Compare commits

..

157 Commits

Author SHA1 Message Date
e650f0d368 Docs: Added v0.20.5 release notes. (#10014)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2025-09-10 11:21:25 +08:00
067b4fc012 Docs: Update version references to v0.20.5 in READMEs and docs (#10015)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.4 to v0.20.5
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-09-10 11:20:43 +08:00
38ff2ffc01 Fix: typo. (#10011)
### What problem does this PR solve?


### Type of change
- [x] Refactoring
2025-09-10 11:07:03 +08:00
a9cc992d13 Feat: Translate the maxRounds field of the chat settings #3221 (#10010)
### What problem does this PR solve?

Feat: Translate the maxRounds field of the chat settings #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 10:56:34 +08:00
5cf2c97908 Docs: v0.20.5 - Added Framework prompt block documentation for the Agent component (#10006)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-09-10 10:46:22 +08:00
81fede0041 Fix: refactor prompts (#10005)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 22:01:44 +08:00
07a83f93d5 Feat: The prompt words "plan" are displayed only when the agent operator has sub-agent operators or sub-tool operators. #10000 (#10001)
### What problem does this PR solve?

Feat: The prompt words "plan" are displayed only when the agent operator
has sub-agent operators or sub-tool operators. . #10000
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-09 21:18:24 +08:00
1a904edd94 Fix: Optimize search functionality #3221 (#10002)
### What problem does this PR solve?

Fix: Optimize search functionality
- Fixed search limitations when no dataset is selected

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 21:18:06 +08:00
906969fe4e Fix: exesql issue. (#9995)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 19:45:10 +08:00
776ea078a6 Fix: Optimized the table of contents style and homepage card layout #3221 (#9993)
### What problem does this PR solve?

Fix: Optimized the table of contents style and homepage card layout
#3221

- Added background color, text color, and shadow styles to the Markdown
table of contents
- Optimized the date display style in the HomeCard component to prevent
overflow
- Standardized the translation of "dataset" to "knowledge base" to
improve terminology consistency

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 18:50:43 +08:00
fcdde26a7f Fix: Highlight the edges after running #9538 (#9994)
### What problem does this PR solve?

Fix: Highlight the edges after running #9538

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 17:04:37 +08:00
79076ffb5f Fix: remove 2 prompts. (#9990)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 14:45:43 +08:00
e8dcdfb9f0 Fix: Issue of ineffective weight adjustment for retrieval_test API-related functions #9854 (#9989)
### What problem does this PR solve?

Fix: Issue of ineffective weight adjustment for retrieval_test
API-related functions #9854

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 12:32:22 +08:00
c4f43a395d Fix: re sub error. (#9985)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 10:52:18 +08:00
a255c78b59 Feat: Add ParserForm to the data pipeline #9869 (#9986)
### What problem does this PR solve?

Feat: Add ParserForm to the data pipeline  #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-09 09:50:46 +08:00
936f27e9e5 Feat: add LongCat-Flash-Chat (#9973)
### What problem does this PR solve?

Add LongCat-Flash-Chat from Meituan, deepseek v3.1 from SiliconFlow,
kimi-k2-09-05-preview and kimi-k2-turbo-preview from Moonshot.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 19:00:52 +08:00
2616f651c9 Feat: The agent's external page should be able to fill in the begin parameter after being reset in task mode #9745 (#9982)
### What problem does this PR solve?

Feat: The agent's external page should be able to fill in the begin
parameter after being reset in task mode #9745

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 18:59:51 +08:00
e8018fde83 Fix: Update the pagination prompt text in zh.ts, changing "page" to "item/page" #3221 (#9978)
### What problem does this PR solve?

Fix: Update the pagination prompt text in zh.ts, changing "page" to
"item/page"

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 17:14:23 +08:00
f514482c0a Feat: Add ConfirmDeleteDialog storybook #9914 (#9977)
### What problem does this PR solve?

Feat: Add ConfirmDeleteDialog storybook #9914

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 17:14:11 +08:00
e9ee9269f5 Feat: user defined prompt. (#9972)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 14:05:01 +08:00
cf18231713 Fix: Optimized the test results page layout and internationalization #3221 (#9974)
### What problem does this PR solve?

Fix: Optimized the test results page layout and internationalization

- Added an empty data component for when test results are empty
- Optimized internationalization support for the paging component
- Updated the layout and style of the test results page
- Added a tooltip for when test results are empty

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 12:49:12 +08:00
f48aed6d4a Fix: The files in the knowledge base folder on the file management page should not be deleted #9975 (#9976)
### What problem does this PR solve?

Fix: The files in the knowledge base folder on the file management page
should not be deleted #9975

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 12:48:58 +08:00
b524cf0ec8 Feat: Delete unused code in the data pipeline #9869 (#9971)
### What problem does this PR solve?

Feat: Delete unused code in the data pipeline #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 11:42:46 +08:00
994517495f add model: qwen3-max-preview (#9959)
### What problem does this PR solve?
add qwen3-max-preview model,
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 10:39:23 +08:00
63781bde3f Refa: import issue. (#9958)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-09-05 19:26:15 +08:00
91d6fb8061 Fix miscalculated token count (#9776)
### What problem does this PR solve?

The total token was incorrectly accumulated when using the
OpenAI-API-Compatible api.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-05 19:17:21 +08:00
45f52e85d7 Feat: refine dataflow and initialize dataflow app (#9952)
### What problem does this PR solve?

Refine dataflow and initialize dataflow app.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 18:50:46 +08:00
9aa8cfb73a Feat: Use sonner to replace the requested prompt message component #3221 (#9951)
### What problem does this PR solve?

Feat: Use sonner to replace the requested prompt message component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 18:43:33 +08:00
79ca25ec7e Feat: Allow users to select prompt word templates in agent operators. #9935 (#9936)
### What problem does this PR solve?

Feat: Allow users to select prompt word templates in agent operators.
#9935

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 15:48:57 +08:00
6ff7cfe005 Fix bugs for agent/tools. (#9930)
### What problem does this PR solve?
1 Fix typos
2 Fix agent/tools/crawler.py return bug.
3 Fix agent/tools/deepl.py  component_name  bug.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
- [x] Performance Improvement

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-05 12:31:44 +08:00
4e16936fa4 Refactor: Use re compile for weight method (#9929)
### What problem does this PR solve?

Use re compile for the weight method

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-09-05 12:29:44 +08:00
677c99b090 Feat: Add metadata filtering function for /api/v1/retrieval (#9877)
-Added the metadata_dedition parameter in the document retrieval
interface to filter document metadata -Updated the API documentation and
added explanations for the metadata_dedition parameter

### What problem does this PR solve?

Make /api/v1/retrieval api also can use metadata filter

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 11:12:15 +08:00
8e30a75e5c Update .env (#9923)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-05 10:20:36 +08:00
b14052e5a2 code cleans. (#9916)
### What problem does this PR solve?



### Type of change

- [x] Refactoring
- [x] Performance Improvement

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-05 09:59:27 +08:00
ddaed541ff Fix S3 client initialization with signature_version and addressing_style (#9911)
### What problem does this PR solve?

Moved `signature_version` and `addressing_style` parameters to a
`Config` object from `botocore.config`
`signature_version` is now passed as `Config(signature_version='v4')`
`addressing_style` is now passed as `Config(s3={'addressing_style':
'path'})`
The `Config` object is then passed to `boto3.client()` via the `config`
parameter



## Changes Made
- Modified `rag/utils/s3_conn.py` in the `__open__()` method
- Updated parameter handling logic to use `config_kwargs` dictionary
- Maintained backward compatibility for configurations without these
parameters



## Related Issue
Fixes #9910


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Syed Shahmeer Ali <ashahmeer73@gmail.com>
2025-09-05 09:58:30 +08:00
1ee9c0b8d9 fix xss in excel_parser (#9909)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
- [x] Performance Improvement

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-05 09:58:03 +08:00
9b724b3b5e Fix python_version in show_env.sh when its meets python3. (#9894)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-05 09:57:39 +08:00
3b1ee769eb fix: Optimize internationalization configuration #3221 (#9924)
### What problem does this PR solve?

fix: Optimize internationalization configuration

- Update multi-language options, adding general translations for
functions like Select All and Clear
- Add internationalization support for modules like Chat, Search, and
Datasets

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-05 09:57:15 +08:00
41cb94324a Feat: Added RenameDialog NumberInput and Spin storybook #9914 (#9925)
### What problem does this PR solve?

Feat: Added RenameDialog NumberInput and Spin storybook 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 09:57:00 +08:00
982ec24fa7 Fix kb isolation infinity conn (#9913)
### What problem does this PR solve?

This PR fixes a critical bug in the knowledge base isolation feature
where chat responses were referencing documents from incorrect knowledge
bases. The issue was in the `infinity_conn.py` file where the
`equivalent_condition_to_str()` function was incorrectly skipping
`kb_id` filtering, causing documents from unintended knowledge bases to
be included in search results.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Syed Shahmeer Ali <ashahmeer73@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-04 21:14:56 +08:00
1f7a035340 before docker-compose up, first down it,and cleans. (#9908)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

Fix the issue in ci.
[ci
err](https://github.com/infiniflow/ragflow/actions/runs/17452439789/job/49559702590?pr=9894)

```
 Container ragflow-redis  Error response from daemon: Conflict. The container name "/ragflow-redis" is already in use by container "b6cbde4d186ffba701f6e2a85f37e1d053d7197adb2938547f1df08cfcadf355". You have to remove (or rename) that container to be able to reuse that name.
Error response from daemon: Conflict. The container name "/ragflow-redis" is already in use by container "b6cbde4d186ffba701f6e2a85f37e1d053d7197adb2938547f1df08cfcadf355". You have to remove (or rename) that container to be able to reuse that name.
Error: Process completed with exit code 1.
```

### Type of change
- [x] Refactoring
- [x] Performance Improvement

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-04 18:47:27 +08:00
d04ae3f943 Feat: Display AvatarUpload and RAGFlowAvatar in Storybook #9914 (#9920)
### What problem does this PR solve?

Feat: Display AvatarUpload and RAGFlowAvatar in Storybook #9914

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-04 18:02:17 +08:00
abd19b0f48 Fix: wrong chunk number while re-parsing document and keeping original chunks (#9912)
### What problem does this PR solve?

Fix wrong chunk number while re-parsing document and keeping original
chunks

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-04 17:48:00 +08:00
aa1251af9a Feat: Use storybook to display public components. #9914 (#9915)
### What problem does this PR solve?
Feat: Use storybook to display public components. #9914
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-04 17:03:36 +08:00
483f3aa71d Update API reference to use 'title' instead of 'name' for listing agents (#9907)
### What problem does this PR solve?

HTTP API documentation incorrectly refers `agent_name` as `name` instead
of `title`. This PR updates that documentation with the correct terms.
As per the codebase, the GET request for listing agents is accepting
`title` as a parameter:

9b026fc5b6/api/apps/sdk/agent.py (L32)
This is referred to as `name` parameter in the HTTP API documentation
([link](https://ragflow.io/docs/dev/http_api_reference#list-documents))
```
GET /api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}&create_time_from={timestamp}&create_time_to={timestamp}
```
Meanwhile, it is correctly mentioned in the Python API docs
([link](https://ragflow.io/docs/dev/python_api_reference#list-agents)):
```
RAGFlow.list_agents(
    page: int = 1, 
    page_size: int = 30, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    title: str = None
) -> List[Agent]
```
### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-09-04 16:53:55 +08:00
72bb79e8dd During the chat, the assistant's response cited documents outside current chat's kbs (#9900)
### What problem does this PR solve?

During the chat, the assistant's response cited documents outside the
current knowledge base。

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-04 16:51:13 +08:00
927a195008 Feat: Allow users to enter SQL in the SQL operator #9897 (#9898)
### What problem does this PR solve?

Feat: Allow users to enter SQL in the SQL operator #9897

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-04 11:26:55 +08:00
d13dc0c24d Update README (#9904)
### Type of change

- [x] Documentation Update
2025-09-04 11:16:42 +08:00
37ac7576f1 Docs: Updated instructions on importing third-party packages to Sandbox (#9890)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-09-03 15:47:07 +08:00
c832e0b858 Feat: add canvas_category field for UserCanvas and CanvasTemplate (#9885)
### What problem does this PR solve?

Add `canvas_category` field for UserCanvas and CanvasTemplate.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-03 14:55:24 +08:00
5d015e48c1 Docs: Updated the Code component reference (#9884)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-09-03 14:23:03 +08:00
b58e882eaa Feat: add exponential back-off for Chat LiteLLM (#9880)
### What problem does this PR solve?

Add exponential back-off for Chat LiteLLM. #9858.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-03 13:31:43 +08:00
1bc33009c7 Fix: The operator added by clicking the plus sign will overlap with the original operator. #9886 (#9887)
### What problem does this PR solve?

Fix: The operator added by clicking the plus sign will overlap with the
original operator. #9886

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-03 13:03:23 +08:00
cb731dce34 Add jemalloc install instruction for mac (#9879)
### What problem does this PR solve?

Add jemalloc install instruction for mac

### Type of change

- [x] Documentation Update
2025-09-03 10:50:39 +08:00
1595cdc48f Fix: Optimize list display and rename functionality #3221 (#9875)
### What problem does this PR solve?

Fix: Optimize list display and rename functionality #3221

- Updated the homepage search list display style and added rename
functionality
- Used the RenameDialog component for rename searches
- Optimized list height calculation
- Updated the style and layout of related pages
- fix issue #9779

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 17:43:37 +08:00
4179ecd469 Fix JSON serialization error for ModelMetaclass objects (#9812)
- Add robust serialize_for_json() function to handle non-serializable
objects
- Update server_error_response() to safely serialize exception data
- Update get_json_result() with fallback error handling
- Handles ModelMetaclass, functions, and other problematic objects
- Maintains proper JSON response format instead of server crashes

Fixes #9797

### What problem does this PR solve?
Currently, error responses and certain result objects may include types
that are not JSON serializable (e.g., ModelMetaclass, functions). This
causes server crashes instead of returning valid JSON responses.

This PR introduces a robust serializer that converts unsupported types
into string representations, ensuring the server always returns a valid
JSON response.
### Type of change

- [] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 16:17:34 +08:00
cb14dafaca Feat: Initialize the data pipeline canvas. #9869 (#9870)
### What problem does this PR solve?
Feat: Initialize the data pipeline canvas. #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-02 15:47:33 +08:00
c2567844ea Feat: By default, 50 records are displayed per page. #3221 (#9867)
### What problem does this PR solve?

Feat: By default, 50 records are displayed per page. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-02 14:12:41 +08:00
757c5376be Fix: Fixed the issue where the agent and chat cards on the home page could not be deleted #3221 (#9864)
### What problem does this PR solve?

Fix: Fixed the issue where the agent and chat cards on the home page
could not be deleted #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 11:10:57 +08:00
79968c37a8 Fix: agent second round issue. (#9863)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 11:06:17 +08:00
2e00d8d3d4 Use 'float' explicitly for OpenAI's embedding "encoding_format" (#9838)
### What problem does this PR solve?

The default value for OpenAI '/v1/embeddings' parameter
'encoding_format' is 'base64'. Use 'float' explicitly to avoid base64
encoding & decoding, larger data size.


https://github.com/openai/openai-python/blob/main/src/openai/resources/embeddings.py
        if not is_given(encoding_format):
            params["encoding_format"] = "base64"

### Type of change

- [x] Performance Improvement
2025-09-02 10:31:51 +08:00
0b456a18a3 Refactor: Improve the buffer close for vision_llm_chunk (#9845)
### What problem does this PR solve?

Improve the buffer close for vision_llm_chunk

### Type of change

- [x] Refactoring
2025-09-02 10:31:37 +08:00
dd8e660f0a Docs: Refactored Retrieval component reference (#9862)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-09-02 10:28:23 +08:00
98ee3dee74 Feat: Move the dataset permission drop-down box to a separate file for better permission control #3221 (#9850)
### What problem does this PR solve?

Feat: Move the dataset permission drop-down box to a separate file for
better permission control #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-01 19:09:25 +08:00
d4b0cd8599 Fix: Optimize page layout and style #3221 (#9852)
### What problem does this PR solve?

Fix: Optimize page layout and style #3221

- Added the cursor-pointer class to the logo in the Header component
- Added an icon property to the ListFilterBar in the Agents and ChatList
components
- Adjusted the Dataset page layout and set a minimum width
- Optimized the DatasetWrapper page layout and added the overflow-auto
class
- Simplified the search icon in the SearchList component

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-01 18:52:32 +08:00
3398dac906 Fix: Optimize styling and add a search settings loading state #3221 (#9830)
### What problem does this PR solve?

Fix: Optimize styling and add a search settings loading state #3221

- Updated the calendar component's background color to use a variable
- Modified the Spin component's styling to use the primary text color
instead of black
- Added a form submission loading state to the search settings component
- Optimized the search settings form, unifying the styles of the model
selection and input fields

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-01 11:45:49 +08:00
7eb25e0de6 UI updates (#9836)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-08-30 21:44:58 +08:00
bed77ee28f Feat: Create a conversation before uploading files #3221 (#9832)
### What problem does this PR solve?

Feat: Create a conversation before uploading files #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-29 18:36:40 +08:00
56cd576876 Refa: revise the implementation of LightRAG and enable response caching (#9828)
### What problem does this PR solve?

This revision performed a comprehensive check on LightRAG to ensure the
correctness of its implementation. It **did not involve** Entity
Resolution and Community Reports Generation. There is an example using
default entity types and the General chunking method, which shows good
results in both time and effectiveness. Moreover, response caching is
enabled for resuming failed tasks.


