# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import asyncio import inspect import logging import queue import re import threading from functools import partial from typing import Generator from api.db.db_models import LLM from api.db.services.common_service import CommonService from api.db.services.tenant_llm_service import LLM4Tenant, TenantLLMService from common.constants import LLMType from common.token_utils import num_tokens_from_string class LLMService(CommonService): model = LLM def get_init_tenant_llm(user_id): from common import settings tenant_llm = [] model_configs = { LLMType.CHAT: settings.CHAT_CFG, LLMType.EMBEDDING: settings.EMBEDDING_CFG, LLMType.SPEECH2TEXT: settings.ASR_CFG, LLMType.IMAGE2TEXT: settings.IMAGE2TEXT_CFG, LLMType.RERANK: settings.RERANK_CFG, } seen = set() factory_configs = [] for factory_config in [ settings.CHAT_CFG, settings.EMBEDDING_CFG, settings.ASR_CFG, settings.IMAGE2TEXT_CFG, settings.RERANK_CFG, ]: factory_name = factory_config["factory"] if factory_name not in seen: seen.add(factory_name) factory_configs.append(factory_config) for factory_config in factory_configs: for llm in LLMService.query(fid=factory_config["factory"]): tenant_llm.append( { "tenant_id": user_id, "llm_factory": factory_config["factory"], "llm_name": llm.llm_name, "model_type": llm.model_type, "api_key": model_configs.get(llm.model_type, {}).get("api_key", factory_config["api_key"]), "api_base": model_configs.get(llm.model_type, {}).get("base_url", factory_config["base_url"]), "max_tokens": llm.max_tokens if llm.max_tokens else 8192, } ) unique = {} for item in tenant_llm: key = (item["tenant_id"], item["llm_factory"], item["llm_name"]) if key not in unique: unique[key] = item return list(unique.values()) class LLMBundle(LLM4Tenant): def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs): super().__init__(tenant_id, llm_type, llm_name, lang, **kwargs) def bind_tools(self, toolcall_session, tools): if not self.is_tools: logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!") return self.mdl.bind_tools(toolcall_session, tools) def encode(self, texts: list): if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode", model=self.llm_name, input={"texts": texts}) safe_texts = [] for text in texts: token_size = num_tokens_from_string(text) if token_size > self.max_length: target_len = int(self.max_length * 0.95) safe_texts.append(text[:target_len]) else: safe_texts.append(text) embeddings, used_tokens = self.mdl.encode(safe_texts) llm_name = getattr(self, "llm_name", None) if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name): logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens)) if self.langfuse: generation.update(usage_details={"total_tokens": used_tokens}) generation.end() return embeddings, used_tokens def encode_queries(self, query: str): if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode_queries", model=self.llm_name, input={"query": query}) emd, used_tokens = self.mdl.encode_queries(query) llm_name = getattr(self, "llm_name", None) if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name): logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens)) if self.langfuse: generation.update(usage_details={"total_tokens": used_tokens}) generation.end() return emd, used_tokens def similarity(self, query: str, texts: list): if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="similarity", model=self.llm_name, input={"query": query, "texts": texts}) sim, used_tokens = self.mdl.similarity(query, texts) if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens): logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens)) if self.langfuse: generation.update(usage_details={"total_tokens": used_tokens}) generation.end() return sim, used_tokens def describe(self, image, max_tokens=300): if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe", metadata={"model": self.llm_name}) txt, used_tokens = self.mdl.describe(image) if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens): logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens)) if self.langfuse: generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens}) generation.end() return txt def describe_with_prompt(self, image, prompt): if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt}) txt, used_tokens = self.mdl.describe_with_prompt(image, prompt) if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens): logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens)) if self.langfuse: generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens}) generation.end() return txt def transcription(self, audio): if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="transcription", metadata={"model": self.llm_name}) txt, used_tokens = self.mdl.transcription(audio) if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens): logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens)) if self.langfuse: generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens}) generation.end() return txt def stream_transcription(self, audio): mdl = self.mdl supports_stream = hasattr(mdl, "stream_transcription") and callable(getattr(mdl, "stream_transcription")) if supports_stream: if self.langfuse: generation = self.langfuse.start_generation( trace_context=self.trace_context, name="stream_transcription", metadata={"model": self.llm_name}, ) final_text = "" used_tokens = 0 try: for evt in mdl.stream_transcription(audio): if evt.get("event") == "final": final_text = evt.get("text", "") yield evt except Exception as e: err = {"event": "error", "text": str(e)} yield err final_text = final_text or "" finally: if final_text: used_tokens = num_tokens_from_string(final_text) TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens) if self.langfuse: generation.update( output={"output": final_text}, usage_details={"total_tokens": used_tokens}, ) generation.end() return if self.langfuse: generation = self.langfuse.start_generation( trace_context=self.trace_context, name="stream_transcription", metadata={"model": self.llm_name}, ) full_text, used_tokens = mdl.transcription(audio) if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens): logging.error(f"LLMBundle.stream_transcription