# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import random from copy import deepcopy, copy import trio import xxhash from agent.component.llm import LLMParam, LLM from rag.flow.base import ProcessBase, ProcessParamBase from rag.prompts.generator import run_toc_from_text class ExtractorParam(ProcessParamBase, LLMParam): def __init__(self): super().__init__() self.field_name = "" def check(self): super().check() self.check_empty(self.field_name, "Result Destination") class Extractor(ProcessBase, LLM): component_name = "Extractor" def _build_TOC(self, docs): self.callback(message="Start to generate table of content ...") docs = sorted(docs, key=lambda d:( d.get("page_num_int", 0)[0] if isinstance(d.get("page_num_int", 0), list) else d.get("page_num_int", 0), d.get("top_int", 0)[0] if isinstance(d.get("top_int", 0), list) else d.get("top_int", 0) )) toc: list[dict] = trio.run(run_toc_from_text, [d["text"] for d in docs], self.chat_mdl) logging.info("------------ T O C -------------\n"+json.dumps(toc, ensure_ascii=False, indent=' ')) ii = 0 while ii < len(toc): try: idx = int(toc[ii]["chunk_id"]) del toc[ii]["chunk_id"] toc[ii]["ids"] = [docs[idx]["id"]] if ii == len(toc) -1: break for jj in range(idx+1, int(toc[ii+1]["chunk_id"])+1): toc[ii]["ids"].append(docs[jj]["id"]) except Exception as e: logging.exception(e) ii += 1 if toc: d = copy.deepcopy(docs[-1]) d["content_with_weight"] = json.dumps(toc, ensure_ascii=False) d["toc_kwd"] = "toc" d["available_int"] = 0 d["page_num_int"] = [100000000] d["id"] = xxhash.xxh64((d["content_with_weight"] + str(d["doc_id"])).encode("utf-8", "surrogatepass")).hexdigest() return d return None async def _invoke(self, **kwargs): self.set_output("output_format", "chunks") self.callback(random.randint(1, 5) / 100.0, "Start to generate.") inputs = self.get_input_elements() chunks = [] chunks_key = "" args = {} for k, v in inputs.items(): args[k] = v["value"] if isinstance(args[k], list): chunks = deepcopy(args[k]) chunks_key = k if chunks: if self._param.field_name == "toc": toc = self._build_TOC(chunks) chunks.append(toc) self.set_output("chunks", chunks) return prog = 0 for i, ck in enumerate(chunks): args[chunks_key] = ck["text"] msg, sys_prompt = self._sys_prompt_and_msg([], args) msg.insert(0, {"role": "system", "content": sys_prompt}) ck[self._param.field_name] = self._generate(msg) prog += 1./len(chunks) if i % (len(chunks)//100+1) == 1: self.callback(prog, f"{i+1} / {len(chunks)}") self.set_output("chunks", chunks) else: msg, sys_prompt = self._sys_prompt_and_msg([], args) msg.insert(0, {"role": "system", "content": sys_prompt}) self.set_output("chunks", [{self._param.field_name: self._generate(msg)}])