[The-Necklace.pdf](https://github.com/user-attachments/files/22042432/The-Necklace.pdf)

After:


![img_v3_02pk_177dbc6a-e7cc-4732-b202-ad4682d171fg](https://github.com/user-attachments/assets/5ef1d93a-9109-4fe9-8a7b-a65add16f82b)


```bash
Begin at:
Fri, 29 Aug 2025 16:48:03 GMT
Duration:
222.31 s
Progress:
16:48:04 Task has been received.
16:48:06 Page(1~7): Start to parse.
16:48:06 Page(1~7): OCR started
16:48:08 Page(1~7): OCR finished (1.89s)
16:48:11 Page(1~7): Layout analysis (3.72s)
16:48:11 Page(1~7): Table analysis (0.00s)
16:48:11 Page(1~7): Text merged (0.00s)
16:48:11 Page(1~7): Finish parsing.
16:48:12 Page(1~7): Generate 7 chunks
16:48:12 Page(1~7): Embedding chunks (0.29s)
16:48:12 Page(1~7): Indexing done (0.04s). Task done (7.84s)
16:48:17 Start processing for f421fb06849e11f0bdd32724b93a52b2: She had no dresses, no je...
16:48:17 Start processing for f421fb06849e11f0bdd32724b93a52b2: Her husband, already half...
16:48:17 Start processing for f421fb06849e11f0bdd32724b93a52b2: And this life lasted ten ...
16:48:17 Start processing for f421fb06849e11f0bdd32724b93a52b2: Then she asked, hesitatin...
16:49:30 Completed processing for f421fb06849e11f0bdd32724b93a52b2: She had no dresses, no je... after 1 gleanings, 21985 tokens.
16:49:30 Entities extraction of chunk 3 1/7 done, 12 nodes, 13 edges, 21985 tokens.
16:49:40 Completed processing for f421fb06849e11f0bdd32724b93a52b2: Finally, she replied, hes... after 1 gleanings, 22584 tokens.
16:49:40 Entities extraction of chunk 5 2/7 done, 19 nodes, 19 edges, 22584 tokens.
16:50:02 Completed processing for f421fb06849e11f0bdd32724b93a52b2: Then she asked, hesitatin... after 1 gleanings, 24610 tokens.
16:50:02 Entities extraction of chunk 0 3/7 done, 16 nodes, 28 edges, 24610 tokens.
16:50:03 Completed processing for f421fb06849e11f0bdd32724b93a52b2: And this life lasted ten ... after 1 gleanings, 24031 tokens.
16:50:04 Entities extraction of chunk 1 4/7 done, 24 nodes, 22 edges, 24031 tokens.
16:50:14 Completed processing for f421fb06849e11f0bdd32724b93a52b2: So they begged the jewell... after 1 gleanings, 24635 tokens.
16:50:14 Entities extraction of chunk 6 5/7 done, 27 nodes, 26 edges, 24635 tokens.
16:50:29 Completed processing for f421fb06849e11f0bdd32724b93a52b2: Her husband, already half... after 1 gleanings, 25758 tokens.
16:50:29 Entities extraction of chunk 2 6/7 done, 25 nodes, 35 edges, 25758 tokens.
16:51:35 Completed processing for f421fb06849e11f0bdd32724b93a52b2: The Necklace By Guy de Ma... after 1 gleanings, 27491 tokens.
16:51:35 Entities extraction of chunk 4 7/7 done, 39 nodes, 37 edges, 27491 tokens.
16:51:35 Entities and relationships extraction done, 147 nodes, 177 edges, 171094 tokens, 198.58s.
16:51:35 Entities merging done, 0.01s.
16:51:35 Relationships merging done, 0.01s.
16:51:35 ignored 7 relations due to missing entities.
16:51:35 generated subgraph for doc f421fb06849e11f0bdd32724b93a52b2 in 198.68 seconds.
16:51:35 run_graphrag f421fb06849e11f0bdd32724b93a52b2 graphrag_task_lock acquired
16:51:35 set_graph removed 0 nodes and 0 edges from index in 0.00s.
16:51:35 Get embedding of nodes: 9/147
16:51:35 Get embedding of nodes: 109/147
16:51:37 Get embedding of edges: 9/170
16:51:37 Get embedding of edges: 109/170
16:51:40 set_graph converted graph change to 319 chunks in 4.21s.
16:51:40 Insert chunks: 4/319
16:51:40 Insert chunks: 104/319
16:51:40 Insert chunks: 204/319
16:51:40 Insert chunks: 304/319
16:51:40 set_graph added/updated 147 nodes and 170 edges from index in 0.53s.
16:51:40 merging subgraph for doc f421fb06849e11f0bdd32724b93a52b2 into the global graph done in 4.79 seconds.
16:51:40 Knowledge Graph done (204.29s)
```

Before:


![img_v3_02pk_63370edf-ecee-4ee8-8ac8-69c8d2c712fg](https://github.com/user-attachments/assets/1162eb0f-68c2-4de5-abe0-cdfa168f71de)

```bash
Begin at:
Fri, 29 Aug 2025 17:00:47 GMT
processDuration:
173.38 s
Progress:
17:00:49 Task has been received.
17:00:51 Page(1~7): Start to parse.
17:00:51 Page(1~7): OCR started
17:00:53 Page(1~7): OCR finished (1.82s)
17:00:57 Page(1~7): Layout analysis (3.64s)
17:00:57 Page(1~7): Table analysis (0.00s)
17:00:57 Page(1~7): Text merged (0.00s)
17:00:57 Page(1~7): Finish parsing.
17:00:57 Page(1~7): Generate 7 chunks
17:00:57 Page(1~7): Embedding chunks (0.31s)
17:00:57 Page(1~7): Indexing done (0.03s). Task done (7.88s)
17:00:57 created task graphrag
17:01:00 Task has been received.
17:02:17 Entities extraction of chunk 1 1/7 done, 9 nodes, 9 edges, 10654 tokens.
17:02:31 Entities extraction of chunk 2 2/7 done, 12 nodes, 13 edges, 11066 tokens.
17:02:33 Entities extraction of chunk 4 3/7 done, 9 nodes, 10 edges, 10433 tokens.
17:02:42 Entities extraction of chunk 5 4/7 done, 11 nodes, 14 edges, 11290 tokens.
17:02:52 Entities extraction of chunk 6 5/7 done, 13 nodes, 15 edges, 11039 tokens.
17:02:55 Entities extraction of chunk 3 6/7 done, 14 nodes, 13 edges, 11466 tokens.
17:03:32 Entities extraction of chunk 0 7/7 done, 19 nodes, 18 edges, 13107 tokens.
17:03:32 Entities and relationships extraction done, 71 nodes, 89 edges, 79055 tokens, 149.66s.
17:03:32 Entities merging done, 0.01s.
17:03:32 Relationships merging done, 0.01s.
17:03:32 ignored 1 relations due to missing entities.
17:03:32 generated subgraph for doc b1d9d3b6848711f0aacd7ddc0714c4d3 in 149.69 seconds.
17:03:32 run_graphrag b1d9d3b6848711f0aacd7ddc0714c4d3 graphrag_task_lock acquired
17:03:32 set_graph removed 0 nodes and 0 edges from index in 0.00s.
17:03:32 Get embedding of nodes: 9/71
17:03:33 Get embedding of edges: 9/88
17:03:34 set_graph converted graph change to 161 chunks in 2.27s.
17:03:34 Insert chunks: 4/161
17:03:34 Insert chunks: 104/161
17:03:34 set_graph added/updated 71 nodes and 88 edges from index in 0.28s.
17:03:34 merging subgraph for doc b1d9d3b6848711f0aacd7ddc0714c4d3 into the global graph done in 2.60 seconds.
17:03:34 Knowledge Graph done (153.18s)

```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
- [x] Performance Improvement
2025-08-29 17:58:36 +08:00
4fbad2828c Feat: Allow users to delete their profile pictures #3221 (#9826)
### What problem does this PR solve?

Feat: Allow users to delete their profile pictures  #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-29 17:12:45 +08:00
e997bf6507 Fix: Optimized the style and functionality of multiple components #3221 (#9824)
### What problem does this PR solve?

Fix: Optimized the style and functionality of multiple components #3221

- Modified the SkeletonCard component, adding a className attribute and
adjusting the style
- Updated the RAGFlowSelect component, adding a disabled attribute
- Adjusted the style of the Tooltip component
- Optimized the layout of the RetrievalTesting and TestingResult pages
- Updated the style and loading status display of NextSearch-related
pages
- Removed unnecessary logs from the Spotlight component

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 16:54:01 +08:00
209b731541 Feat: add SearXNG search tool to Agent (frontend + backend, i18n) (#9699)
### What problem does this PR solve?

This PR integrates SearXNG as a new search tool for Agents. It adds
corresponding form/config UI on the frontend and a new tool
implementation on the backend, enabling aggregated web searches via a
self-hosted SearXNG instance within chats/workflows. It also adds
multilingual copy to support internationalized presentation and
configuration guidance.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

### What’s Changed
- Frontend: new SearXNG tool configuration, forms, and command wiring
  - Main changes under `web/src/pages/agent/`
- New components and form entries are connected to Agent tool selection
and workflow node configuration
- Backend: new tool implementation
- `agent/tools/searxng.py`: connects to a SearXNG instance and performs
search based on the provided instance URL and query parameters
- i18n updates
- Added/updated keys under `web/src/locales/`: `searXNG` and
`searXNGDescription`
- English reference in
[web/src/locales/en.ts](cci:7://file:///c:/Users/ruy_x/Work/CRSC/2025/Software_Development/2025.8/ragflow-pr/ragflow/web/src/locales/en.ts:0:0-0:0):
    - `searXNG: 'SearXNG'`
- `searXNGDescription: 'A component that searches via your provided
SearXNG instance URL. Specify TopN and the instance URL.'`
- Other languages have `searXNG` and `searXNGDescription` added as well,
but accuracy is only guaranteed for English, Simplified Chinese, and
Traditional Chinese.

---------

Co-authored-by: xurui <xurui@crscd.com.cn>
2025-08-29 14:15:40 +08:00
c47a38773c Fix: Fixed the issue that similarity threshold modification in chat and search configuration failed #3221 (#9821)
### What problem does this PR solve?

Fix: Fixed the issue that similarity threshold modification in chat and
search configuration failed #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 14:10:10 +08:00
fcd18d7d87 Fix: Ollama chat cannot access remote deployment (#9816)
### What problem does this PR solve?

Fix Ollama chat can only access localhost instance. #9806.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 13:35:41 +08:00
fe9adbf0a5 Fix: Optimized Input and MultiSelect component functionality and dataSet-chunk page styling #9779 (#9815)
### What problem does this PR solve?

Fix: Optimized Input and MultiSelect component functionality and
dataSet-chunk page styling

- Updated @js-preview/excel to version 1.7.14 #9779
- Optimized the EditTag component
- Updated the Input component to optimize numeric input processing
- Adjusted the MultiSelect component to use lodash's isEmpty method
- Optimized the CheckboxSets component to display action buttons based
on the selected state

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 10:57:29 +08:00
c7f7adf029 Feat: Extract the save buttons for dataset and chat configurations to separate files to increase permission control #3221 (#9803)
### What problem does this PR solve?

Feat: Extract the save buttons for dataset and chat configurations to
separate files to increase permission control #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-29 10:40:41 +08:00
c27172b3bc Feat: init dataflow. (#9791)
### What problem does this PR solve?

#9790

Close #9782

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 18:40:32 +08:00
a246949b77 Fix: Fixed the issue where the thinking mode on the chat page could not be turned off #9789 (#9794)
### What problem does this PR solve?

Fix: Fixed the issue where the thinking mode on the chat page could not
be turned off #9789

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 17:33:27 +08:00
0a954d720a Refa: unify reference format of agent completion and OpenAI-compatible completion API (#9792)
### What problem does this PR solve?

Unify reference format of agent completion and OpenAI-compatible
completion API.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Refactoring
2025-08-28 16:55:28 +08:00
f89e55ec42 Fix: Optimized variable node display and Agent template multi-language support #3221 (#9787)
### What problem does this PR solve?

Fix: Optimized variable node display and Agent template multi-language
support #3221

- Modified the VariableNode component to add parent label and icon
properties
- Updated the VariablePickerMenuPlugin to support displaying parent
labels and icons
- Adjusted useBuildNodeOutputOptions and useBuildBeginVariableOptions to
pass new properties
- Optimized the Agent TemplateCard component to switch the title and
description based on the language

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 15:43:25 +08:00
5fe8cf6018 Feat: Use AvatarUpload to replace the avatar settings on the dataset and search pages #3221 (#9785)
### What problem does this PR solve?

Feat: Use AvatarUpload to replace the avatar settings on the dataset and
search pages #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 14:45:20 +08:00
4720849ac0 Fix: agent template error. (#9784)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 14:40:27 +08:00
d7721833e7 Improve model tag rendering by splitting comma-separated string into styled <Tag> components (#9762)
### What problem does this PR solve?

This PR enhances the display of tags in the UI.

* Before: Model tags were shown as a single string with commas.
* After: Model tags are split by commas and displayed as individual
<Tag> components , making them visually distinct and easier to read.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 14:06:52 +08:00
7332f1d0f3 The agent directly outputs the results under the task model #9745 (#9746)
### What problem does this PR solve?

The agent directly outputs the results under the task model #9745

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:43:40 +08:00
2d101561f8 Add Russian language Update app.tsx (#9772)
Fix Add Russian language.

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:42:42 +08:00
59590e9aae Feat: Add AvatarUpload component #3221 (#9777)
### What problem does this PR solve?

Feat: Add AvatarUpload component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:42:17 +08:00
bb9b9b8357 Clarify installation of pre-commit alongside uv in README (#9749)
### What problem does this PR solve?

Updates the installation step in README.md to explicitly include
pre-commit alongside uv.

Applies the change to all localized versions: English, Chinese,
Japanese, Korean, Indonesian, and Portuguese.
#### Why this is needed:

The installation instructions previously mentioned only uv, but
pre-commit is also required for contributing.

Ensures consistency across all language versions and helps new
contributors set up the environment correctly.

### Type of change

- [x] Documentation Update
2025-08-28 09:53:16 +08:00
a4b368e53f add Russian in translation table index.tsx (#9773)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 09:47:04 +08:00
c461261f0b Refactor: Improve the try logic for upload_to_minio (#9735)
### What problem does this PR solve?

Improve the try logic for upload_to_minio

### Type of change

- [x] Refactoring
2025-08-28 09:35:29 +08:00
a1633e0a2f Fix: second round value removal. (#9756)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 09:34:47 +08:00
369add35b8 Feature/workflow en cn (#9742)
### What problem does this PR solve?
Update workflow ZH CN title and description.
### Type of change
- [x] Documentation Update
2025-08-28 09:34:30 +08:00
5abd0bbac1 Fix typo (#9766)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-08-27 18:56:40 +08:00
2d89863fdd Fix: search list permission (#9767)
### What problem does this PR solve?

Search list permission.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 18:50:02 +08:00
6cb3e08381 Revert: broken agent completion by #9631 (#9760)
### What problem does this PR solve?

Revert broken agent completion by #9631.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 17:16:55 +08:00
986b9cbb1a Docs: Update version references to v0.20.4 in READMEs and docs (#9758)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.3 to v0.20.4
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-08-27 16:56:55 +08:00
9c456adffd Added v0.20.4 release notes (#9757)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-08-27 15:29:09 +08:00
c15b138839 Create ecommerce_customer_service_workflow.json (#9755)
### What problem does this PR solve?

Update workflow template.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-27 15:15:24 +08:00
ff11348f7c Fix: Optimize the MultiSelect component and system prompt templates #3221 (#9752)
### What problem does this PR solve?

Fix: Optimize the MultiSelect component and system prompt templates
#3221

- Modify the conditional statements in the MultiSelect component, using
the ?. operator to improve code readability
- Optimize the formatting of the system prompt template to make it more
standardized and easier to read
- Update the Chinese translation, changing "ExeSQL" to "Execute SQL"

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-27 15:12:12 +08:00
cbdabbb58f Fix: Fixed the issue that the agent embedded page needs to be logged in #9750 (#9751)
### What problem does this PR solve?

Fix: Fixed the issue that the agent embedded page needs to be logged in
#9750

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 14:18:00 +08:00
cf0011be67 Feat: Upgrade html parser (#9675)
### What problem does this PR solve?

parse more html content.

### Type of change

- [x] Other (please describe):
2025-08-27 12:43:55 +08:00
1f47001c82 Fix: Optimize tooltips and I118n #3221 (#9744)
### What problem does this PR solve?

Fix: Optimize tooltips and I118n #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-27 11:46:51 +08:00
a914535344 Fix: add mode for embeded agent. (#9741)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 11:46:15 +08:00
ba1063c2b9 Docs: Miscellaneous updates (#9729)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-08-26 19:35:29 +08:00
2b4bca4447 Fix(i18n): Added new translations #3221 (#9727)
### What problem does this PR solve?

Fix(i18n): Added new translations #3221

- Added and updated internationalization translations in multiple
components


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-26 17:57:53 +08:00
11cf6ae313 Fix: After deleting the knowledge graph, jump to the dataset page #9722 (#9723)
### What problem does this PR solve?

Fix: After deleting the knowledge graph, jump to the dataset page #9722
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 17:57:41 +08:00
88db5d90d1 Fix: Try to fix the issue of not being able to log in through Oauth2 #9601 (#9717)
### What problem does this PR solve?

Fix: Try to fix the issue of not being able to log in through Oauth2
#9601

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 14:06:28 +08:00
209ef09dc3 Feat: add Zhipu GLM-4.5 model series (#9715)
### What problem does this PR solve?

Add Zhipu GLM-4.5 model series. #9708.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-26 13:48:00 +08:00
ycz
370c8bc25b Update llm_factories.json (#9714)
### What problem does this PR solve?

add ZhipuAI GLM-4.5 model series

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-26 11:49:01 +08:00
e90a959b4d Fix: Chunk error when re-parsing created file #9665 (#9711)
### What problem does this PR solve?

Fix: Chunk error when re-parsing created file

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-26 10:50:30 +08:00
ca320a8c30 Refactor: for total_token_count method use if to check first. (#9707)
### What problem does this PR solve?

for total_token_count method use if to check first, to improve the
performance when we need to handle exception cases

### Type of change

- [x] Refactoring
2025-08-26 10:47:20 +08:00
ae505e6165 Fix: Optimize table style #3221 (#9703)
### What problem does this PR solve?

Fix: Optimize table style
-Modify the style of the table scrollbar and remove unnecessary
scrollbars
-Adjust the header style of the table, add background color and
hierarchy
-Optimize the style of datasets and file tables
-Add a new background color variable

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 10:46:54 +08:00
63b5c2292d Fix: Delete the uploaded file in the chat input box, the corresponding file ID is not deleted #9701 (#9702)
### What problem does this PR solve?

Fix: Delete the uploaded file in the chat input box, the corresponding
file ID is not deleted #9701
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 09:27:49 +08:00
8d8a5f73b6 Fix: meta data filter with AND logic operations. (#9687)
### What problem does this PR solve?

Close #9648

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 18:29:24 +08:00
d0fa66f4d5 Docs: update API endpoint paths (#9683)
### What problem does this PR solve?

- Update API endpoint paths in docs from `/v1/` to `/api/v1/` for
consistency

### Type of change

- [x] Documentation Update
2025-08-25 17:57:24 +08:00
9dd22e141b fix: validate chunk type before processing to prevent AttributeError (#9698)
### What problem does this PR solve?

This PR fixes a critical bug in the session listing endpoint where the
application crashes with an `AttributeError` when processing chunk data
that contains non-dictionary objects.

**Error before fix:**
```json
{
  "code": 100,
  "data": null,
  "message": "AttributeError(\"'str' object has no attribute 'get'\")"
}
```

**Root cause:**
The code assumes all items in the `chunks` array are dictionary objects
and directly calls the `.get()` method on them. However, in some cases,
the chunks array contains string objects or other non-dictionary types,
causing the application to crash when attempting to call `.get()` on a
string.

**Solution:**
Added type validation to ensure each chunk is a dictionary before
processing. Non-dictionary chunks are safely skipped, preventing the
crash while maintaining functionality for valid chunk data.

This fix improves the robustness of the session listing endpoint and
ensures users can retrieve their conversation sessions without
encountering server errors due to data format inconsistencies.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 17:57:01 +08:00
b6c1ca828e Refa: replace Chat Ollama implementation with LiteLLM (#9693)
### What problem does this PR solve?

replace Chat Ollama implementation with LiteLLM.

### Type of change

- [x] Refactoring
2025-08-25 17:56:31 +08:00
d367c7e226 Fix: Optimize dataset page layout and internationalization and default values for multi selection #3221 (#9695)
### What problem does this PR solve?

Fix: Optimize dataset page layout and internationalization and Fix
setting default values for multi selection drop-down boxes #3221

-Adjust the style and layout of each component on the dataset page
-Add and update multilingual translation content

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 17:29:15 +08:00
a3aa3f0d36 Refa: improve lightrag (#9690)
### What problem does this PR solve?