can't update token usage for {self.tenant_id}/SEQUENCE2TXT used_tokens: {used_tokens}") if self.langfuse: generation.update( output={"output": full_text}, usage_details={"total_tokens": used_tokens}, ) generation.end() yield { "event": "final", "text": full_text, "streaming": False, } def tts(self, text: str) -> Generator[bytes, None, None]: if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="tts", input={"text": text}) for chunk in self.mdl.tts(text): if isinstance(chunk, int): if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name): logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id)) return yield chunk if self.langfuse: generation.end() def _remove_reasoning_content(self, txt: str) -> str: first_think_start = txt.find("") if first_think_start == -1: return txt last_think_end = txt.rfind("") if last_think_end == -1: return txt if last_think_end < first_think_start: return txt return txt[last_think_end + len("") :] @staticmethod def _clean_param(chat_partial, **kwargs): func = chat_partial.func sig = inspect.signature(func) support_var_args = False allowed_params = set() for param in sig.parameters.values(): if param.kind == inspect.Parameter.VAR_KEYWORD: support_var_args = True elif param.kind in (inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY): allowed_params.add(param.name) if support_var_args: return kwargs else: return {k: v for k, v in kwargs.items() if k in allowed_params} def _run_coroutine_sync(self, coro): try: asyncio.get_running_loop() except RuntimeError: return asyncio.run(coro) result_queue: queue.Queue = queue.Queue() def runner(): try: result_queue.put((True, asyncio.run(coro))) except Exception as e: result_queue.put((False, e)) thread = threading.Thread(target=runner, daemon=True) thread.start() thread.join() success, value = result_queue.get_nowait() if success: return value raise value def chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs) -> str: return self._run_coroutine_sync(self.async_chat(system, history, gen_conf, **kwargs)) def _sync_from_async_stream(self, async_gen_fn, *args, **kwargs): result_queue: queue.Queue = queue.Queue() def runner(): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) async def consume(): try: async for item in async_gen_fn(*args, **kwargs): result_queue.put(item) except Exception as e: result_queue.put(e) finally: result_queue.put(StopIteration) loop.run_until_complete(consume()) loop.close() threading.Thread(target=runner, daemon=True).start() while True: item = result_queue.get() if item is StopIteration: break if isinstance(item, Exception): raise item yield item def chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs): ans = "" for txt in self._sync_from_async_stream(self.async_chat_streamly, system, history, gen_conf, **kwargs): if isinstance(txt, int): break if txt.endswith(""): ans = txt[: -len("")] continue if not self.verbose_tool_use: txt = re.sub(r".*?", "", txt, flags=re.DOTALL) # cancatination has beend done in async_chat_streamly ans = txt yield ans def _bridge_sync_stream(self, gen): loop = asyncio.get_running_loop() queue: asyncio.Queue = asyncio.Queue() def worker(): try: for item in gen: loop.call_soon_threadsafe(queue.put_nowait, item) except Exception as e: loop.call_soon_threadsafe(queue.put_nowait, e) finally: loop.call_soon_threadsafe(queue.put_nowait, StopAsyncIteration) threading.Thread(target=worker, daemon=True).start() return queue async def async_chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs): if self.is_tools and getattr(self.mdl, "is_tools", False) and hasattr(self.mdl, "async_chat_with_tools"): base_fn = self.mdl.async_chat_with_tools elif hasattr(self.mdl, "async_chat"): base_fn = self.mdl.async_chat else: raise RuntimeError(f"Model {self.mdl} does not implement async_chat or async_chat_with_tools") generation = None if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat", model=self.llm_name, input={"system": system, "history": history}) chat_partial = partial(base_fn, system, history, gen_conf) use_kwargs = self._clean_param(chat_partial, **kwargs) try: txt, used_tokens = await chat_partial(**use_kwargs) except Exception as e: if generation: generation.update(output={"error": str(e)}) generation.end() raise txt = self._remove_reasoning_content(txt) if not self.verbose_tool_use: txt = re.sub(r".*?", "", txt, flags=re.DOTALL) if used_tokens and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name): logging.error("LLMBundle.async_chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens)) if generation: generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens}) generation.end() return txt async def async_chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs): total_tokens = 0 ans = "" if self.is_tools and getattr(self.mdl, "is_tools", False) and hasattr(self.mdl, "async_chat_streamly_with_tools"): stream_fn = getattr(self.mdl, "async_chat_streamly_with_tools", None) elif hasattr(self.mdl, "async_chat_streamly"): stream_fn = getattr(self.mdl, "async_chat_streamly", None) else: raise RuntimeError(f"Model {self.mdl} does not implement async_chat or async_chat_with_tools") generation = None if self.langfuse: generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat_streamly", model=self.llm_name, input={"system": system, "history": history}) if stream_fn: chat_partial = partial(stream_fn, system, history, gen_conf) use_kwargs = self._clean_param(chat_partial, **kwargs) try: async for txt in chat_partial(**use_kwargs): if isinstance(txt, int): total_tokens = txt break if txt.endswith(""): ans = ans[: -len("")] if not self.verbose_tool_use: txt = re.sub(r".*?", "", txt, flags=re.DOTALL) ans += txt yield ans except Exception as e: if generation: generation.update(output={"error": str(e)}) generation.end() raise if total_tokens and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, total_tokens, self.llm_name): logging.error("LLMBundle.async_chat_streamly can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, total_tokens)) if generation: generation.update(output={"output": ans}, usage_details={"total_tokens": total_tokens}) generation.end() return