# # Copyright 2025 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import copy import re from common.constants import ParserType from io import BytesIO from rag.nlp import rag_tokenizer, tokenize, tokenize_table, bullets_category, title_frequency, tokenize_chunks, docx_question_level from common.token_utils import num_tokens_from_string from deepdoc.parser import PdfParser, DocxParser from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper,vision_figure_parser_docx_wrapper from docx import Document from PIL import Image from rag.app.naive import by_plaintext, PARSERS class Pdf(PdfParser): def __init__(self): self.model_speciess = ParserType.MANUAL.value super().__init__() def __call__(self, filename, binary=None, from_page=0, to_page=100000, zoomin=3, callback=None): from timeit import default_timer as timer start = timer() callback(msg="OCR started") self.__images__( filename if not binary else binary, zoomin, from_page, to_page, callback ) callback(msg="OCR finished ({:.2f}s)".format(timer() - start)) logging.debug("OCR: {}".format(timer() - start)) start = timer() self._layouts_rec(zoomin) callback(0.65, "Layout analysis ({:.2f}s)".format(timer() - start)) logging.debug("layouts: {}".format(timer() - start)) start = timer() self._table_transformer_job(zoomin) callback(0.67, "Table analysis ({:.2f}s)".format(timer() - start)) start = timer() self._text_merge() tbls = self._extract_table_figure(True, zoomin, True, True) self._concat_downward() self._filter_forpages() callback(0.68, "Text merged ({:.2f}s)".format(timer() - start)) # clean mess for b in self.boxes: b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip()) return [(b["text"], b.get("layoutno", ""), self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)], tbls class Docx(DocxParser): def __init__(self): pass def get_picture(self, document, paragraph): img = paragraph._element.xpath('.//pic:pic') if not img: return None try: img = img[0] embed = img.xpath('.//a:blip/@r:embed')[0] related_part = document.part.related_parts[embed] image = related_part.image if image is not None: image = Image.open(BytesIO(image.blob)) return image elif related_part.blob is not None: image = Image.open(BytesIO(related_part.blob)) return image else: return None except Exception: return None def concat_img(self, img1, img2): if img1 and not img2: return img1 if not img1 and img2: return img2 if not img1 and not img2: return None width1, height1 = img1.size width2, height2 = img2.size new_width = max(width1, width2) new_height = height1 + height2 new_image = Image.new('RGB', (new_width, new_height)) new_image.paste(img1, (0, 0)) new_image.paste(img2, (0, height1)) return new_image def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None): self.doc = Document( filename) if not binary else Document(BytesIO(binary)) pn = 0 last_answer, last_image = "", None question_stack, level_stack = [], [] ti_list = [] for p in self.doc.paragraphs: if pn > to_page: break question_level, p_text = 0, '' if from_page <= pn < to_page and p.text.strip(): question_level, p_text = docx_question_level(p) if not question_level or question_level > 6: # not a question last_answer = f'{last_answer}\n{p_text}' current_image = self.get_picture(self.doc, p) last_image = self.concat_img(last_image, current_image) else: # is a question if last_answer or last_image: sum_question = '\n'.join(question_stack) if sum_question: ti_list.append((f'{sum_question}\n{last_answer}', last_image)) last_answer, last_image = '', None i = question_level while question_stack and i <= level_stack[-1]: question_stack.pop() level_stack.pop() question_stack.append(p_text) level_stack.append(question_level) for run in p.runs: if 'lastRenderedPageBreak' in run._element.xml: pn += 1 continue if 'w:br' in run._element.xml and 'type="page"' in run._element.xml: pn += 1 if last_answer: sum_question = '\n'.join(question_stack) if sum_question: ti_list.append((f'{sum_question}\n{last_answer}', last_image)) tbls = [] for tb in self.doc.tables: html= "" for r in tb.rows: html += "" i = 0 while i < len(r.cells): span = 1 c = r.cells[i] for j in range(i+1, len(r.cells)): if c.text == r.cells[j].text: span += 1 i = j else: break i += 1 html += f"" if span == 1 else f"" html += "" html += "
{c.text}{c.text}