Improve lightrag.
#9647

### Type of change

- [x] Refactoring
2025-08-25 17:08:44 +08:00
7b8752fe24 fix: Create conversation sessions will lost prologue (#9666)
### What problem does this PR solve?

When create conversation,the prologue hasn't save in conversation.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 14:09:28 +08:00
5e2c33e5b0 Fix: grow reference list (#9674)
### What problem does this PR solve?

Fix Multiple conversations cause the reference list to grow indefinitely
due to Python's mutable default argument behavior.
Explicitly initialize reference as empty list when creating new sessions

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 14:08:15 +08:00
e40be8e541 Feat: Exclude operator_permission field from renaming chat fields #3221 (#9692)
### What problem does this PR solve?

Feat: Exclude operator_permission field from renaming chat fields #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-25 14:06:06 +08:00
23d0b564d3 Fix: Wrap VersionDialog in DropdownProvider for proper context (#9677)
### What problem does this PR solve?

The VersionDialog component was not receiving the correct context for
dropdown handling, causing improper behavior in its interactions.
This PR wraps VersionDialog in DropdownProvider to ensure it gets the
proper context and functions as expected.

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 10:18:04 +08:00
ecaa9de843 Fix:[ERROR]'LLMBundle' object has no attribute 'language' (#9682)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9672

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 10:17:10 +08:00
2f74727bb9 Fix: meta data error. (#9670)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 09:41:52 +08:00
adbb038a87 Fix: Place the invitation reminder icon in a separate file #9634 (#9662)
### What problem does this PR solve?

Fix: Place the invitation reminder icon in a separate file #9634
Fix: After receiving the agent message, pull the agent data to highlight
the edges passed #9538

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 20:08:55 +08:00
3947da10ae Fix: unexpected LLM parameters (#9661)
### What problem does this PR solve?

Remove unexpected LLM parameters.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 19:33:09 +08:00
4862be28ad Fix: Search app AI summary ERROR And The tag set cannot be selected #9649 #9652 (#9664)
### What problem does this PR solve?
Fix: Search app AI summary ERROR And The tag set cannot be selected
#9649 #9652
- Search app AI summary ERROR: 'dict' object has no attribute 'split'
#9649
- fix The tag set cannot be selected in the knowledge base. #9652
- Added custom parameter options to the LlmSettingFieldItems component
- Adjusted the document preview height to improve page layout
adaptability

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 19:32:32 +08:00
035e8ed0f7 Fix: code executor timeout (#9671)
### What problem does this PR solve?

Code executor timeout.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 19:31:49 +08:00
cc167ae619 Fix: Display the invited icon in the header #9634 (#9659)
### What problem does this PR solve?

Fix: Display the invited icon in the header #9634

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 15:05:56 +08:00
f8847e7bcd Fix: embedded search AI summary (#9658)
### What problem does this PR solve?

Fix search app AI summary ERROR: 'dict' object has no attribute 'split'.
#9649

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 12:55:29 +08:00
3baebd709b Refactoring: Agent completions API change response structure (#9631)
### What problem does this PR solve?

Resolve #9549 and #9436 , In v0.20.x,Agent completions API changed a
lot,such as without reference and so on

### Type of change

- [x] Refactoring
2025-08-22 12:04:15 +08:00
3e6a4b2628 Fix: Document Previewer is not working #9606 (#9656)
### What problem does this PR solve?
Fix: Document Previewer is not working #9606
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 12:03:51 +08:00
312635cb13 Refactor: based on async await to handle Redis when raptor (#9576)
### What problem does this PR solve?

based on async await to handle Redis when raptor

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-08-22 10:58:02 +08:00
756d454122 fix(sdk): add default empty dict for metadata_condition (#9640)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-22 10:57:48 +08:00
a4cab371fa Update fr.ts - RAPTOR Issue prompt (#9646)
Removed a line break causing problems with execution in Raptor.

### What problem does this PR solve?

When I activate Raptor without changing anything in French, I encounter
a problem that I don't have with the English version. I noticed in the
logs that there was an extra line break, so I suggest removing it.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 09:54:49 +08:00
0d7e52338e Fix: Fixed an issue where knowledge base could not be shared #9634 (#9642)
### What problem does this PR solve?

Fix: Fixed an issue where knowledge base could not be shared #9634

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 09:34:11 +08:00
4110f7f5ce Fix: The buttons at the bottom of the dataset settings page are not visible on small screens #9638 (#9639)
### What problem does this PR solve?

Fix: The buttons at the bottom of the dataset settings page are not
visible on small screens #9638
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 19:25:14 +08:00
0af57ff772 fix(dataset, next-chats): Fix data form data acquisition logic And Optimize the chat settings interface and add language selection (#9629)
### What problem does this PR solve?

fix(dataset): data form data acquisition logic
fix(next-chats): Optimize the chat settings interface and add language
selection

- Replace form.formControl.trigger with form.trigger
- Use form.getValues() instead of form.formState.values
- Add language selection to support multiple languages
- Add default chat settings values
- Add new settings: icon, description, knowledge base ID, etc.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-21 16:57:46 +08:00
0bd58038a8 Fixes (web): Optimized search page style and functionality #3221 (#9627)
### What problem does this PR solve?

Fixes (web): Optimized search page style and functionality #3221

- Updated search page and view title styles
- Modified dataset list and multi-select control styles
- Optimized text field and button styles
- Updated filter button icons
- Adjusted metadata filter styles
- Added default descriptions for the smart assistant

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 16:57:14 +08:00
0cbcfcfedf Chore: Update infinity-sdk from 0.6.0.dev4 to 0.6.0.dev5 (#9628)
### What problem does this PR solve?

Bump infinity-sdk dependency to the latest development version
(0.6.0.dev5) in both pyproject.toml and uv.lock files to incorporate
recent changes and fixes from the SDK.

### Type of change

- [x] Other (please describe): Update deps
2025-08-21 16:56:57 +08:00
fbdde0259a Feat: Allow users to parse documents directly after uploading files #3221 (#9633)
### What problem does this PR solve?

Feat: Allow users to parse documents directly after uploading files
#3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-21 16:56:22 +08:00
d482173c9b Fix (style): Optimized Datasets color scheme and layout #3221 (#9620)
### What problem does this PR solve?


Fix (style): Optimized Datasets color scheme and layout #3221

- Updated background and text colors for multiple components

- Adjusted some layout structures, such as the paging position of
dataset tables

- Unified status icons and color mapping

- Optimized responsive layout to improve compatibility across different
screen sizes

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 12:14:56 +08:00
929dc97509 Fix: duplicated role... (#9622)
### What problem does this PR solve?

#9611
#9603 #9597

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 12:14:43 +08:00
30005c0203 Fix: Remove the file size and quantity restrictions of the upload control #9613 #9598 (#9618)
### What problem does this PR solve?

Fix: Remove the file size and quantity restrictions of the upload
control #9613 #9598

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 10:54:17 +08:00
382458ace7 Feat: advanced markdown parsing (#9607)
### What problem does this PR solve?

Using AST parsing to handle markdown more accurately, preventing
components from being cut off by chunking. #9564

<img width="1746" height="993" alt="image"
src="https://github.com/user-attachments/assets/4aaf4bf6-5714-4d48-a9cf-864f59633f7f"
/>

<img width="1739" height="982" alt="image"
src="https://github.com/user-attachments/assets/dc00233f-7a55-434f-bbb7-74ce7f57a6cf"
/>

<img width="559" height="100" alt="image"
src="https://github.com/user-attachments/assets/4a556b5b-d9c6-4544-a486-8ac342bd504e"
/>


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-21 09:36:18 +08:00
4080f6a54a Feature (web): Optimize dataset pages and segmented components #3221 (#9605)
### What problem does this PR solve?

Feature (web): Optimize dataset pages and segmented components #3221
-Add the activeClassName property to Segmented components to customize
the selected state style
-Update the icons and captions of the relevant components on the dataset
page
-Modify the parsing status column title of the dataset table
-Optimize the Segmented component style of the homepage application
section

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 09:32:04 +08:00
09570c7eef Feat: expand the capabilities of the MCP Server (#8707)
### What problem does this PR solve?

Expand the capabilities of the MCP Server. #8644.

Special thanks to @Drasek, this change is largely based on his original
implementation, it is super neat and well-structured to me. I basically
just integrated his code into the codebase with minimal modifications.

My main contribution is implementing a proper cache layer for dataset
and document metadata, using the LRU strategy with a 300s ± random 30s
TTL. The original code did not actually perform caching.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Caspar Armster <caspar@armster.de>
2025-08-20 19:30:25 +08:00
312f1a0477 Fix: enlarge raptor timeout limits. (#9600)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 17:29:15 +08:00
1ca226e43b Feat: Updated some colors according to the design draft #3221 (#9599)
### What problem does this PR solve?

Feat: Updated some colors according to the design draft #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-20 16:32:29 +08:00
830cda6a3a Fix (web): Optimize text display effect #3221 (#9594)
### What problem does this PR solve?

Fix (web): Optimize text display effect
-Add text ellipsis and overflow hidden classes to the HomeCard component
to achieve text overflow hiding and ellipsis effects
-Add text ellipsis and overflow hidden classes to the DatasetSidebar
component to improve the display of dataset names

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 15:42:21 +08:00
c66dbbe433 Fix: Fixed the issue where the save button at the bottom of the chat page could not be displayed on small screens #3221 (#9596)
### What problem does this PR solve?

Fix: Fixed the issue where the save button at the bottom of the chat
page could not be displayed on small screens #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 15:42:09 +08:00
3b218b2dc0 fix:passing empty database array when updating assistant (#9570)
### What problem does this PR solve?

When the `dataset_ids` parameter is omitted in the **update assistant**
request, Passing an empty array `[]` triggers a misleading
message"Dataset use different embedding models", while omitting the
field does not.
To fix this, we:
- Provide a default empty list: `ids = req.get("dataset_ids", [])`.  
- Replace the `is not None` check with a truthy check: `if ids:`.

**Files changed**  
`api/apps/sdk/chat.py`  
- L153: `ids = req.get("dataset_ids")` → `ids = req.get("dataset_ids",
[])`
- L156: `if ids is not None:` → `if ids:`

### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 13:40:05 +08:00
d58ef6127f Fix:KeyError: 'globals' KeyError: 'globals' (#9571)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9545
add backward compatible logics

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 13:39:38 +08:00
55173c7201 Fix (web): Update the style of segmented controls and add metallic texture gradients (#9591)
### What problem does this PR solve?

Fix (web): Update the style of segmented controls and add metallic
texture gradients #3221
-Modified the selected state style of Segmented components, adding
metallic texture gradient and lower border
-Added a metallic gradient background image in tailwind.diag.js
-Added the -- metallic variable in tailwind.css to define metallic
texture colors

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 13:39:23 +08:00
f860bdf0ad Revert "Feat: reference should also be list after 0.20.x" (#9592)
Reverts infiniflow/ragflow#9582
2025-08-20 13:38:57 +08:00
997627861a Feat: reference should also be list after 0.20.x (#9582)
### What problem does this PR solve?

In 0.19.0 reference is list,and it should be a list,otherwise last
conversation's reference will be lost

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 13:38:14 +08:00
9f9d32d2cd Feat: Make the old page accessible via URL #3221 (#9589)
### What problem does this PR solve?

Feat: Make the old page accessible via URL #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-20 13:37:06 +08:00
586 changed files with 32824 additions and 4717 deletions

View File

@ -67,6 +67,7 @@ jobs:
- name: Start ragflow:nightly-slim - name: Start ragflow:nightly-slim
run: | run: |
sudo docker compose -f docker/docker-compose.yml down --volumes --remove-orphans
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d sudo docker compose -f docker/docker-compose.yml up -d

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"> <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a> </a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank"> <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3"> <img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a> </a>
<a href="https://github.com/infiniflow/ragflow/releases/latest"> <a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release"> <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -71,10 +71,7 @@
## 💡 What is RAGFlow? ## 💡 What is RAGFlow?
[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document [RAGFlow](https://ragflow.io/) is a leading open-source Retrieval-Augmented Generation (RAG) engine that fuses cutting-edge RAG with Agent capabilities to create a superior context layer for LLMs. It offers a streamlined RAG workflow adaptable to enterprises of any scale. Powered by a converged context engine and pre-built agent templates, RAGFlow enables developers to transform complex data into high-fidelity, production-ready AI systems with exceptional efficiency and precision.
understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models)
to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted
data.
## 🎮 Demo ## 🎮 Demo
@ -190,7 +187,7 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64. > All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system. > If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.20.3-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.3-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` for the full edition `v0.20.3`. > The command below downloads the `v0.20.5-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.5-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` for the full edition `v0.20.5`.
```bash ```bash
$ cd ragflow/docker $ cd ragflow/docker
@ -203,8 +200,8 @@ releases! 🌟
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? | | RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------| |-------------------|-----------------|-----------------------|--------------------------|
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release | | v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release | | v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build | | nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build | | nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -307,7 +304,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Launch service from source for development ## 🔨 Launch service from source for development
1. Install uv, or skip this step if it is already installed: 1. Install `uv` and `pre-commit`, or skip this step if they are already installed:
```bash ```bash
pipx install uv pre-commit pipx install uv pre-commit
@ -348,8 +345,10 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev sudo apt-get install libjemalloc-dev
# centos # centos
sudo yum install jemalloc sudo yum install jemalloc
# mac
sudo brew install jemalloc
``` ```
6. Launch backend service: 6. Launch backend service:
```bash ```bash

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99"> <img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a> </a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank"> <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3"> <img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a> </a>
<a href="https://github.com/infiniflow/ragflow/releases/latest"> <a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru"> <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -67,7 +67,7 @@
## 💡 Apa Itu RAGFlow? ## 💡 Apa Itu RAGFlow?
[RAGFlow](https://ragflow.io/) adalah mesin RAG (Retrieval-Augmented Generation) open-source berbasis pemahaman dokumen yang mendalam. Platform ini menyediakan alur kerja RAG yang efisien untuk bisnis dengan berbagai skala, menggabungkan LLM (Large Language Models) untuk menyediakan kemampuan tanya-jawab yang benar dan didukung oleh referensi dari data terstruktur kompleks. [RAGFlow](https://ragflow.io/) adalah mesin RAG (Retrieval-Augmented Generation) open-source terkemuka yang mengintegrasikan teknologi RAG mutakhir dengan kemampuan Agent untuk menciptakan lapisan kontekstual superior bagi LLM. Menyediakan alur kerja RAG yang efisien dan dapat diadaptasi untuk perusahaan segala skala. Didukung oleh mesin konteks terkonvergensi dan template Agent yang telah dipra-bangun, RAGFlow memungkinkan pengembang mengubah data kompleks menjadi sistem AI kesetiaan-tinggi dan siap-produksi dengan efisiensi dan presisi yang luar biasa.
## 🎮 Demo ## 🎮 Demo
@ -181,7 +181,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64. > Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image). > Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.20.3-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.3-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3 untuk edisi lengkap v0.20.3. > Perintah di bawah ini mengunduh edisi v0.20.5-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.5-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5 untuk edisi lengkap v0.20.5.
```bash ```bash
$ cd ragflow/docker $ cd ragflow/docker
@ -194,8 +194,8 @@ $ docker compose -f docker-compose.yml up -d
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? | | RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ | | ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release | | v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release | | v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build | | nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build | | nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -271,7 +271,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan ## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal uv, atau lewati langkah ini jika sudah terinstal: 1. Instal `uv` dan `pre-commit`, atau lewati langkah ini jika sudah terinstal:
```bash ```bash
pipx install uv pre-commit pipx install uv pre-commit
@ -312,6 +312,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev sudo apt-get install libjemalloc-dev
# centos # centos
sudo yum install jemalloc sudo yum install jemalloc
# mac
sudo brew install jemalloc
``` ```
6. Jalankan aplikasi backend: 6. Jalankan aplikasi backend:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"> <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a> </a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank"> <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3"> <img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a> </a>
<a href="https://github.com/infiniflow/ragflow/releases/latest"> <a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release"> <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -47,7 +47,7 @@
## 💡 RAGFlow とは? ## 💡 RAGFlow とは?
[RAGFlow](https://ragflow.io/) は、深い文書理解に基づいたオープンソースの RAG (Retrieval-Augmented Generation) エンジンである。LLM大規模言語モデルを組み合わせることで、様々な複雑なフォーマットのデータから根拠のある引用に裏打ちされた、信頼できる質問応答機能を実現し、あらゆる規模のビジネスに適した RAG ワークフローを提供します。 [RAGFlow](https://ragflow.io/) は、先進的なRAGRetrieval-Augmented Generation)技術と Agent 機能を融合し、大規模言語モデルLLMに優れたコンテキスト層を構築する最先端のオープンソース RAG エンジンです。あらゆる規模の企業に対応可能な合理化された RAG ワークフローを提供し、統合型コンテキストエンジンと事前構築されたAgentテンプレートにより、開発者が複雑なデータを驚異的な効率性と精度で高精細なプロダクションレディAIシステムへ変換することを可能にします。
## 🎮 Demo ## 🎮 Demo
@ -160,7 +160,7 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。 > 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。 > ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.3-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.3-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.3 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3 と設定します。 > 以下のコマンドは、RAGFlow Docker イメージの v0.20.5-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.5-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.5 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5 と設定します。
```bash ```bash
$ cd ragflow/docker $ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? | | RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ | | ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release | | v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release | | v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build | | nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build | | nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -266,7 +266,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 ソースコードからサービスを起動する方法 ## 🔨 ソースコードからサービスを起動する方法
1. uv をインストールする。すでにインストールされている場合は、このステップをスキップしてください: 1. `uv` と `pre-commit` をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
```bash ```bash
pipx install uv pre-commit pipx install uv pre-commit
@ -301,12 +301,14 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
``` ```
5. オペレーティングシステムにjemallocがない場合は、次のようにインストールします: 5. オペレーティングシステムにjemallocがない場合は、次のようにインストールします:
```bash ```bash
# ubuntu # ubuntu
sudo apt-get install libjemalloc-dev sudo apt-get install libjemalloc-dev
# centos # centos
sudo yum install jemalloc sudo yum install jemalloc
# mac
sudo brew install jemalloc
``` ```
6. バックエンドサービスを起動する: 6. バックエンドサービスを起動する:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"> <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a> </a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank"> <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3"> <img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a> </a>
<a href="https://github.com/infiniflow/ragflow/releases/latest"> <a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release"> <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -47,7 +47,7 @@
## 💡 RAGFlow란? ## 💡 RAGFlow란?
[RAGFlow](https://ragflow.io/)는 심층 문서 이해에 기반한 오픈소스 RAG (Retrieval-Augmented Generation) 엔진입니다. 이 엔진은 대규모 언어 모델(LLM)과 결합하여 정확한 질문 응답 기능을 제공하며, 다양한 복잡한 형식의 데이터에서 신뢰할 수 있는 출처를 바탕으로 한 인용을 통해 이를 뒷받침합니다. RAGFlow는 규모에 상관없이 모든 기업에 최적화된 RAG 워크플로우를 제공합니다. [RAGFlow](https://ragflow.io/) 는 최첨단 RAG(Retrieval-Augmented Generation)와 Agent 기능을 융합하여 대규모 언어 모델(LLM)을 위한 우수한 컨텍스트 계층을 생성하는 선도적인 오픈소스 RAG 엔진입니다. 모든 규모의 기업에 적용 가능한 효율적인 RAG 워크플로를 제공하며, 통합 컨텍스트 엔진과 사전 구축된 Agent 템플릿을 통해 개발자들이 복잡한 데이터를 예외적인 효율성과 정밀도로 고급 구현도의 프로덕션 준비 완료 AI 시스템으로 변환할 수 있도록 지원합니다.
## 🎮 데모 ## 🎮 데모
@ -160,7 +160,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다. > 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image). > ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.3-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.3-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.3을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3로 설정합니다. > 아래 명령어는 RAGFlow Docker 이미지의 v0.20.5-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.5-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.5을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5로 설정합니다.
```bash ```bash
$ cd ragflow/docker $ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? | | RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ | | ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release | | v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release | | v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build | | nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build | | nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -265,7 +265,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 소스 코드로 서비스를 시작합니다. ## 🔨 소스 코드로 서비스를 시작합니다.
1. uv를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다: 1. `uv` 와 `pre-commit` 을 설치하거나, 이미 설치된 경우 이 단계를 건너뜁니다:
```bash ```bash
pipx install uv pre-commit pipx install uv pre-commit
@ -306,6 +306,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev sudo apt-get install libjemalloc-dev
# centos # centos
sudo yum install jemalloc sudo yum install jemalloc
# mac
sudo brew install jemalloc
``` ```
6. 백엔드 서비스를 시작합니다: 6. 백엔드 서비스를 시작합니다:
@ -339,7 +341,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash ```bash
pkill -f "ragflow_server.py|task_executor.py" pkill -f "ragflow_server.py|task_executor.py"
``` ```
## 📚 문서 ## 📚 문서

