{
"id": 27,
"title": {
"en": "Interactive Agent",
"zh": "可交互的 Agent"
},
"description": {
"en": "During the Agent’s execution, users can actively intervene and interact with the Agent to adjust or guide its output, ensuring the final result aligns with their intentions.",
"zh": "在 Agent 的运行过程中,用户可以随时介入,与 Agent 进行交互,以调整或引导生成结果,使最终输出更符合预期。"
},
"canvas_type": "Agent",
"dsl": {
"components": {
"Agent:LargeFliesMelt": {
"downstream": [
"UserFillUp:GoldBroomsRelate"
],
"obj": {
"component_name": "Agent",
"params": {
"cite": true,
"delay_after_error": 1,
"description": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": "",
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.7,
"llm_id": "qwen-turbo@Tongyi-Qianwen",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 256,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
},
"structured": {}
},
"presencePenaltyEnabled": false,
"presence_penalty": 0.4,
"prompts": [
{
"content": "User query:{sys.query}",
"role": "user"
}
],
"sys_prompt": "\nYou are the Planning Agent in a multi-agent RAG workflow.\nYour sole job is to design a crisp, executable Search Plan for the next agent. Do not search or answer the user’s question.\n\n\nUnderstand the user’s task and decompose it into evidence-seeking steps.\nProduce high-quality queries and retrieval settings tailored to the task type (fact lookup, multi-hop reasoning, comparison, statistics, how-to, etc.).\nIdentify missing information that would materially change the plan (≤3 concise questions).\nOptimize for source trustworthiness, diversity, and recency; define stopping criteria to avoid over-searching.\nAnswer in 150 words.\n",
"temperature": 0.1,
"temperatureEnabled": false,
"tools": [],
"topPEnabled": false,
"top_p": 0.3,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Agent:TangyWordsType": {
"downstream": [
"Message:FreshWallsStudy"
],
"obj": {
"component_name": "Agent",
"params": {
"cite": true,
"delay_after_error": 1,
"description": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": "",
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.7,
"llm_id": "qwen-turbo@Tongyi-Qianwen",
"maxTokensEnabled": false,
"max_retries": 3,
"max_rounds": 1,
"max_tokens": 256,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
},
"structured": {}
},
"presencePenaltyEnabled": false,
"presence_penalty": 0.4,
"prompts": [
{
"content": "Search Plan: {Agent:LargeFliesMelt@content}\n\n\n\nAwait Response feedback:{UserFillUp:GoldBroomsRelate@instructions}\n",
"role": "user"
}
],
"sys_prompt": "\nYou are the Search Agent.\nYour job is to execute the approved Search Plan, integrate the Await Response feedback, retrieve evidence, and produce a well-grounded answer.\n\n\nTranslate the plan + feedback into concrete searches.\nCollect diverse, trustworthy, and recent evidence meeting the plan’s evidence bar.\nSynthesize a concise answer; include citations next to claims they support.\nIf evidence is insufficient or conflicting, clearly state limitations and propose next steps.\n\n \nRetrieval: You must use Retrieval to do the search.\n \n",
"temperature": 0.1,
"temperatureEnabled": false,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
},
"json": {
"type": "Array