "type": "paragraph" } }, "outputs": { "instructions": { "name": "instructions", "optional": false, "options": [], "type": "paragraph" } }, "tips": "Here is my search plan:\n{Agent:LargeFliesMelt@content}\nAre you okay with it?" }, "label": "UserFillUp", "name": "Await Response" }, "dragging": false, "id": "UserFillUp:GoldBroomsRelate", "measured": { "height": 50, "width": 200 }, "position": { "x": 683.3409492927474, "y": 116.76274137645598 }, "selected": false, "sourcePosition": "right", "targetPosition": "left", "type": "ragNode" }, { "data": { "form": { "cite": true, "delay_after_error": 1, "description": "", "exception_default_value": "", "exception_goto": [], "exception_method": "", "frequencyPenaltyEnabled": false, "frequency_penalty": 0.7, "llm_id": "qwen-turbo@Tongyi-Qianwen", "maxTokensEnabled": false, "max_retries": 3, "max_rounds": 1, "max_tokens": 256, "mcp": [], "message_history_window_size": 12, "outputs": { "content": { "type": "string", "value": "" }, "structured": {} }, "presencePenaltyEnabled": false, "presence_penalty": 0.4, "prompts": [ { "content": "Search Plan: {Agent:LargeFliesMelt@content}\n\n\n\nAwait Response feedback:{UserFillUp:GoldBroomsRelate@instructions}\n", "role": "user" } ], "sys_prompt": "\nYou are the Search Agent.\nYour job is to execute the approved Search Plan, integrate the Await Response feedback, retrieve evidence, and produce a well-grounded answer.\n\n\nTranslate the plan + feedback into concrete searches.\nCollect diverse, trustworthy, and recent evidence meeting the plan’s evidence bar.\nSynthesize a concise answer; include citations next to claims they support.\nIf evidence is insufficient or conflicting, clearly state limitations and propose next steps.\n\n \nRetrieval: You must use Retrieval to do the search.\n \n", "temperature": 0.1, "temperatureEnabled": false, "tools": [ { "component_name": "Retrieval", "name": "Retrieval", "params": { "cross_languages": [], "description": "", "empty_response": "", "kb_ids": [], "keywords_similarity_weight": 0.7, "outputs": { "formalized_content": { "type": "string", "value": "" }, "json": { "type": "Array", "value": [] } }, "rerank_id": "", "similarity_threshold": 0.2, "toc_enhance": false, "top_k": 1024, "top_n": 8, "use_kg": false } } ], "topPEnabled": false, "top_p": 0.3, "user_prompt": "", "visual_files_var": "" }, "label": "Agent", "name": "Search Agent" }, "dragging": false, "id": "Agent:TangyWordsType", "measured": { "height": 90, "width": 200 }, "position": { "x": 944.6411255659472, "y": 99.84499066368488 }, "selected": true, "sourcePosition": "right", "targetPosition": "left", "type": "agentNode" }, { "data": { "form": { "description": "This is an agent for a specific task.", "user_prompt": "This is the order you need to send to the agent." }, "label": "Tool", "name": "flow.tool_0" }, "id": "Tool:NastyBatsGo", "measured": { "height": 50, "width": 200 }, "position": { "x": 862.6411255659472, "y": 239.84499066368488 }, "sourcePosition": "right", "targetPosition": "left", "type": "toolNode" }, { "data": { "form": { "content": [ "{Agent:TangyWordsType@content}" ] }, "label": "Message", "name": "Message" }, "dragging": false, "id": "Message:FreshWallsStudy", "measured": { "height": 50, "width": 200 }, "position": { "x": 1216.7057997987163, "y": 120.48541298149814 }, "selected": false, "sourcePosition": "right", "targetPosition": "left", "type": "messageNode" } ] }, "history": [], "messages": [], "path": [], "retrieval": [], "variables": {} }, "avatar": "" }