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99"> <img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a> </a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank"> <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3"> <img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a> </a>
<a href="https://github.com/infiniflow/ragflow/releases/latest"> <a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão"> <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -67,7 +67,7 @@
## 💡 O que é o RAGFlow? ## 💡 O que é o RAGFlow?
[RAGFlow](https://ragflow.io/) é um mecanismo RAG (Geração Aumentada por Recuperação) de código aberto baseado em entendimento profundo de documentos. Ele oferece um fluxo de trabalho RAG simplificado para empresas de qualquer porte, combinando LLMs (Modelos de Linguagem de Grande Escala) para fornecer capacidades de perguntas e respostas verídicas, respaldadas por citações bem fundamentadas de diversos dados complexos formatados. [RAGFlow](https://ragflow.io/) é um mecanismo de RAG (Retrieval-Augmented Generation) open-source líder que fusiona tecnologias RAG de ponta com funcionalidades Agent para criar uma camada contextual superior para LLMs. Oferece um fluxo de trabalho RAG otimizado adaptável a empresas de qualquer escala. Alimentado por um motor de contexto convergente e modelos Agent pré-construídos, o RAGFlow permite que desenvolvedores transformem dados complexos em sistemas de IA de alta fidelidade e pronto para produção com excepcional eficiência e precisão.
## 🎮 Demo ## 🎮 Demo
@ -180,7 +180,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64. > Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema. > Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.20.3-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.3-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` para a edição completa `v0.20.3`. > O comando abaixo baixa a edição `v0.20.5-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.5-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` para a edição completa `v0.20.5`.
```bash ```bash
$ cd ragflow/docker $ cd ragflow/docker
@ -193,8 +193,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? | | Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ | | --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.20.3 | ~9 | :heavy_check_mark: | Lançamento estável | | v0.20.5 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.3-slim | ~2 | ❌ | Lançamento estável | | v0.20.5-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno | | nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno | | nightly-slim | ~2 | ❌ | _Instável_ build noturno |
@ -289,7 +289,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento ## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv`, ou pule esta etapa se ele já estiver instalado: 1. Instale o `uv` e o `pre-commit`, ou pule esta etapa se eles já estiverem instalados:
```bash ```bash
pipx install uv pre-commit pipx install uv pre-commit
@ -330,6 +330,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev sudo apt-get install libjemalloc-dev
# centos # centos
sudo yum instalar jemalloc sudo yum instalar jemalloc
# mac
sudo brew install jemalloc
``` ```
6. Lance o serviço de back-end: 6. Lance o serviço de back-end:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"> <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a> </a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank"> <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3"> <img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a> </a>
<a href="https://github.com/infiniflow/ragflow/releases/latest"> <a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release"> <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -70,7 +70,7 @@
## 💡 RAGFlow 是什麼? ## 💡 RAGFlow 是什麼?
[RAGFlow](https://ragflow.io/) 是一款基於深度文件理解所建構的開源 RAGRetrieval-Augmented Generation引擎。 RAGFlow 可以為各種規模的企業及個人提供一套精簡的 RAG 工作流程結合大語言模型LLM針對用戶各類不同的複雜格式數據提供可靠的問答以及有理有據的引用 [RAGFlow](https://ragflow.io/) 是一款領先的開源 RAGRetrieval-Augmented Generation引擎,通過融合前沿的 RAG 技術與 Agent 能力,為大型語言模型提供卓越的上下文層。它提供可適配任意規模企業的端到端 RAG 工作流,憑藉融合式上下文引擎與預置的 Agent 模板,助力開發者以極致效率與精度將複雜數據轉化為高可信、生產級的人工智能系統
## 🎮 Demo 試用 ## 🎮 Demo 試用
@ -183,7 +183,7 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。 > 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。 > 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.3-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.3-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` 來下載 RAGFlow 鏡像的 `v0.20.3` 完整發行版。 > 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.5-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.5-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` 來下載 RAGFlow 鏡像的 `v0.20.5` 完整發行版。
```bash ```bash
$ cd ragflow/docker $ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? | | RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ | | ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release | | v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release | | v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build | | nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build | | nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -301,7 +301,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🔨 以原始碼啟動服務 ## 🔨 以原始碼啟動服務
1. 安裝 uv。如已安裝,可跳過此步驟: 1. 安裝 `uv` 和 `pre-commit`。如已安裝,可跳過此步驟:
```bash ```bash
pipx install uv pre-commit pipx install uv pre-commit
@ -343,6 +343,8 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
sudo apt-get install libjemalloc-dev sudo apt-get install libjemalloc-dev
# centos # centos
sudo yum install jemalloc sudo yum install jemalloc
# mac
sudo brew install jemalloc
``` ```
6. 啟動後端服務: 6. 啟動後端服務:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"> <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a> </a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank"> <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.3"> <img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a> </a>
<a href="https://github.com/infiniflow/ragflow/releases/latest"> <a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release"> <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -70,7 +70,7 @@
## 💡 RAGFlow 是什么? ## 💡 RAGFlow 是什么?
[RAGFlow](https://ragflow.io/) 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用 [RAGFlow](https://ragflow.io/) 是一款领先的开源检索增强生成RAG引擎通过融合前沿的 RAG 技术与 Agent 能力,为大型语言模型提供卓越的上下文层。它提供可适配任意规模企业的端到端 RAG 工作流,凭借融合式上下文引擎与预置的 Agent 模板,助力开发者以极致效率与精度将复杂数据转化为高可信、生产级的人工智能系统
## 🎮 Demo 试用 ## 🎮 Demo 试用
@ -183,7 +183,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。 > 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。 > 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.3-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.3-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` 来下载 RAGFlow 镜像的 `v0.20.3` 完整发行版。 > 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.5-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.5-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` 来下载 RAGFlow 镜像的 `v0.20.5` 完整发行版。
```bash ```bash
$ cd ragflow/docker $ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? | | RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ | | ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.3 | &approx;9 | :heavy_check_mark: | Stable release | | v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.3-slim | &approx;2 | ❌ | Stable release | | v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build | | nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build | | nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -301,7 +301,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🔨 以源代码启动服务 ## 🔨 以源代码启动服务
1. 安装 uv。如已经安装,可跳过本步骤: 1. 安装 `uv` 和 `pre-commit`。如已经安装,可跳过本步骤:
```bash ```bash
pipx install uv pre-commit pipx install uv pre-commit
@ -342,6 +342,8 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
sudo apt-get install libjemalloc-dev sudo apt-get install libjemalloc-dev
# centos # centos
sudo yum install jemalloc sudo yum install jemalloc
# mac
sudo brew install jemalloc
``` ```
6. 启动后端服务: 6. 启动后端服务:

View File

@ -16,6 +16,7 @@
import base64 import base64
import json import json
import logging import logging
import re
import time import time
from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy from copy import deepcopy
@ -29,83 +30,52 @@ from api.utils import get_uuid, hash_str2int
from rag.prompts.prompts import chunks_format from rag.prompts.prompts import chunks_format
from rag.utils.redis_conn import REDIS_CONN from rag.utils.redis_conn import REDIS_CONN
class Graph:
class Canvas:
""" """
dsl = { dsl = {
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {},
},
"downstream": ["answer_0"],
"upstream": [],
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"path": ["begin"],
"retrieval": {"chunks": [], "doc_aggs": []},
"globals": {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
}
"""
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.path = []
self.history = []
self.components = {}
self.error = ""
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
self.dsl = json.loads(dsl) if dsl else {
"components": { "components": {
"begin": { "begin": {
"obj": { "obj":{
"component_name": "Begin", "component_name": "Begin",
"params": { "params": {},
"prologue": "Hi there!"
}
}, },
"downstream": [], "downstream": ["answer_0"],
"upstream": [], "upstream": [],
"parent_id": "" },
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
} }
}, },
"history": [], "history": [],
"path": [], "path": ["begin"],
"retrieval": [], "retrieval": {"chunks": [], "doc_aggs": []},
"globals": { "globals": {
"sys.query": "", "sys.query": "",
"sys.user_id": "", "sys.user_id": tenant_id,
"sys.conversation_turns": 0, "sys.conversation_turns": 0,
"sys.files": [] "sys.files": []
} }
} }
"""
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.path = []
self.components = {}
self.error = ""
self.dsl = json.loads(dsl)
self._tenant_id = tenant_id self._tenant_id = tenant_id
self.task_id = task_id if task_id else get_uuid() self.task_id = task_id if task_id else get_uuid()
self.load() self.load()
@ -116,8 +86,6 @@ class Canvas:
for k, cpn in self.components.items(): for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"]) cpn_nms.add(cpn["obj"]["component_name"])
assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
for k, cpn in self.components.items(): for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"]) cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")() param = component_class(cpn["obj"]["component_name"] + "Param")()
@ -130,18 +98,10 @@ class Canvas:
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param) cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
self.path = self.dsl["path"] self.path = self.dsl["path"]
self.history = self.dsl["history"]
self.globals = self.dsl["globals"]
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self): def __str__(self):
self.dsl["path"] = self.path self.dsl["path"] = self.path
self.dsl["history"] = self.history
self.dsl["globals"] = self.globals
self.dsl["task_id"] = self.task_id self.dsl["task_id"] = self.task_id
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
dsl = { dsl = {
"components": {} "components": {}
} }
@ -160,14 +120,79 @@ class Canvas:
dsl["components"][k][c] = deepcopy(cpn[c]) dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False) return json.dumps(dsl, ensure_ascii=False)
def reset(self, mem=False): def reset(self):
self.path = [] self.path = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
raise NotImplementedError()
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def get_tenant_id(self):
return self._tenant_id
class Canvas(Graph):
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
super().__init__(dsl, tenant_id, task_id)
def load(self):
super().load()
self.history = self.dsl["history"]
if "globals" in self.dsl:
self.globals = self.dsl["globals"]
else:
self.globals = {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self):
self.dsl["history"] = self.history
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
return super().__str__()
def reset(self, mem=False):
super().reset()
if not mem: if not mem:
self.history = [] self.history = []
self.retrieval = [] self.retrieval = []
self.memory = [] self.memory = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
for k in self.globals.keys(): for k in self.globals.keys():
if isinstance(self.globals[k], str): if isinstance(self.globals[k], str):
@ -183,22 +208,13 @@ class Canvas:
else: else:
self.globals[k] = None self.globals[k] = None
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs): def run(self, **kwargs):
st = time.perf_counter() st = time.perf_counter()
self.message_id = get_uuid() self.message_id = get_uuid()
created_at = int(time.time()) created_at = int(time.time())
self.add_user_input(kwargs.get("query")) self.add_user_input(kwargs.get("query"))
for k, cpn in self.components.items():
self.components[k]["obj"].reset(True)
for k in kwargs.keys(): for k in kwargs.keys():
if k in ["query", "user_id", "files"] and kwargs[k]: if k in ["query", "user_id", "files"] and kwargs[k]:
@ -285,9 +301,11 @@ class Canvas:
yield decorate("message", {"content": m}) yield decorate("message", {"content": m})
_m += m _m += m
cpn_obj.set_output("content", _m) cpn_obj.set_output("content", _m)
cite = re.search(r"\[ID:[ 0-9]+\]", _m)
else: else:
yield decorate("message", {"content": cpn_obj.output("content")}) yield decorate("message", {"content": cpn_obj.output("content")})
yield decorate("message_end", {"reference": self.get_reference()}) cite = re.search(r"\[ID:[ 0-9]+\]", cpn_obj.output("content"))
yield decorate("message_end", {"reference": self.get_reference() if cite else None})
while partials: while partials:
_cpn_obj = self.get_component_obj(partials[0]) _cpn_obj = self.get_component_obj(partials[0])
@ -377,18 +395,6 @@ class Canvas:
}) })
self.history.append(("assistant", self.get_component_obj(self.path[-1]).output())) self.history.append(("assistant", self.get_component_obj(self.path[-1]).output()))
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def is_reff(self, exp: str) -> bool: def is_reff(self, exp: str) -> bool:
exp = exp.strip("{").strip("}") exp = exp.strip("{").strip("}")
if exp.find("@") < 0: if exp.find("@") < 0:
@ -410,14 +416,11 @@ class Canvas:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'") raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm) return cpn["obj"].output(var_nm)
def get_tenant_id(self):
return self._tenant_id
def get_history(self, window_size): def get_history(self, window_size):
convs = [] convs = []
if window_size <= 0: if window_size <= 0:
return convs return convs
for role, obj in self.history[window_size * -1:]: for role, obj in self.history[window_size * -2:]:
if isinstance(obj, dict): if isinstance(obj, dict):
convs.append({"role": role, "content": obj.get("content", "")}) convs.append({"role": role, "content": obj.get("content", "")})
else: else:
@ -427,39 +430,12 @@ class Canvas:
def add_user_input(self, question): def add_user_input(self, question):
self.history.append(("user", question)) self.history.append(("user", question))
def _find_loop(self, max_loops=6):
path = self.path[-1][::-1]
if len(path) < 2:
return False
for i in range(len(path)):
if path[i].lower().find("answer") == 0 or path[i].lower().find("iterationitem") == 0:
path = path[:i]
break
if len(path) < 2:
return False
for loc in range(2, len(path) // 2):
pat = ",".join(path[0:loc])
path_str = ",".join(path)
if len(pat) >= len(path_str):
return False
loop = max_loops
while path_str.find(pat) == 0 and loop >= 0:
loop -= 1
if len(pat)+1 >= len(path_str):
return False
path_str = path_str[len(pat)+1:]
if loop < 0:
pat = " => ".join([p.split(":")[0] for p in path[0:loc]])
return pat + " => " + pat
return False
def get_prologue(self): def get_prologue(self):
return self.components["begin"]["obj"]._param.prologue return self.components["begin"]["obj"]._param.prologue
def get_mode(self):
return self.components["begin"]["obj"]._param.mode
def set_global_param(self, **kwargs): def set_global_param(self, **kwargs):
self.globals.update(kwargs) self.globals.update(kwargs)
@ -508,7 +484,7 @@ class Canvas:
except Exception as e: except Exception as e:
logging.exception(e) logging.exception(e)
def add_refernce(self, chunks: list[object], doc_infos: list[object]): def add_reference(self, chunks: list[object], doc_infos: list[object]):
if not self.retrieval: if not self.retrieval:
self.retrieval = [{"chunks": {}, "doc_aggs": {}}] self.retrieval = [{"chunks": {}, "doc_aggs": {}}]

View File

@ -50,8 +50,9 @@ del _package_path, _import_submodules, _extract_classes_from_module
def component_class(class_name): def component_class(class_name):
m = importlib.import_module("agent.component") for mdl in ["agent.component", "agent.tools", "rag.flow"]:
try: try:
return getattr(m, class_name) return getattr(importlib.import_module(mdl), class_name)
except Exception: except Exception:
return getattr(importlib.import_module("agent.tools"), class_name) pass
assert False, f"Can't import {class_name}"

View File

@ -155,18 +155,18 @@ class Agent(LLM, ToolBase):
if not self.tools: if not self.tools:
return LLM._invoke(self, **kwargs) return LLM._invoke(self, **kwargs)
prompt, msg = self._prepare_prompt_variables() prompt, msg, user_defined_prompt = self._prepare_prompt_variables()
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else [] downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler() ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]): if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg)) self.set_output("content", partial(self.stream_output_with_tools, prompt, msg, user_defined_prompt))
return return
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97)) _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
use_tools = [] use_tools = []
ans = "" ans = ""
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools): for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
ans += delta_ans ans += delta_ans
if ans.find("**ERROR**") >= 0: if ans.find("**ERROR**") >= 0:
@ -182,11 +182,11 @@ class Agent(LLM, ToolBase):
self.set_output("use_tools", use_tools) self.set_output("use_tools", use_tools)
return ans return ans
def stream_output_with_tools(self, prompt, msg): def stream_output_with_tools(self, prompt, msg, user_defined_prompt={}):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97)) _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer_without_toolcall = "" answer_without_toolcall = ""
use_tools = [] use_tools = []
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools): for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
if delta_ans.find("**ERROR**") >= 0: if delta_ans.find("**ERROR**") >= 0:
if self.get_exception_default_value(): if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value()) self.set_output("content", self.get_exception_default_value())
@ -209,7 +209,7 @@ class Agent(LLM, ToolBase):
]): ]):
yield delta_ans yield delta_ans
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools): def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools, user_defined_prompt={}):
token_count = 0 token_count = 0
tool_metas = self.tool_meta tool_metas = self.tool_meta
hist = deepcopy(history) hist = deepcopy(history)
@ -230,7 +230,7 @@ class Agent(LLM, ToolBase):
# last_calling, # last_calling,
# last_calling != name # last_calling != name
#]): #]):
# self.toolcall_session.get_tool_obj(name).add2system_prompt(f"The chat history with other agents are as following: \n" + self.get_useful_memory(user_request, str(args["user_prompt"]))) # self.toolcall_session.get_tool_obj(name).add2system_prompt(f"The chat history with other agents are as following: \n" + self.get_useful_memory(user_request, str(args["user_prompt"]),user_defined_prompt))
last_calling = name last_calling = name
tool_response = self.toolcall_session.tool_call(name, args) tool_response = self.toolcall_session.tool_call(name, args)
use_tools.append({ use_tools.append({
@ -239,7 +239,7 @@ class Agent(LLM, ToolBase):
"results": tool_response "results": tool_response
}) })
# self.callback("add_memory", {}, "...") # self.callback("add_memory", {}, "...")
#self.add_memory(hist[-2]["content"], hist[-1]["content"], name, args, str(tool_response)) #self.add_memory(hist[-2]["content"], hist[-1]["content"], name, args, str(tool_response), user_defined_prompt)
return name, tool_response return name, tool_response
@ -279,10 +279,10 @@ class Agent(LLM, ToolBase):
hist.append({"role": "user", "content": content}) hist.append({"role": "user", "content": content})
st = timer() st = timer()