" tbls.append(((None, html), "")) return ti_list, tbls def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs): """ Only pdf is supported. """ parser_config = kwargs.get( "parser_config", { "chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC"}) pdf_parser = None doc = { "docnm_kwd": filename } doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"])) doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) # is it English eng = lang.lower() == "english" # pdf_parser.is_english if re.search(r"\.pdf$", filename, re.IGNORECASE): layout_recognizer = parser_config.get("layout_recognize", "DeepDOC") if isinstance(layout_recognizer, bool): layout_recognizer = "DeepDOC" if layout_recognizer else "Plain Text" name = layout_recognizer.strip().lower() pdf_parser = PARSERS.get(name, by_plaintext) callback(0.1, "Start to parse.") sections, tbls, pdf_parser = pdf_parser( filename = filename, binary = binary, from_page = from_page, to_page = to_page, lang = lang, callback = callback, pdf_cls = Pdf, layout_recognizer = layout_recognizer, parse_method = "manual", **kwargs ) def _normalize_section(section): # pad section to length 3: (txt, sec_id, poss) if len(section) == 1: section = (section[0], "", []) elif len(section) == 2: section = (section[0], "", section[1]) elif len(section) != 3: raise ValueError(f"Unexpected section length: {len(section)} (value={section!r})") txt, layoutno, poss = section if isinstance(poss, str): poss = pdf_parser.extract_positions(poss) first = poss[0] # tuple: ([pn], x1, x2, y1, y2) pn = first[0] if isinstance(pn, list): pn = pn[0] # [pn] -> pn poss[0] = (pn, *first[1:]) return (txt, layoutno, poss) sections = [_normalize_section(sec) for sec in sections] if not sections and not tbls: return [] if name in ["tcadp", "docling", "mineru"]: parser_config["chunk_token_num"] = 0 callback(0.8, "Finish parsing.") if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.03: max_lvl = max([lvl for _, lvl in pdf_parser.outlines]) most_level = max(0, max_lvl - 1) levels = [] for txt, _, _ in sections: for t, lvl in pdf_parser.outlines: tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)]) tks_ = set([txt[i] + txt[i + 1] for i in range(min(len(t), len(txt) - 1))]) if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8: levels.append(lvl) break else: levels.append(max_lvl + 1) else: bull = bullets_category([txt for txt, _, _ in sections]) most_level, levels = title_frequency( bull, [(txt, lvl) for txt, lvl, _ in sections]) assert len(sections) == len(levels) sec_ids = [] sid = 0 for i, lvl in enumerate(levels): if lvl <= most_level and i > 0 and lvl != levels[i - 1]: sid += 1 sec_ids.append(sid) sections = [(txt, sec_ids[i], poss) for i, (txt, _, poss) in enumerate(sections)] for (img, rows), poss in tbls: if not rows: continue sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss])) def tag(pn, left, right, top, bottom): if pn + left + right + top + bottom == 0: return "" return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \ .format(pn, left, right, top, bottom) chunks = [] last_sid = -2 tk_cnt = 0 for txt, sec_id, poss in sorted(sections, key=lambda x: ( x[-1][0][0], x[-1][0][3], x[-1][0][1])): poss = "\t".join([tag(*pos) for pos in poss]) if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)): if chunks: chunks[-1] += "\n" + txt + poss tk_cnt += num_tokens_from_string(txt) continue chunks.append(txt + poss) tk_cnt = num_tokens_from_string(txt) if sec_id > -1: last_sid = sec_id tbls=vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs) res = tokenize_table(tbls, doc, eng) res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser)) return res elif re.search(r"\.docx?$", filename, re.IGNORECASE): docx_parser = Docx() ti_list, tbls = docx_parser(filename, binary, from_page=0, to_page=10000, callback=callback) tbls=vision_figure_parser_docx_wrapper(sections=ti_list,tbls=tbls,callback=callback,**kwargs) res = tokenize_table(tbls, doc, eng) for text, image in ti_list: d = copy.deepcopy(doc) if image: d['image'] = image d["doc_type_kwd"] = "image" tokenize(d, text, eng) res.append(d) return res else: raise NotImplementedError("file type not supported yet(pdf and docx supported)") if __name__ == "__main__": import sys def dummy(prog=None, msg=""): pass chunk(sys.argv[1], callback=dummy)