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas) task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas, user_defined_prompt)
self.callback("analyze_task", {}, task_desc, elapsed_time=timer()-st) self.callback("analyze_task", {}, task_desc, elapsed_time=timer()-st)
for _ in range(self._param.max_rounds + 1): for _ in range(self._param.max_rounds + 1):
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc) response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc, user_defined_prompt)
# self.callback("next_step", {}, str(response)[:256]+"...") # self.callback("next_step", {}, str(response)[:256]+"...")
token_count += tk token_count += tk
hist.append({"role": "assistant", "content": response}) hist.append({"role": "assistant", "content": response})
@ -307,7 +307,7 @@ class Agent(LLM, ToolBase):
thr.append(executor.submit(use_tool, name, args)) thr.append(executor.submit(use_tool, name, args))
st = timer() st = timer()
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr]) reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr], user_defined_prompt)
append_user_content(hist, reflection) append_user_content(hist, reflection)
self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st) self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st)
@ -334,10 +334,10 @@ Respond immediately with your final comprehensive answer.
for txt, tkcnt in complete(): for txt, tkcnt in complete():
yield txt, tkcnt yield txt, tkcnt
def get_useful_memory(self, goal: str, sub_goal:str, topn=3) -> str: def get_useful_memory(self, goal: str, sub_goal:str, topn=3, user_defined_prompt:dict={}) -> str:
# self.callback("get_useful_memory", {"topn": 3}, "...") # self.callback("get_useful_memory", {"topn": 3}, "...")
mems = self._canvas.get_memory() mems = self._canvas.get_memory()
rank = rank_memories(self.chat_mdl, goal, sub_goal, [summ for (user, assist, summ) in mems]) rank = rank_memories(self.chat_mdl, goal, sub_goal, [summ for (user, assist, summ) in mems], user_defined_prompt)
try: try:
rank = json_repair.loads(re.sub(r"```.*", "", rank))[:topn] rank = json_repair.loads(re.sub(r"```.*", "", rank))[:topn]
mems = [mems[r] for r in rank] mems = [mems[r] for r in rank]

View File

@ -16,7 +16,7 @@
import re import re
import time import time
from abc import ABC, abstractmethod from abc import ABC
import builtins import builtins
import json import json
import os import os
@ -36,7 +36,7 @@ _IS_RAW_CONF = "_is_raw_conf"
class ComponentParamBase(ABC): class ComponentParamBase(ABC):
def __init__(self): def __init__(self):
self.message_history_window_size = 22 self.message_history_window_size = 13
self.inputs = {} self.inputs = {}
self.outputs = {} self.outputs = {}
self.description = "" self.description = ""
@ -410,8 +410,8 @@ class ComponentBase(ABC):
) )
def __init__(self, canvas, id, param: ComponentParamBase): def __init__(self, canvas, id, param: ComponentParamBase):
from agent.canvas import Canvas # Local import to avoid cyclic dependency from agent.canvas import Graph # Local import to avoid cyclic dependency
assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas" assert isinstance(canvas, Graph), "canvas must be an instance of Canvas"
self._canvas = canvas self._canvas = canvas
self._id = id self._id = id
self._param = param self._param = param
@ -448,9 +448,11 @@ class ComponentBase(ABC):
def error(self): def error(self):
return self._param.outputs.get("_ERROR", {}).get("value") return self._param.outputs.get("_ERROR", {}).get("value")
def reset(self): def reset(self, only_output=False):
for k in self._param.outputs.keys(): for k in self._param.outputs.keys():
self._param.outputs[k]["value"] = None self._param.outputs[k]["value"] = None
if only_output:
return
for k in self._param.inputs.keys(): for k in self._param.inputs.keys():
self._param.inputs[k]["value"] = None self._param.inputs[k]["value"] = None
self._param.debug_inputs = {} self._param.debug_inputs = {}
@ -526,6 +528,10 @@ class ComponentBase(ABC):
cpn_nms = self._canvas.get_component(self._id)['upstream'] cpn_nms = self._canvas.get_component(self._id)['upstream']
return cpn_nms return cpn_nms
def get_downstream(self) -> List[str]:
cpn_nms = self._canvas.get_component(self._id)['downstream']
return cpn_nms
@staticmethod @staticmethod
def string_format(content: str, kv: dict[str, str]) -> str: def string_format(content: str, kv: dict[str, str]) -> str:
for n, v in kv.items(): for n, v in kv.items():
@ -554,6 +560,5 @@ class ComponentBase(ABC):
def set_exception_default_value(self): def set_exception_default_value(self):
self.set_output("result", self.get_exception_default_value()) self.set_output("result", self.get_exception_default_value())
@abstractmethod
def thoughts(self) -> str: def thoughts(self) -> str:
... raise NotImplementedError()

View File

@ -17,12 +17,10 @@ import json
import logging import logging
import os import os
import re import re
from typing import Any, Generator
import json_repair
from copy import deepcopy from copy import deepcopy
from typing import Any, Generator
import json_repair
from functools import partial from functools import partial
from api.db import LLMType from api.db import LLMType
from api.db.services.llm_service import LLMBundle from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService from api.db.services.tenant_llm_service import TenantLLMService
@ -130,7 +128,7 @@ class LLM(ComponentBase):
args = {} args = {}
vars = self.get_input_elements() if not self._param.debug_inputs else self._param.debug_inputs vars = self.get_input_elements() if not self._param.debug_inputs else self._param.debug_inputs
prompt = self._param.sys_prompt sys_prompt = self._param.sys_prompt
for k, o in vars.items(): for k, o in vars.items():
args[k] = o["value"] args[k] = o["value"]
if not isinstance(args[k], str): if not isinstance(args[k], str):
@ -141,14 +139,29 @@ class LLM(ComponentBase):
self.set_input_value(k, args[k]) self.set_input_value(k, args[k])
msg = self._canvas.get_history(self._param.message_history_window_size)[:-1] msg = self._canvas.get_history(self._param.message_history_window_size)[:-1]
msg.extend(deepcopy(self._param.prompts)) for p in self._param.prompts:
prompt = self.string_format(prompt, args) if msg and msg[-1]["role"] == p["role"]:
continue
msg.append(deepcopy(p))
sys_prompt = self.string_format(sys_prompt, args)
user_defined_prompt, sys_prompt = self._extract_prompts(sys_prompt)
for m in msg: for m in msg:
m["content"] = self.string_format(m["content"], args) m["content"] = self.string_format(m["content"], args)
if self._param.cite and self._canvas.get_reference()["chunks"]: if self._param.cite and self._canvas.get_reference()["chunks"]:
prompt += citation_prompt() sys_prompt += citation_prompt(user_defined_prompt)
return prompt, msg return sys_prompt, msg, user_defined_prompt
def _extract_prompts(self, sys_prompt):
pts = {}
for tag in ["TASK_ANALYSIS", "PLAN_GENERATION", "REFLECTION", "CONTEXT_SUMMARY", "CONTEXT_RANKING", "CITATION_GUIDELINES"]:
r = re.search(rf"<{tag}>(.*?)</{tag}>", sys_prompt, flags=re.DOTALL|re.IGNORECASE)
if not r:
continue
pts[tag.lower()] = r.group(1)
sys_prompt = re.sub(rf"<{tag}>(.*?)</{tag}>", "", sys_prompt, flags=re.DOTALL|re.IGNORECASE)
return pts, sys_prompt
def _generate(self, msg:list[dict], **kwargs) -> str: def _generate(self, msg:list[dict], **kwargs) -> str:
if not self.imgs: if not self.imgs:
@ -196,7 +209,7 @@ class LLM(ComponentBase):
ans = re.sub(r"^.*```json", "", ans, flags=re.DOTALL) ans = re.sub(r"^.*```json", "", ans, flags=re.DOTALL)
return re.sub(r"```\n*$", "", ans, flags=re.DOTALL) return re.sub(r"```\n*$", "", ans, flags=re.DOTALL)
prompt, msg = self._prepare_prompt_variables() prompt, msg, _ = self._prepare_prompt_variables()
error = "" error = ""
if self._param.output_structure: if self._param.output_structure:
@ -260,11 +273,11 @@ class LLM(ComponentBase):
answer += ans answer += ans
self.set_output("content", answer) self.set_output("content", answer)
def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str): def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str, user_defined_prompt:dict={}):
summ = tool_call_summary(self.chat_mdl, func_name, params, results) summ = tool_call_summary(self.chat_mdl, func_name, params, results, user_defined_prompt)
logging.info(f"[MEMORY]: {summ}") logging.info(f"[MEMORY]: {summ}")
self._canvas.add_memory(user, assist, summ) self._canvas.add_memory(user, assist, summ)
def thoughts(self) -> str: def thoughts(self) -> str:
_, msg = self._prepare_prompt_variables() _, msg,_ = self._prepare_prompt_variables()
return "⌛Give me a moment—starting from: \n\n" + re.sub(r"(User's query:|[\\]+)", '', msg[-1]['content'], flags=re.DOTALL) + "\n\nIll figure out our best next move." return "⌛Give me a moment—starting from: \n\n" + re.sub(r"(User's query:|[\\]+)", '', msg[-1]['content'], flags=re.DOTALL) + "\n\nIll figure out our best next move."

View File

@ -1,8 +1,12 @@
{ {
"id": 19, "id": 19,
"title": "Choose Your Knowledge Base Agent", "title": {
"description": "Select your desired knowledge base from the dropdown menu. The Agent will only retrieve from the selected knowledge base and use this content to generate responses.", "en": "Choose Your Knowledge Base Agent",
"canvas_type": "Agent", "zh": "选择知识库智能体"},
"description": {
"en": "Select your desired knowledge base from the dropdown menu. The Agent will only retrieve from the selected knowledge base and use this content to generate responses.",
"zh": "从下拉菜单中选择知识库,智能体将仅根据所选知识库内容生成回答。"},
"canvas_type": "Agent",
"dsl": { "dsl": {
"components": { "components": {
"Agent:BraveParksJoke": { "Agent:BraveParksJoke": {

View File

@ -1,8 +1,12 @@
{ {
"id": 18, "id": 18,
"title": "Choose Your Knowledge Base Workflow", "title": {
"description": "Select your desired knowledge base from the dropdown menu. The retrieval assistant will only use data from your selected knowledge base to generate responses.", "en": "Choose Your Knowledge Base Workflow",
"canvas_type": "Other", "zh": "选择知识库工作流"},
"description": {
"en": "Select your desired knowledge base from the dropdown menu. The retrieval assistant will only use data from your selected knowledge base to generate responses.",
"zh": "从下拉菜单中选择知识库,工作流将仅根据所选知识库内容生成回答。"},
"canvas_type": "Other",
"dsl": { "dsl": {
"components": { "components": {
"Agent:ProudDingosShout": { "Agent:ProudDingosShout": {

View File

@ -1,9 +1,13 @@
{ {
"id": 11, "id": 11,
"title": "Customer Review Analysis", "title": {
"description": "Automatically classify customer reviews using LLM (Large Language Model) and route them via email to the relevant departments.", "en": "Customer Review Analysis",
"canvas_type": "Customer Support", "zh": "客户评价分析"},
"description": {
"en": "Automatically classify customer reviews using LLM (Large Language Model) and route them via email to the relevant departments.",
"zh": "大模型将自动分类客户评价,并通过电子邮件将结果发送到相关部门。"},
"canvas_type": "Customer Support",
"dsl": { "dsl": {
"components": { "components": {
"Categorize:FourTeamsFold": { "Categorize:FourTeamsFold": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{ {
"id": 10, "id": 10,
"title": "Customer Support", "title": {
"description": "This is an intelligent customer service processing system workflow based on user intent classification. It uses LLM to identify user demand types and transfers them to the corresponding professional agent for processing.", "en":"Customer Support",
"zh": "客户支持"},
"description": {
"en": "This is an intelligent customer service processing system workflow based on user intent classification. It uses LLM to identify user demand types and transfers them to the corresponding professional agent for processing.",
"zh": "工作流系统,用于智能客服场景。基于用户意图分类。使用大模型识别用户需求类型,并将需求转移给相应的智能体进行处理。"},
"canvas_type": "Customer Support", "canvas_type": "Customer Support",
"dsl": { "dsl": {
"components": { "components": {

View File

@ -1,8 +1,12 @@
{ {
"id": 15, "id": 15,
"title": "CV Analysis and Candidate Evaluation", "title": {
"description": "This is a workflow that helps companies evaluate resumes, HR uploads a job description first, then submits multiple resumes via the chat window for evaluation.", "en": "CV Analysis and Candidate Evaluation",
"zh": "简历分析和候选人评估"},
"description": {
"en": "This is a workflow that helps companies evaluate resumes, HR uploads a job description first, then submits multiple resumes via the chat window for evaluation.",
"zh": "帮助公司评估简历的工作流。HR首先上传职位描述通过聊天窗口提交多份简历进行评估。"},
"canvas_type": "Other", "canvas_type": "Other",
"dsl": { "dsl": {
"components": { "components": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{ {
"id": 1, "id": 1,
"title": "Deep Research", "title": {
"description": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.", "en": "Deep Research",
"zh": "深度研究"},
"description": {
"en": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"zh": "专为销售、市场、政策或咨询领域的专业人士设计,多智能体的深度研究会结合多源信息进行结构化、多步骤地回答问题,并附带有清晰的引用。"},
"canvas_type": "Recommended", "canvas_type": "Recommended",
"dsl": { "dsl": {
"components": { "components": {

View File

@ -1,8 +1,12 @@
{ {
"id": 6, "id": 6,
"title": "Deep Research", "title": {
"description": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.", "en": "Deep Research",
"zh": "深度研究"},
"description": {
"en": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"zh": "专为销售、市场、政策或咨询领域的专业人士设计,多智能体的深度研究会结合多源信息进行结构化、多步骤地回答问题,并附带有清晰的引用。"},
"canvas_type": "Agent", "canvas_type": "Agent",
"dsl": { "dsl": {
"components": { "components": {

File diff suppressed because one or more lines are too long

View File

@ -1,7 +1,11 @@
{ {
"id": 8, "id": 8,
"title": "Generate SEO Blog", "title": {
"description": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.", "en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"zh": "多智能体架构可根据简单的用户输入自动生成完整的SEO博客文章。模拟小型“作家”团队其中每个智能体扮演一个专业角色——就像真正的编辑团队。"},
"canvas_type": "Agent", "canvas_type": "Agent",
"dsl": { "dsl": {
"components": { "components": {

View File

@ -1,7 +1,11 @@
{ {
"id": 13, "id": 13,
"title": "ImageLingo", "title": {
"description": "ImageLingo lets you snap any photo containing text—menus, signs, or documents—and instantly recognize and translate it into your language of choice using advanced AI-powered translation technology.", "en": "ImageLingo",
"zh": "图片解析"},
"description": {
"en": "ImageLingo lets you snap any photo containing text—menus, signs, or documents—and instantly recognize and translate it into your language of choice using advanced AI-powered translation technology.",
"zh": "多模态大模型允许您拍摄任何包含文本的照片——菜单、标志或文档——立即识别并转换成您选择的语言。"},
"canvas_type": "Consumer App", "canvas_type": "Consumer App",
"dsl": { "dsl": {
"components": { "components": {

View File

@ -1,7 +1,11 @@
{ {
"id": 20, "id": 20,
"title": "Report Agent Using Knowledge Base", "title": {
"description": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A", "en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Agent", "canvas_type": "Agent",
"dsl": { "dsl": {
"components": { "components": {

View File

@ -0,0 +1,331 @@
{
"id": 21,
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Recommended",
"dsl": {
"components": {
"Agent:NewPumasLick": {
"downstream": [
"Message:OrangeYearsShine"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Message:OrangeYearsShine": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:NewPumasLick@content}"
]
}
},
"upstream": [
"Agent:NewPumasLick"
]
},
"begin": {
"downstream": [
"Agent:NewPumasLick"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:NewPumasLickend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:NewPumasLick",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLickstart-Message:OrangeYearsShineend",
"markerEnd": "logo",
"source": "Agent:NewPumasLick",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Message:OrangeYearsShine",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLicktool-Tool:AllBirdsNailend",
"selected": false,
"source": "Agent:NewPumasLick",
"sourceHandle": "tool",
"target": "Tool:AllBirdsNail",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
},
"label": "Begin",
"name": "begin"
},
"dragging": false,
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": -9.569875358221438,
"y": 205.84018385864917
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"content": [
"{Agent:NewPumasLick@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:OrangeYearsShine",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 734.4061285881053,
"y": 199.9706031723009
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Knowledge Base Agent"
},
"dragging": false,
"id": "Agent:NewPumasLick",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 347.00048227952215,
"y": 186.49109364794631
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_10"
},
"dragging": false,
"id": "Tool:AllBirdsNail",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 220.24819746977118,
"y": 403.31576836482583
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
}
]
},
"history": [],
"memory": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@ -1,7 +1,11 @@
{ {
"id": 12, "id": 12,
"title": "Generate SEO Blog", "title": {
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.", "en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Marketing", "canvas_type": "Marketing",
"dsl": { "dsl": {
"components": { "components": {

View File

@ -1,7 +1,11 @@
{ {
"id": 4, "id": 4,
"title": "Generate SEO Blog", "title": {
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.", "en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Recommended", "canvas_type": "Recommended",
"dsl": { "dsl": {
"components": { "components": {

View File

@ -1,7 +1,11 @@
{ {
"id": 17, "id": 17,
"title": "SQL Assistant", "title": {
"description": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ", "en": "SQL Assistant",
"zh": "SQL助理"},
"description": {
"en": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"zh": "用户能够将简单文本问题转化为完整的SQL查询并输出结果。只需输入您的问题例如“展示上个季度前十名按收入排序的产品”SQL助理就会生成精确的SQL语句对其运行您的数据库并几秒钟内返回结果。"},
"canvas_type": "Marketing", "canvas_type": "Marketing",
"dsl": { "dsl": {
"components": { "components": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{ {
"id": 9, "id": 9,
"title": "Technical Docs QA", "title": {
"description": "This is a document question-and-answer system based on a knowledge base. When a user asks a question, it retrieves relevant document content to provide accurate answers.", "en": "Technical Docs QA",
"zh": "技术文档问答"},
"description": {
"en": "This is a document question-and-answer system based on a knowledge base. When a user asks a question, it retrieves relevant document content to provide accurate answers.",
"zh": "基于知识库的文档问答系统,当用户提出问题时,会检索相关本地文档并提供准确回答。"},
"canvas_type": "Customer Support", "canvas_type": "Customer Support",
"dsl": { "dsl": {
"components": { "components": {

View File

@ -1,9 +1,13 @@
{ {
"id": 14, "id": 14,
"title": "Trip Planner", "title": {
"description": "This smart trip planner utilizes LLM technology to automatically generate customized travel itineraries, with optional tool integration for enhanced reliability.", "en": "Trip Planner",
"canvas_type": "Consumer App", "zh": "旅行规划"},
"description": {
"en": "This smart trip planner utilizes LLM technology to automatically generate customized travel itineraries, with optional tool integration for enhanced reliability.",
"zh": "智能旅行规划将利用大模型自动生成定制化的旅行行程,附带可选工具集成,以增强可靠性。"},
"canvas_type": "Consumer App",
"dsl": { "dsl": {
"components": { "components": {
"Agent:OddGuestsPump": { "Agent:OddGuestsPump": {

View File

@ -1,9 +1,13 @@
{ {
"id": 16, "id": 16,
"title": "WebSearch Assistant", "title": {
"description": "A chat assistant template that integrates information extracted from a knowledge base and web searches to respond to queries. Let's start by setting up your knowledge base in 'Retrieval'!", "en": "WebSearch Assistant",
"canvas_type": "Other", "zh": "网页搜索助手"},
"description": {
"en": "A chat assistant template that integrates information extracted from a knowledge base and web searches to respond to queries. Let's start by setting up your knowledge base in 'Retrieval'!",
"zh": "集成了从知识库和网络搜索中提取的信息回答用户问题。让我们从设置您的知识库开始检索!"},
"canvas_type": "Other",
"dsl": { "dsl": {
"components": { "components": {
"Agent:SmartSchoolsCross": { "Agent:SmartSchoolsCross": {

View File

@ -166,7 +166,7 @@ class ToolBase(ComponentBase):
"count": 1, "count": 1,
"url": url "url": url
}) })
self._canvas.add_refernce(chunks, aggs) self._canvas.add_reference(chunks, aggs)
self.set_output("formalized_content", "\n".join(kb_prompt({"chunks": chunks, "doc_aggs": aggs}, 200000, True))) self.set_output("formalized_content", "\n".join(kb_prompt({"chunks": chunks, "doc_aggs": aggs}, 200000, True)))
def thoughts(self) -> str: def thoughts(self) -> str:

View File

@ -79,7 +79,7 @@ def main() -> dict:
return { return {
"result": fibonacci_recursive(100), "result": fibonacci_recursive(100),
} }
Here's a code example for Javascript(`main` function MUST be included and exported): Here's a code example for Javascript(`main` function MUST be included and exported):
const axios = require('axios'); const axios = require('axios');
async function main(args) { async function main(args) {
@ -156,7 +156,7 @@ class CodeExec(ToolBase, ABC):
self.set_output("_ERROR", "construct code request error: " + str(e)) self.set_output("_ERROR", "construct code request error: " + str(e))
try: try:
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=10) resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code) logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
if resp.status_code != 200: if resp.status_code != 200:
resp.raise_for_status() resp.raise_for_status()

View File

@ -16,9 +16,8 @@
from abc import ABC from abc import ABC
import asyncio import asyncio
from crawl4ai import AsyncWebCrawler from crawl4ai import AsyncWebCrawler
from agent.tools.base import ToolParamBase, ToolBase from agent.tools.base import ToolParamBase, ToolBase
from api.utils.web_utils import is_valid_url
class CrawlerParam(ToolParamBase): class CrawlerParam(ToolParamBase):
@ -39,6 +38,7 @@ class Crawler(ToolBase, ABC):
component_name = "Crawler" component_name = "Crawler"
def _run(self, history, **kwargs): def _run(self, history, **kwargs):
from api.utils.web_utils import is_valid_url
ans = self.get_input() ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else "" ans = " - ".join(ans["content"]) if "content" in ans else ""
if not is_valid_url(ans): if not is_valid_url(ans):
@ -64,5 +64,5 @@ class Crawler(ToolBase, ABC):
elif self._param.extract_type == 'markdown': elif self._param.extract_type == 'markdown':
return result.markdown return result.markdown
elif self._param.extract_type == 'content': elif self._param.extract_type == 'content':
result.extracted_content return result.extracted_content
return result.markdown return result.markdown

View File

@ -43,7 +43,7 @@ class DeepLParam(ComponentParamBase):
class DeepL(ComponentBase, ABC): class DeepL(ComponentBase, ABC):
component_name = "GitHub" component_name = "DeepL"
def _run(self, history, **kwargs): def _run(self, history, **kwargs):
ans = self.get_input() ans = self.get_input()

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# #
import json
import os import os
import re import re
from abc import ABC from abc import ABC
@ -93,8 +94,20 @@ class ExeSQL(ToolBase, ABC):
sql = kwargs.get("sql") sql = kwargs.get("sql")
if not sql: if not sql:
raise Exception("SQL for `ExeSQL` MUST not be empty.") raise Exception("SQL for `ExeSQL` MUST not be empty.")
sqls = sql.split(";")
vars = self.get_input_elements_from_text(sql)
args = {}
for k, o in vars.items():
args[k] = o["value"]
if not isinstance(args[k], str):
try:
args[k] = json.dumps(args[k], ensure_ascii=False)
except Exception:
args[k] = str(args[k])
self.set_input_value(k, args[k])
sql = self.string_format(sql, args)
sqls = sql.split(";")
if self._param.db_type in ["mysql", "mariadb"]: if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host, db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password) port=self._param.port, password=self._param.password)

View File

@ -163,7 +163,7 @@ class Retrieval(ToolBase, ABC):
self.set_output("formalized_content", self._param.empty_response) self.set_output("formalized_content", self._param.empty_response)
return return
self._canvas.add_refernce(kbinfos["chunks"], kbinfos["doc_aggs"]) self._canvas.add_reference(kbinfos["chunks"], kbinfos["doc_aggs"])
form_cnt = "\n".join(kb_prompt(kbinfos, 200000, True)) form_cnt = "\n".join(kb_prompt(kbinfos, 200000, True))
self.set_output("formalized_content", form_cnt) self.set_output("formalized_content", form_cnt)
return form_cnt return form_cnt

156
agent/tools/searxng.py Normal file
View File

@ -0,0 +1,156 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import requests
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class SearXNGParam(ToolParamBase):
"""
Define the SearXNG component parameters.
"""
def __init__(self):
self.meta: ToolMeta = {
"name": "searxng_search",
"description": "SearXNG is a privacy-focused metasearch engine that aggregates results from multiple search engines without tracking users. It provides comprehensive web search capabilities.",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with SearXNG. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
},
"searxng_url": {
"type": "string",
"description": "The base URL of your SearXNG instance (e.g., http://localhost:4000). This is required to connect to your SearXNG server.",
"required": False,
"default": ""
}
}
}
super().__init__()
self.top_n = 10
self.searxng_url = ""
def check(self):
# Keep validation lenient so opening try-run panel won't fail without URL.
# Coerce top_n to int if it comes as string from UI.
try:
if isinstance(self.top_n, str):
self.top_n = int(self.top_n.strip())
except Exception:
pass
self.check_positive_integer(self.top_n, "Top N")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
},
"searxng_url": {
"name": "SearXNG URL",
"type": "line",
"placeholder": "http://localhost:4000"
}
}
class SearXNG(ToolBase, ABC):
component_name = "SearXNG"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
def _invoke(self, **kwargs):
# Gracefully handle try-run without inputs
query = kwargs.get("query")
if not query or not isinstance(query, str) or not query.strip():
self.set_output("formalized_content", "")
return ""
searxng_url = (kwargs.get("searxng_url") or getattr(self._param, "searxng_url", "") or "").strip()
# In try-run, if no URL configured, just return empty instead of raising
if not searxng_url:
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
# 构建搜索参数
search_params = {
'q': query,
'format': 'json',
'categories': 'general',
'language': 'auto',
'safesearch': 1,
'pageno': 1
}
# 发送搜索请求
response = requests.get(
f"{searxng_url}/search",
params=search_params,
timeout=10
)
response.raise_for_status()
data = response.json()
# 验证响应数据
if not data or not isinstance(data, dict):
raise ValueError("Invalid response from SearXNG")
results = data.get("results", [])
if not isinstance(results, list):
raise ValueError("Invalid results format from SearXNG")
# 限制结果数量
results = results[:self._param.top_n]
# 处理搜索结果
self._retrieve_chunks(results,
get_title=lambda r: r.get("title", ""),
get_url=lambda r: r.get("url", ""),
get_content=lambda r: r.get("content", ""))
self.set_output("json", results)
return self.output("formalized_content")
except requests.RequestException as e:
last_e = f"Network error: {e}"
logging.exception(f"SearXNG network error: {e}")
time.sleep(self._param.delay_after_error)
except Exception as e:
last_e = str(e)
logging.exception(f"SearXNG error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", last_e)
return f"SearXNG error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Searching with SearXNG for relevant results...
""".format(self.get_input().get("query", "-_-!"))

View File

@ -24,7 +24,7 @@ from flask import request, Response
from flask_login import login_required, current_user from flask_login import login_required, current_user
from agent.component import LLM from agent.component import LLM
from api.db import FileType from api.db import CanvasCategory, FileType
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService, API4ConversationService from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService, API4ConversationService
from api.db.services.document_service import DocumentService from api.db.services.document_service import DocumentService
from api.db.services.file_service import FileService from api.db.services.file_service import FileService
@ -45,14 +45,14 @@ from rag.utils.redis_conn import REDIS_CONN
@manager.route('/templates', methods=['GET']) # noqa: F821 @manager.route('/templates', methods=['GET']) # noqa: F821
@login_required @login_required
def templates(): def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.get_all()]) return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.Agent)])
@manager.route('/list', methods=['GET']) # noqa: F821 @manager.route('/list', methods=['GET']) # noqa: F821
@login_required @login_required
def canvas_list(): def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in \ return get_json_result(data=sorted([c.to_dict() for c in \
UserCanvasService.query(user_id=current_user.id)], key=lambda x: x["update_time"]*-1) UserCanvasService.query(user_id=current_user.id, canvas_category=CanvasCategory.Agent)], key=lambda x: x["update_time"]*-1)
) )
@ -79,7 +79,7 @@ def save():
req["dsl"] = json.loads(req["dsl"]) req["dsl"] = json.loads(req["dsl"])
if "id" not in req: if "id" not in req:
req["user_id"] = current_user.id req["user_id"] = current_user.id
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()): if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=CanvasCategory.Agent):
return get_data_error_result(message=f"{req['title'].strip()} already exists.") return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid() req["id"] = get_uuid()
if not UserCanvasService.save(**req): if not UserCanvasService.save(**req):
@ -91,7 +91,7 @@ def save():
code=RetCode.OPERATING_ERROR) code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req) UserCanvasService.update_by_id(req["id"], req)
# save version # save version
UserCanvasVersionService.insert( user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S"))) UserCanvasVersionService.insert(user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"]) UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req) return get_json_result(data=req)
@ -395,7 +395,7 @@ def list_canvas():
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id) tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
canvas, total = UserCanvasService.get_by_tenant_ids( canvas, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number, [m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords) items_per_page, orderby, desc, keywords, canvas_category=CanvasCategory.Agent)
return get_json_result(data={"canvas": canvas, "total": total}) return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e: except Exception as e:
return server_error_response(e) return server_error_response(e)
@ -418,12 +418,10 @@ def setting():
return get_data_error_result(message="canvas not found.") return get_data_error_result(message="canvas not found.")
flow = flow.to_dict() flow = flow.to_dict()
flow["title"] = req["title"] flow["title"] = req["title"]
if req["description"]:
flow["description"] = req["description"] for key in ["description", "permission", "avatar"]:
if req["permission"]: if value := req.get(key):
flow["permission"] = req["permission"] flow[key] = value
if req["avatar"]:
flow["avatar"] = req["avatar"]
num= UserCanvasService.update_by_id(req["id"], flow) num= UserCanvasService.update_by_id(req["id"], flow)
return get_json_result(data=num) return get_json_result(data=num)
@ -472,3 +470,16 @@ def sessions(canvas_id):
except Exception as e: except Exception as e:
return server_error_response(e) return server_error_response(e)
@manager.route('/prompts', methods=['GET']) # noqa: F821
@login_required
def prompts():
from rag.prompts.prompts import ANALYZE_TASK_SYSTEM, ANALYZE_TASK_USER, NEXT_STEP, REFLECT, CITATION_PROMPT_TEMPLATE
return get_json_result(data={
"task_analysis": ANALYZE_TASK_SYSTEM +"\n\n"+ ANALYZE_TASK_USER,
"plan_generation": NEXT_STEP,
"reflection": REFLECT,
#"context_summary": SUMMARY4MEMORY,
#"context_ranking": RANK_MEMORY,
"citation_guidelines": CITATION_PROMPT_TEMPLATE
})

View File

@ -93,6 +93,7 @@ def list_chunk():
def get(): def get():
chunk_id = request.args["chunk_id"] chunk_id = request.args["chunk_id"]
try: try:
chunk = None
tenants = UserTenantService.query(user_id=current_user.id) tenants = UserTenantService.query(user_id=current_user.id)
if not tenants: if not tenants:
return get_data_error_result(message="Tenant not found!") return get_data_error_result(message="Tenant not found!")
@ -290,6 +291,10 @@ def retrieval_test():
kb_ids = req["kb_id"] kb_ids = req["kb_id"]
if isinstance(kb_ids, str): if isinstance(kb_ids, str):
kb_ids = [kb_ids] kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=settings.RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", []) doc_ids = req.get("doc_ids", [])
use_kg = req.get("use_kg", False) use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024)) top = int(req.get("top_k", 1024))

View File

@ -400,6 +400,8 @@ def related_questions():
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, chat_id) chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, chat_id)
gen_conf = search_config.get("llm_setting", {"temperature": 0.9}) gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
if "parameter" in gen_conf:
del gen_conf["parameter"]
prompt = load_prompt("related_question") prompt = load_prompt("related_question")
ans = chat_mdl.chat( ans = chat_mdl.chat(
prompt, prompt,

353
api/apps/dataflow_app.py Normal file
View File

@ -0,0 +1,353 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
import sys
import time
from functools import partial
import trio
from flask import request
from flask_login import current_user, login_required
from agent.canvas import Canvas
from agent.component import LLM
from api.db import CanvasCategory, FileType
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.db.services.document_service import DocumentService
from api.db.services.file_service import FileService
from api.db.services.task_service import queue_dataflow
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from api.utils.file_utils import filename_type, read_potential_broken_pdf
from rag.flow.pipeline import Pipeline
@manager.route("/templates", methods=["GET"]) # noqa: F821
@login_required
def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.DataFlow)])
@manager.route("/list", methods=["GET"]) # noqa: F821
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in UserCanvasService.query(user_id=current_user.id, canvas_category=CanvasCategory.DataFlow)], key=lambda x: x["update_time"] * -1))
@manager.route("/rm", methods=["POST"]) # noqa: F821
@validate_request("canvas_ids")
@login_required
def rm():
for i in request.json["canvas_ids"]:
if not UserCanvasService.accessible(i, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
UserCanvasService.delete_by_id(i)
return get_json_result(data=True)
@manager.route("/set", methods=["POST"]) # noqa: F821
@validate_request("dsl", "title")
@login_required
def save():
req = request.json
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
req["canvas_category"] = CanvasCategory.DataFlow
if "id" not in req:
req["user_id"] = current_user.id
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=CanvasCategory.DataFlow):
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return get_data_error_result(message="Fail to save canvas.")
else:
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
# save version
UserCanvasVersionService.insert(user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req)
@manager.route("/get/<canvas_id>", methods=["GET"]) # noqa: F821
@login_required
def get(canvas_id):
if not UserCanvasService.accessible(canvas_id, current_user.id):
return get_data_error_result(message="canvas not found.")
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
return get_json_result(data=c)
@manager.route("/run", methods=["POST"]) # noqa: F821
@validate_request("id")
@login_required
def run():
req = request.json
flow_id = req.get("id", "")
doc_id = req.get("doc_id", "")
if not all([flow_id, doc_id]):
return get_data_error_result(message="id and doc_id are required.")
if not DocumentService.get_by_id(doc_id):
return get_data_error_result(message=f"Document for {doc_id} not found.")
user_id = req.get("user_id", current_user.id)
if not UserCanvasService.accessible(flow_id, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
e, cvs = UserCanvasService.get_by_id(flow_id)
if not e:
return get_data_error_result(message="canvas not found.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
task_id = get_uuid()
ok, error_message = queue_dataflow(dsl=cvs.dsl, tenant_id=user_id, doc_id=doc_id, task_id=task_id, flow_id=flow_id, priority=0)
if not ok:
return server_error_response(error_message)
return get_json_result(data={"task_id": task_id, "flow_id": flow_id})
@manager.route("/reset", methods=["POST"]) # noqa: F821
@validate_request("id")
@login_required
def reset():
req = request.json
flow_id = req.get("id", "")
if not flow_id:
return get_data_error_result(message="id is required.")
if not UserCanvasService.accessible(flow_id, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
task_id = req.get("task_id", "")
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
dataflow = Pipeline(dsl=json.dumps(user_canvas.dsl), tenant_id=current_user.id, flow_id=flow_id, task_id=task_id)
dataflow.reset()
req["dsl"] = json.loads(str(dataflow))
UserCanvasService.update_by_id(req["id"], {"dsl": req["dsl"]})
return get_json_result(data=req["dsl"])
except Exception as e:
return server_error_response(e)
@manager.route("/upload/<canvas_id>", methods=["POST"]) # noqa: F821
def upload(canvas_id):
e, cvs = UserCanvasService.get_by_tenant_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
user_id = cvs["user_id"]
def structured(filename, filetype, blob, content_type):
nonlocal user_id
if filetype == FileType.PDF.value:
blob = read_potential_broken_pdf(blob)
location = get_uuid()
FileService.put_blob(user_id, location, blob)
return {
"id": location,
"name": filename,
"size": sys.getsizeof(blob),
"extension": filename.split(".")[-1].lower(),
"mime_type": content_type,
"created_by": user_id,
"created_at": time.time(),
"preview_url": None,
}
if request.args.get("url"):
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CrawlResult, DefaultMarkdownGenerator, PruningContentFilter
try:
url = request.args.get("url")
filename = re.sub(r"\?.*", "", url.split("/")[-1])
async def adownload():
browser_config = BrowserConfig(
headless=True,
verbose=False,
)
async with AsyncWebCrawler(config=browser_config) as crawler:
crawler_config = CrawlerRunConfig(markdown_generator=DefaultMarkdownGenerator(content_filter=PruningContentFilter()), pdf=True, screenshot=False)
result: CrawlResult = await crawler.arun(url=url, config=crawler_config)
return result
page = trio.run(adownload())
if page.pdf:
if filename.split(".")[-1].lower() != "pdf":
filename += ".pdf"
return get_json_result(data=structured(filename, "pdf", page.pdf, page.response_headers["content-type"]))
return get_json_result(data=structured(filename, "html", str(page.markdown).encode("utf-8"), page.response_headers["content-type"], user_id))
except Exception as e:
return server_error_response(e)
file = request.files["file"]
try:
DocumentService.check_doc_health(user_id, file.filename)
return get_json_result(data=structured(file.filename, filename_type(file.filename), file.read(), file.content_type))
except Exception as e:
return server_error_response(e)
@manager.route("/input_form", methods=["GET"]) # noqa: F821
@login_required
def input_form():
flow_id = request.args.get("id")
cpn_id = request.args.get("component_id")
try:
e, user_canvas = UserCanvasService.get_by_id(flow_id)
if not e:
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=flow_id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
dataflow = Pipeline(dsl=json.dumps(user_canvas.dsl), tenant_id=current_user.id, flow_id=flow_id, task_id="")
return get_json_result(data=dataflow.get_component_input_form(cpn_id))
except Exception as e:
return server_error_response(e)
@manager.route("/debug", methods=["POST"]) # noqa: F821
@validate_request("id", "component_id", "params")
@login_required
def debug():
req = request.json
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas.reset()
canvas.message_id = get_uuid()
component = canvas.get_component(req["component_id"])["obj"]
component.reset()
if isinstance(component, LLM):
component.set_debug_inputs(req["params"])
component.invoke(**{k: o["value"] for k, o in req["params"].items()})
outputs = component.output()
for k in outputs.keys():
if isinstance(outputs[k], partial):
txt = ""
for c in outputs[k]():
txt += c
outputs[k] = txt
return get_json_result(data=outputs)
except Exception as e:
return server_error_response(e)
# api get list version dsl of canvas
@manager.route("/getlistversion/<canvas_id>", methods=["GET"]) # noqa: F821
@login_required
def getlistversion(canvas_id):
try:
list = sorted([c.to_dict() for c in UserCanvasVersionService.list_by_canvas_id(canvas_id)], key=lambda x: x["update_time"] * -1)
return get_json_result(data=list)
except Exception as e:
return get_data_error_result(message=f"Error getting history files: {e}")
# api get version dsl of canvas
@manager.route("/getversion/<version_id>", methods=["GET"]) # noqa: F821
@login_required
def getversion(version_id):
try:
e, version = UserCanvasVersionService.get_by_id(version_id)
if version:
return get_json_result(data=version.to_dict())
except Exception as e:
return get_json_result(data=f"Error getting history file: {e}")
@manager.route("/listteam", methods=["GET"]) # noqa: F821
@login_required
def list_canvas():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
canvas, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number, items_per_page, orderby, desc, keywords, canvas_category=CanvasCategory.DataFlow
)
return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route("/setting", methods=["POST"]) # noqa: F821
@validate_request("id", "title", "permission")
@login_required
def setting():
req = request.json
req["user_id"] = current_user.id
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
e, flow = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
flow = flow.to_dict()
flow["title"] = req["title"]
for key in ("description", "permission", "avatar"):
if value := req.get(key):
flow[key] = value
num = UserCanvasService.update_by_id(req["id"], flow)
return get_json_result(data=num)
@manager.route("/trace", methods=["GET"]) # noqa: F821
def trace():
dataflow_id = request.args.get("dataflow_id")
task_id = request.args.get("task_id")
if not all([dataflow_id, task_id]):
return get_data_error_result(message="dataflow_id and task_id are required.")
e, dataflow_canvas = UserCanvasService.get_by_id(dataflow_id)
if not e:
return get_data_error_result(message="dataflow not found.")
dsl_str = json.dumps(dataflow_canvas.dsl, ensure_ascii=False)
dataflow = Pipeline(dsl=dsl_str, tenant_id=dataflow_canvas.user_id, flow_id=dataflow_id, task_id=task_id)
log = dataflow.fetch_logs()
return get_json_result(data=log)

View File

@ -66,7 +66,7 @@ def set_dialog():
if not is_create: if not is_create:
if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']: if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']:
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base/Tavily used here.") return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base / Tavily used here.")
for p in prompt_config["parameters"]: for p in prompt_config["parameters"]:
if p["optional"]: if p["optional"]:

View File

@ -456,8 +456,7 @@ def run():
cancel_all_task_of(id) cancel_all_task_of(id)
else: else:
return get_data_error_result(message="Cannot cancel a task that is not in RUNNING status") return get_data_error_result(message="Cannot cancel a task that is not in RUNNING status")
if all([("delete" not in req or req["delete"]), str(req["run"]) == TaskStatus.RUNNING.value, str(doc.run) == TaskStatus.DONE.value]):
if str(req["run"]) == TaskStatus.RUNNING.value and str(doc.run) == TaskStatus.DONE.value:
DocumentService.clear_chunk_num_when_rerun(doc.id) DocumentService.clear_chunk_num_when_rerun(doc.id)
DocumentService.update_by_id(id, info) DocumentService.update_by_id(id, info)
@ -683,7 +682,7 @@ def set_meta():
meta = json.loads(req["meta"]) meta = json.loads(req["meta"])
if not isinstance(meta, dict): if not isinstance(meta, dict):
return get_json_result(data=False, message="Only dictionary type supported.", code=settings.RetCode.ARGUMENT_ERROR) return get_json_result(data=False, message="Only dictionary type supported.", code=settings.RetCode.ARGUMENT_ERROR)
for k,v in meta.items(): for k, v in meta.items():
if not isinstance(v, str) and not isinstance(v, int) and not isinstance(v, float): if not isinstance(v, str) and not isinstance(v, int) and not isinstance(v, float):
return get_json_result(data=False, message=f"The type is not supported: {v}", code=settings.RetCode.ARGUMENT_ERROR) return get_json_result(data=False, message=f"The type is not supported: {v}", code=settings.RetCode.ARGUMENT_ERROR)
except Exception as e: except Exception as e:

View File

@ -243,7 +243,7 @@ def add_llm():
model_name=mdl_nm, model_name=mdl_nm,
base_url=llm["api_base"] base_url=llm["api_base"]
) )
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"]) arr, tc = mdl.similarity("Hello~ RAGFlower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0: if len(arr) == 0:
raise Exception("Not known.") raise Exception("Not known.")
except KeyError: except KeyError:
@ -271,7 +271,7 @@ def add_llm():
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"] key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
) )
try: try:
for resp in mdl.tts("Hello~ Ragflower!"): for resp in mdl.tts("Hello~ RAGFlower!"):
pass pass
except RuntimeError as e: except RuntimeError as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e) msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)

View File

@ -82,7 +82,7 @@ def create() -> Response:
server_name = req.get("name", "") server_name = req.get("name", "")
if not server_name or len(server_name.encode("utf-8")) > 255: if not server_name or len(server_name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Invaild MCP name or length is {len(server_name)} which is large than 255.") return get_data_error_result(message=f"Invalid MCP name or length is {len(server_name)} which is large than 255.")
e, _ = MCPServerService.get_by_name_and_tenant(name=server_name, tenant_id=current_user.id) e, _ = MCPServerService.get_by_name_and_tenant(name=server_name, tenant_id=current_user.id)
if e: if e:
@ -90,7 +90,7 @@ def create() -> Response:
url = req.get("url", "") url = req.get("url", "")
if not url: if not url:
return get_data_error_result(message="Invaild url.") return get_data_error_result(message="Invalid url.")
headers = safe_json_parse(req.get("headers", {})) headers = safe_json_parse(req.get("headers", {}))
req["headers"] = headers req["headers"] = headers
@ -141,10 +141,10 @@ def update() -> Response:
return get_data_error_result(message="Unsupported MCP server type.") return get_data_error_result(message="Unsupported MCP server type.")
server_name = req.get("name", mcp_server.name) server_name = req.get("name", mcp_server.name)
if server_name and len(server_name.encode("utf-8")) > 255: if server_name and len(server_name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Invaild MCP name or length is {len(server_name)} which is large than 255.") return get_data_error_result(message=f"Invalid MCP name or length is {len(server_name)} which is large than 255.")
url = req.get("url", mcp_server.url) url = req.get("url", mcp_server.url)
if not url: if not url:
return get_data_error_result(message="Invaild url.") return get_data_error_result(message="Invalid url.")
headers = safe_json_parse(req.get("headers", mcp_server.headers)) headers = safe_json_parse(req.get("headers", mcp_server.headers))
req["headers"] = headers req["headers"] = headers
@ -218,7 +218,7 @@ def import_multiple() -> Response:
continue continue
if not server_name or len(server_name.encode("utf-8")) > 255: if not server_name or len(server_name.encode("utf-8")) > 255:
results.append({"server": server_name, "success": False, "message": f"Invaild MCP name or length is {len(server_name)} which is large than 255."}) results.append({"server": server_name, "success": False, "message": f"Invalid MCP name or length is {len(server_name)} which is large than 255."})
continue continue
base_name = server_name base_name = server_name
@ -409,7 +409,7 @@ def test_mcp() -> Response:
url = req.get("url", "") url = req.get("url", "")
if not url: if not url:
return get_data_error_result(message="Invaild MCP url.") return get_data_error_result(message="Invalid MCP url.")
server_type = req.get("server_type", "") server_type = req.get("server_type", "")
if server_type not in VALID_MCP_SERVER_TYPES: if server_type not in VALID_MCP_SERVER_TYPES:

View File

@ -150,10 +150,10 @@ def update(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value): if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(message="You do not own the chat") return get_error_data_result(message="You do not own the chat")
req = request.json req = request.json
ids = req.get("dataset_ids") ids = req.get("dataset_ids", [])
if "show_quotation" in req: if "show_quotation" in req:
req["do_refer"] = req.pop("show_quotation") req["do_refer"] = req.pop("show_quotation")
if ids is not None: if ids:
for kb_id in ids: for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id) kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs: if not kbs:

View File

@ -24,6 +24,7 @@ from api.db.services.llm_service import LLMBundle
from api import settings from api import settings
from api.utils.api_utils import validate_request, build_error_result, apikey_required from api.utils.api_utils import validate_request, build_error_result, apikey_required
from rag.app.tag import label_question from rag.app.tag import label_question
from api.db.services.dialog_service import meta_filter, convert_conditions
@manager.route('/dify/retrieval', methods=['POST']) # noqa: F821 @manager.route('/dify/retrieval', methods=['POST']) # noqa: F821
@ -37,18 +38,23 @@ def retrieval(tenant_id):
retrieval_setting = req.get("retrieval_setting", {}) retrieval_setting = req.get("retrieval_setting", {})
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0)) similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
top = int(retrieval_setting.get("top_k", 1024)) top = int(retrieval_setting.get("top_k", 1024))
metadata_condition = req.get("metadata_condition",{})
metas = DocumentService.get_meta_by_kbs([kb_id])
doc_ids = []
try: try:
e, kb = KnowledgebaseService.get_by_id(kb_id) e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e: if not e:
return build_error_result(message="Knowledgebase not found!", code=settings.RetCode.NOT_FOUND) return build_error_result(message="Knowledgebase not found!", code=settings.RetCode.NOT_FOUND)
if kb.tenant_id != tenant_id:
return build_error_result(message="Knowledgebase not found!", code=settings.RetCode.NOT_FOUND)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id) embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
print(metadata_condition)
print("after",convert_conditions(metadata_condition))
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition)))
print("doc_ids",doc_ids)
if not doc_ids and metadata_condition is not None:
doc_ids = ['-999']
ranks = settings.retrievaler.retrieval( ranks = settings.retrievaler.retrieval(
question, question,
embd_mdl, embd_mdl,
@ -59,6 +65,7 @@ def retrieval(tenant_id):
similarity_threshold=similarity_threshold, similarity_threshold=similarity_threshold,
vector_similarity_weight=0.3, vector_similarity_weight=0.3,
top=top, top=top,
doc_ids=doc_ids,
rank_feature=label_question(question, [kb]) rank_feature=label_question(question, [kb])
) )
@ -93,3 +100,5 @@ def retrieval(tenant_id):
) )
logging.exception(e) logging.exception(e)
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR) return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)

View File

@ -35,6 +35,7 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.task_service import TaskService, queue_tasks from api.db.services.task_service import TaskService, queue_tasks
from api.db.services.dialog_service import meta_filter, convert_conditions
from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_error_data_result, get_parser_config, get_result, server_error_response, token_required from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_error_data_result, get_parser_config, get_result, server_error_response, token_required
from rag.app.qa import beAdoc, rmPrefix from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question from rag.app.tag import label_question
@ -1350,6 +1351,9 @@ def retrieval_test(tenant_id):
highlight: highlight:
type: boolean type: boolean
description: Whether to highlight matched content. description: Whether to highlight matched content.
metadata_condition:
type: object
description: metadata filter condition.
- in: header - in: header
name: Authorization name: Authorization
type: string type: string
@ -1413,6 +1417,10 @@ def retrieval_test(tenant_id):
for doc_id in doc_ids: for doc_id in doc_ids:
if doc_id not in doc_ids_list: if doc_id not in doc_ids_list:
return get_error_data_result(f"The datasets don't own the document {doc_id}") return get_error_data_result(f"The datasets don't own the document {doc_id}")
if not doc_ids:
metadata_condition = req.get("metadata_condition", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
doc_ids = meta_filter(metas, convert_conditions(metadata_condition))
similarity_threshold = float(req.get("similarity_threshold", 0.2)) similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3)) vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024)) top = int(req.get("top_k", 1024))

View File

@ -16,8 +16,10 @@
import json import json
import re import re
import time import time
import tiktoken import tiktoken
from flask import Response, jsonify, request from flask import Response, jsonify, request
from agent.canvas import Canvas from agent.canvas import Canvas
from api import settings from api import settings
from api.db import LLMType, StatusEnum from api.db import LLMType, StatusEnum
@ -27,7 +29,8 @@ from api.db.services.canvas_service import UserCanvasService, completionOpenAI
from api.db.services.canvas_service import completion as agent_completion from api.db.services.canvas_service import completion as agent_completion
from api.db.services.conversation_service import ConversationService, iframe_completion from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion from api.db.services.conversation_service import completion as rag_completion
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap, meta_filter
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService from api.db.services.search_service import SearchService
@ -37,7 +40,7 @@ from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_
from rag.app.tag import label_question from rag.app.tag import label_question
from rag.prompts import chunks_format from rag.prompts import chunks_format
from rag.prompts.prompt_template import load_prompt from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import cross_languages, keyword_extraction from rag.prompts.prompts import cross_languages, gen_meta_filter, keyword_extraction
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821 @manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@ -81,21 +84,13 @@ def create_agent_session(tenant_id, agent_id):
if not isinstance(cvs.dsl, str): if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False) cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
session_id=get_uuid() session_id = get_uuid()
canvas = Canvas(cvs.dsl, tenant_id, agent_id) canvas = Canvas(cvs.dsl, tenant_id, agent_id)
canvas.reset() canvas.reset()
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": user_id,
"message": [],
"source": "agent",
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
cvs.dsl = json.loads(str(canvas)) cvs.dsl = json.loads(str(canvas))
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl} conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv)
conv["agent_id"] = conv.pop("dialog_id") conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv) return get_result(data=conv)
@ -419,7 +414,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id, tenant_id,
agent_id, agent_id,
question, question,
session_id=req.get("id", req.get("metadata", {}).get("id", "")), session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
stream=True, stream=True,
**req, **req,
), ),
@ -437,7 +432,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id, tenant_id,
agent_id, agent_id,
question, question,
session_id=req.get("id", req.get("metadata", {}).get("id", "")), session_id=req.get("session_id", req.get("id", "") or req.get("metadata", {}).get("id", "")),
stream=False, stream=False,
**req, **req,
) )
@ -450,7 +445,6 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
def agent_completions(tenant_id, agent_id): def agent_completions(tenant_id, agent_id):
req = request.json req = request.json
ans = {}
if req.get("stream", True): if req.get("stream", True):
def generate(): def generate():
@ -461,7 +455,7 @@ def agent_completions(tenant_id, agent_id):
except Exception: except Exception:
continue continue
if ans.get("event") != "message": if ans.get("event") not in ["message", "message_end"]:
continue continue
yield answer yield answer
@ -475,12 +469,25 @@ def agent_completions(tenant_id, agent_id):
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8") resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp return resp
full_content = ""
reference = {}
final_ans = ""
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req): for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
try: try:
ans = json.loads(answer[5:]) # remove "data:" ans = json.loads(answer[5:])
if ans["event"] == "message":
full_content += ans["data"]["content"]
if ans.get("data", {}).get("reference", None):
reference.update(ans["data"]["reference"])
final_ans = ans
except Exception as e: except Exception as e:
return get_result(data=f"**ERROR**: {str(e)}") return get_result(data=f"**ERROR**: {str(e)}")
return get_result(data=ans) final_ans["data"]["content"] = full_content
final_ans["data"]["reference"] = reference
return get_result(data=final_ans)
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821 @manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
@ -575,12 +582,12 @@ def list_agent_session(tenant_id, agent_id):
if message_num != 0 and messages[message_num]["role"] != "user": if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = [] chunk_list = []
# Add boundary and type checks to prevent KeyError # Add boundary and type checks to prevent KeyError
if (chunk_num < len(conv["reference"]) and if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
conv["reference"][chunk_num] is not None and
isinstance(conv["reference"][chunk_num], dict) and
"chunks" in conv["reference"][chunk_num]):
chunks = conv["reference"][chunk_num]["chunks"] chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks: for chunk in chunks:
# Ensure chunk is a dictionary before calling get method
if not isinstance(chunk, dict):
continue
new_chunk = { new_chunk = {
"id": chunk.get("chunk_id", chunk.get("id")), "id": chunk.get("chunk_id", chunk.get("id")),
"content": chunk.get("content_with_weight", chunk.get("content")), "content": chunk.get("content_with_weight", chunk.get("content")),
@ -876,14 +883,7 @@ def begin_inputs(agent_id):
return get_error_data_result(f"Can't find agent by ID: {agent_id}") return get_error_data_result(f"Can't find agent by ID: {agent_id}")
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id) canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
return get_result( return get_result(data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"), "prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
data={
"title": cvs.title,
"avatar": cvs.avatar,
"inputs": canvas.get_component_input_form("begin"),
"prologue": canvas.get_prologue()
}
)
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821 @manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
@ -909,7 +909,7 @@ def ask_about_embedded():
def stream(): def stream():
nonlocal req, uid nonlocal req, uid
try: try:
for ans in ask(req["question"], req["kb_ids"], uid, search_config): for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n" yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e: except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n" yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
@ -923,7 +923,7 @@ def ask_about_embedded():
return resp return resp
@manager.route("/searchbots/retrieval_test", methods=['POST']) # noqa: F821 @manager.route("/searchbots/retrieval_test", methods=["POST"]) # noqa: F821
@validate_request("kb_id", "question") @validate_request("kb_id", "question")
def retrieval_test_embedded(): def retrieval_test_embedded():
token = request.headers.get("Authorization").split() token = request.headers.get("Authorization").split()
@ -941,6 +941,9 @@ def retrieval_test_embedded():
kb_ids = req["kb_id"] kb_ids = req["kb_id"]
if isinstance(kb_ids, str): if isinstance(kb_ids, str):
kb_ids = [kb_ids] kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=settings.RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", []) doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0)) similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3)) vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
@ -953,18 +956,30 @@ def retrieval_test_embedded():
if not tenant_id: if not tenant_id:
return get_error_data_result(message="permission denined.") return get_error_data_result(message="permission denined.")
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
try: try:
tenants = UserTenantService.query(user_id=tenant_id) tenants = UserTenantService.query(user_id=tenant_id)
for kb_id in kb_ids: for kb_id in kb_ids:
for tenant in tenants: for tenant in tenants:
if KnowledgebaseService.query( if KnowledgebaseService.query(tenant_id=tenant.tenant_id, id=kb_id):
tenant_id=tenant.tenant_id, id=kb_id):
tenant_ids.append(tenant.tenant_id) tenant_ids.append(tenant.tenant_id)
break break
else: else:
return get_json_result( return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0]) e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e: if not e:
@ -984,17 +999,11 @@ def retrieval_test_embedded():
question += keyword_extraction(chat_mdl, question) question += keyword_extraction(chat_mdl, question)
labels = label_question(question, [kb]) labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size, ranks = settings.retrievaler.retrieval(
similarity_threshold, vector_similarity_weight, top, question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), )
rank_feature=labels
)
if use_kg: if use_kg:
ck = settings.kg_retrievaler.retrieval(question, ck = settings.kg_retrievaler.retrieval(question, tenant_ids, kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]: if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck) ranks["chunks"].insert(0, ck)
@ -1005,8 +1014,7 @@ def retrieval_test_embedded():
return get_json_result(data=ranks) return get_json_result(data=ranks)
except Exception as e: except Exception as e:
if str(e).find("not_found") > 0: if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!', return get_json_result(data=False, message="No chunk found! Check the chunk status please!", code=settings.RetCode.DATA_ERROR)
code=settings.RetCode.DATA_ERROR)
return server_error_response(e) return server_error_response(e)

View File

@ -43,7 +43,7 @@ def create():
return get_data_error_result(message=f"Search name length is {len(search_name)} which is large than 255.") return get_data_error_result(message=f"Search name length is {len(search_name)} which is large than 255.")
e, _ = TenantService.get_by_id(current_user.id) e, _ = TenantService.get_by_id(current_user.id)
if not e: if not e:
return get_data_error_result(message="Authorizationd identity.") return get_data_error_result(message="Authorized identity.")
search_name = search_name.strip() search_name = search_name.strip()
search_name = duplicate_name(SearchService.query, name=search_name, tenant_id=current_user.id, status=StatusEnum.VALID.value) search_name = duplicate_name(SearchService.query, name=search_name, tenant_id=current_user.id, status=StatusEnum.VALID.value)
@ -78,7 +78,7 @@ def update():
tenant_id = req["tenant_id"] tenant_id = req["tenant_id"]
e, _ = TenantService.get_by_id(tenant_id) e, _ = TenantService.get_by_id(tenant_id)
if not e: if not e:
return get_data_error_result(message="Authorizationd identity.") return get_data_error_result(message="Authorized identity.")
search_id = req["search_id"] search_id = req["search_id"]
if not SearchService.accessible4deletion(search_id, current_user.id): if not SearchService.accessible4deletion(search_id, current_user.id):
@ -155,8 +155,9 @@ def list_search_app():
owner_ids = req.get("owner_ids", []) owner_ids = req.get("owner_ids", [])
try: try:
if not owner_ids: if not owner_ids:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id) # tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants] # tenants = [m["tenant_id"] for m in tenants]
tenants = []
search_apps, total = SearchService.get_by_tenant_ids(tenants, current_user.id, page_number, items_per_page, orderby, desc, keywords) search_apps, total = SearchService.get_by_tenant_ids(tenants, current_user.id, page_number, items_per_page, orderby, desc, keywords)
else: else:
tenants = owner_ids tenants = owner_ids

View File

@ -74,8 +74,10 @@ class TaskStatus(StrEnum):
DONE = "3" DONE = "3"
FAIL = "4" FAIL = "4"
VALID_TASK_STATUS = {TaskStatus.UNSTART, TaskStatus.RUNNING, TaskStatus.CANCEL, TaskStatus.DONE, TaskStatus.FAIL} VALID_TASK_STATUS = {TaskStatus.UNSTART, TaskStatus.RUNNING, TaskStatus.CANCEL, TaskStatus.DONE, TaskStatus.FAIL}
class ParserType(StrEnum): class ParserType(StrEnum):
PRESENTATION = "presentation" PRESENTATION = "presentation"
LAWS = "laws" LAWS = "laws"
@ -105,10 +107,19 @@ class CanvasType(StrEnum):
DocBot = "docbot" DocBot = "docbot"
class CanvasCategory(StrEnum):
Agent = "agent_canvas"
DataFlow = "dataflow_canvas"
VALID_CAVAS_CATEGORIES = {CanvasCategory.Agent, CanvasCategory.DataFlow}
class MCPServerType(StrEnum): class MCPServerType(StrEnum):
SSE = "sse" SSE = "sse"
STREAMABLE_HTTP = "streamable-http" STREAMABLE_HTTP = "streamable-http"
VALID_MCP_SERVER_TYPES = {MCPServerType.SSE, MCPServerType.STREAMABLE_HTTP} VALID_MCP_SERVER_TYPES = {MCPServerType.SSE, MCPServerType.STREAMABLE_HTTP}
KNOWLEDGEBASE_FOLDER_NAME=".knowledgebase" KNOWLEDGEBASE_FOLDER_NAME=".knowledgebase"

View File

@ -245,22 +245,21 @@ class JsonSerializedField(SerializedField):
class RetryingPooledMySQLDatabase(PooledMySQLDatabase): class RetryingPooledMySQLDatabase(PooledMySQLDatabase):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
self.max_retries = kwargs.pop('max_retries', 5) self.max_retries = kwargs.pop("max_retries", 5)
self.retry_delay = kwargs.pop('retry_delay', 1) self.retry_delay = kwargs.pop("retry_delay", 1)
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
def execute_sql(self, sql, params=None, commit=True): def execute_sql(self, sql, params=None, commit=True):
from peewee import OperationalError from peewee import OperationalError
for attempt in range(self.max_retries + 1): for attempt in range(self.max_retries + 1):
try: try:
return super().execute_sql(sql, params, commit) return super().execute_sql(sql, params, commit)
except OperationalError as e: except OperationalError as e:
if e.args[0] in (2013, 2006) and attempt < self.max_retries: if e.args[0] in (2013, 2006) and attempt < self.max_retries:
logging.warning( logging.warning(f"Lost connection (attempt {attempt + 1}/{self.max_retries}): {e}")
f"Lost connection (attempt {attempt+1}/{self.max_retries}): {e}"
)
self._handle_connection_loss() self._handle_connection_loss()
time.sleep(self.retry_delay * (2 ** attempt)) time.sleep(self.retry_delay * (2**attempt))
else: else:
logging.error(f"DB execution failure: {e}") logging.error(f"DB execution failure: {e}")
raise raise
@ -272,16 +271,15 @@ class RetryingPooledMySQLDatabase(PooledMySQLDatabase):
def begin(self): def begin(self):
from peewee import OperationalError from peewee import OperationalError
for attempt in range(self.max_retries + 1): for attempt in range(self.max_retries + 1):
try: try:
return super().begin() return super().begin()
except OperationalError as e: except OperationalError as e:
if e.args[0] in (2013, 2006) and attempt < self.max_retries: if e.args[0] in (2013, 2006) and attempt < self.max_retries:
logging.warning( logging.warning(f"Lost connection during transaction (attempt {attempt + 1}/{self.max_retries})")
f"Lost connection during transaction (attempt {attempt+1}/{self.max_retries})"
)
self._handle_connection_loss() self._handle_connection_loss()
time.sleep(self.retry_delay * (2 ** attempt)) time.sleep(self.retry_delay * (2**attempt))
else: else:
raise raise
@ -815,6 +813,7 @@ class UserCanvas(DataBaseModel):
permission = CharField(max_length=16, null=False, help_text="me|team", default="me", index=True) permission = CharField(max_length=16, null=False, help_text="me|team", default="me", index=True)
description = TextField(null=True, help_text="Canvas description") description = TextField(null=True, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type", index=True) canvas_type = CharField(max_length=32, null=True, help_text="Canvas type", index=True)
canvas_category = CharField(max_length=32, null=False, default="agent_canvas", help_text="Canvas category: agent_canvas|dataflow_canvas", index=True)
dsl = JSONField(null=True, default={}) dsl = JSONField(null=True, default={})
class Meta: class Meta:
@ -824,10 +823,10 @@ class UserCanvas(DataBaseModel):
class CanvasTemplate(DataBaseModel): class CanvasTemplate(DataBaseModel):
id = CharField(max_length=32, primary_key=True) id = CharField(max_length=32, primary_key=True)
avatar = TextField(null=True, help_text="avatar base64 string") avatar = TextField(null=True, help_text="avatar base64 string")
title = CharField(max_length=255, null=True, help_text="Canvas title") title = JSONField(null=True, default=dict, help_text="Canvas title")
description = JSONField(null=True, default=dict, help_text="Canvas description")
description = TextField(null=True, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type", index=True) canvas_type = CharField(max_length=32, null=True, help_text="Canvas type", index=True)
canvas_category = CharField(max_length=32, null=False, default="agent_canvas", help_text="Canvas category: agent_canvas|dataflow_canvas", index=True)
dsl = JSONField(null=True, default={}) dsl = JSONField(null=True, default={})
class Meta: class Meta:
@ -1021,4 +1020,21 @@ def migrate_db():
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={}))) migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception: except Exception:
pass pass
try:
migrate(migrator.alter_column_type("canvas_template", "title", JSONField(null=True, default=dict, help_text="Canvas title")))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "description", JSONField(null=True, default=dict, help_text="Canvas description")))
except Exception:
pass
try:
migrate(migrator.add_column("user_canvas", "canvas_category", CharField(max_length=32, null=False, default="agent_canvas", help_text="agent_canvas|dataflow_canvas", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("canvas_template", "canvas_category", CharField(max_length=32, null=False, default="agent_canvas", help_text="agent_canvas|dataflow_canvas", index=True)))
except Exception:
pass
logging.disable(logging.NOTSET) logging.disable(logging.NOTSET)

View File

@ -18,7 +18,7 @@ import logging
import time import time
from uuid import uuid4 from uuid import uuid4
from agent.canvas import Canvas from agent.canvas import Canvas
from api.db import TenantPermission from api.db import CanvasCategory, TenantPermission
from api.db.db_models import DB, CanvasTemplate, User, UserCanvas, API4Conversation from api.db.db_models import DB, CanvasTemplate, User, UserCanvas, API4Conversation
from api.db.services.api_service import API4ConversationService from api.db.services.api_service import API4ConversationService
from api.db.services.common_service import CommonService from api.db.services.common_service import CommonService
@ -31,6 +31,12 @@ from peewee import fn
class CanvasTemplateService(CommonService): class CanvasTemplateService(CommonService):
model = CanvasTemplate model = CanvasTemplate
class DataFlowTemplateService(CommonService):
"""
Alias of CanvasTemplateService
"""
model = CanvasTemplate
class UserCanvasService(CommonService): class UserCanvasService(CommonService):
model = UserCanvas model = UserCanvas
@ -38,13 +44,14 @@ class UserCanvasService(CommonService):
@classmethod @classmethod
@DB.connection_context() @DB.connection_context()
def get_list(cls, tenant_id, def get_list(cls, tenant_id,
page_number, items_per_page, orderby, desc, id, title): page_number, items_per_page, orderby, desc, id, title, canvas_category=CanvasCategory.Agent):
agents = cls.model.select() agents = cls.model.select()
if id: if id:
agents = agents.where(cls.model.id == id) agents = agents.where(cls.model.id == id)
if title: if title:
agents = agents.where(cls.model.title == title) agents = agents.where(cls.model.title == title)
agents = agents.where(cls.model.user_id == tenant_id) agents = agents.where(cls.model.user_id == tenant_id)
agents = agents.where(cls.model.canvas_category == canvas_category)
if desc: if desc:
agents = agents.order_by(cls.model.getter_by(orderby).desc()) agents = agents.order_by(cls.model.getter_by(orderby).desc())
else: else:
@ -71,6 +78,7 @@ class UserCanvasService(CommonService):
cls.model.create_time, cls.model.create_time,
cls.model.create_date, cls.model.create_date,
cls.model.update_date, cls.model.update_date,
cls.model.canvas_category,
User.nickname, User.nickname,
User.avatar.alias('tenant_avatar'), User.avatar.alias('tenant_avatar'),
] ]
@ -87,7 +95,7 @@ class UserCanvasService(CommonService):
@DB.connection_context() @DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id, def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page, page_number, items_per_page,
orderby, desc, keywords, orderby, desc, keywords, canvas_category=CanvasCategory.Agent,
): ):
fields = [ fields = [
cls.model.id, cls.model.id,
@ -98,7 +106,8 @@ class UserCanvasService(CommonService):
cls.model.permission, cls.model.permission,
User.nickname, User.nickname,
User.avatar.alias('tenant_avatar'), User.avatar.alias('tenant_avatar'),
cls.model.update_time cls.model.update_time,
cls.model.canvas_category,
] ]
if keywords: if keywords:
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where( agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
@ -113,6 +122,7 @@ class UserCanvasService(CommonService):
TenantPermission.TEAM.value)) | ( TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id)) cls.model.user_id == user_id))
) )
agents = agents.where(cls.model.canvas_category == canvas_category)
if desc: if desc:
agents = agents.order_by(cls.model.getter_by(orderby).desc()) agents = agents.order_by(cls.model.getter_by(orderby).desc())
else: else:
@ -134,6 +144,7 @@ class UserCanvasService(CommonService):
return False return False
return True return True
def completion(tenant_id, agent_id, session_id=None, **kwargs): def completion(tenant_id, agent_id, session_id=None, **kwargs):
query = kwargs.get("query", "") or kwargs.get("question", "") query = kwargs.get("query", "") or kwargs.get("question", "")
files = kwargs.get("files", []) files = kwargs.get("files", [])
@ -163,7 +174,8 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
"user_id": user_id, "user_id": user_id,
"message": [], "message": [],
"source": "agent", "source": "agent",
"dsl": cvs.dsl "dsl": cvs.dsl,
"reference": []
} }
API4ConversationService.save(**conv) API4ConversationService.save(**conv)
conv = API4Conversation(**conv) conv = API4Conversation(**conv)
@ -211,28 +223,33 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
except Exception as e: except Exception as e:
logging.exception(f"Agent OpenAI-Compatible completionOpenAI parse answer failed: {e}") logging.exception(f"Agent OpenAI-Compatible completionOpenAI parse answer failed: {e}")
continue continue
if ans.get("event") not in ["message", "message_end"]:
if ans.get("event") != "message":
continue continue
content_piece = ans["data"]["content"] content_piece = ""
if ans["event"] == "message":
content_piece = ans["data"]["content"]
completion_tokens += len(tiktokenenc.encode(content_piece)) completion_tokens += len(tiktokenenc.encode(content_piece))
yield "data: " + json.dumps( openai_data = get_data_openai(
get_data_openai(
id=session_id or str(uuid4()), id=session_id or str(uuid4()),
model=agent_id, model=agent_id,
content=content_piece, content=content_piece,
prompt_tokens=prompt_tokens, prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens, completion_tokens=completion_tokens,
stream=True stream=True
), )
ensure_ascii=False
) + "\n\n" if ans.get("data", {}).get("reference", None):
openai_data["choices"][0]["delta"]["reference"] = ans["data"]["reference"]
yield "data: " + json.dumps(openai_data, ensure_ascii=False) + "\n\n"
yield "data: [DONE]\n\n" yield "data: [DONE]\n\n"
except Exception as e: except Exception as e:
logging.exception(e)
yield "data: " + json.dumps( yield "data: " + json.dumps(
get_data_openai( get_data_openai(
id=session_id or str(uuid4()), id=session_id or str(uuid4()),
@ -250,6 +267,7 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
else: else:
try: try:
all_content = "" all_content = ""
reference = {}
for ans in completion( for ans in completion(
tenant_id=tenant_id, tenant_id=tenant_id,
agent_id=agent_id, agent_id=agent_id,
@ -260,13 +278,18 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
): ):
if isinstance(ans, str): if isinstance(ans, str):
ans = json.loads(ans[5:]) ans = json.loads(ans[5:])
if ans.get("event") != "message": if ans.get("event") not in ["message", "message_end"]:
continue continue
all_content += ans["data"]["content"]
if ans["event"] == "message":
all_content += ans["data"]["content"]
if ans.get("data", {}).get("reference", None):
reference.update(ans["data"]["reference"])
completion_tokens = len(tiktokenenc.encode(all_content)) completion_tokens = len(tiktokenenc.encode(all_content))
yield get_data_openai( openai_data = get_data_openai(
id=session_id or str(uuid4()), id=session_id or str(uuid4()),
model=agent_id, model=agent_id,
prompt_tokens=prompt_tokens, prompt_tokens=prompt_tokens,
@ -276,7 +299,12 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
param=None param=None
) )
if reference:
openai_data["choices"][0]["message"]["reference"] = reference
yield openai_data
except Exception as e: except Exception as e:
logging.exception(e)
yield get_data_openai( yield get_data_openai(
id=session_id or str(uuid4()), id=session_id or str(uuid4()),
model=agent_id, model=agent_id,

View File

@ -21,11 +21,9 @@ from copy import deepcopy
from datetime import datetime from datetime import datetime
from functools import partial from functools import partial
from timeit import default_timer as timer from timeit import default_timer as timer
import trio import trio
from langfuse import Langfuse from langfuse import Langfuse
from peewee import fn from peewee import fn
from agentic_reasoning import DeepResearcher from agentic_reasoning import DeepResearcher
from api import settings from api import settings
from api.db import LLMType, ParserType, StatusEnum from api.db import LLMType, ParserType, StatusEnum
@ -255,11 +253,28 @@ def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
return answer, idx return answer, idx
def convert_conditions(metadata_condition):
if metadata_condition is None:
metadata_condition = {}
op_mapping = {
"is": "=",
"not is": ""
}
return [
{
"op": op_mapping.get(cond["comparison_operator"], cond["comparison_operator"]),
"key": cond["name"],
"value": cond["value"]
}
for cond in metadata_condition.get("conditions", [])
]
def meta_filter(metas: dict, filters: list[dict]): def meta_filter(metas: dict, filters: list[dict]):
doc_ids = [] doc_ids = set([])
def filter_out(v2docs, operator, value): def filter_out(v2docs, operator, value):
nonlocal doc_ids ids = []
for input, docids in v2docs.items(): for input, docids in v2docs.items():
try: try:
input = float(input) input = float(input)
@ -284,16 +299,24 @@ def meta_filter(metas: dict, filters: list[dict]):
]: ]:
try: try:
if all(conds): if all(conds):
doc_ids.extend(docids) ids.extend(docids)
break
except Exception: except Exception:
pass pass
return ids
for k, v2docs in metas.items(): for k, v2docs in metas.items():
for f in filters: for f in filters:
if k != f["key"]: if k != f["key"]:
continue continue
filter_out(v2docs, f["op"], f["value"]) ids = filter_out(v2docs, f["op"], f["value"])
return doc_ids if not doc_ids:
doc_ids = set(ids)
else:
doc_ids = doc_ids & set(ids)
if not doc_ids:
return []
return list(doc_ids)
def chat(dialog, messages, stream=True, **kwargs): def chat(dialog, messages, stream=True, **kwargs):
@ -342,7 +365,7 @@ def chat(dialog, messages, stream=True, **kwargs):
# try to use sql if field mapping is good to go # try to use sql if field mapping is good to go
if field_map: if field_map:
logging.debug("Use SQL to retrieval:{}".format(questions[-1])) logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True)) ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True), dialog.kb_ids)
if ans: if ans:
yield ans yield ans
return return
@ -570,7 +593,7 @@ def chat(dialog, messages, stream=True, **kwargs):
yield res yield res
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True): def use_sql(question, field_map, tenant_id, chat_mdl, quota=True, kb_ids=None):
sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question." sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
user_prompt = """ user_prompt = """
Table name: {}; Table name: {};
@ -607,6 +630,13 @@ Please write the SQL, only SQL, without any other explanations or text.
flds.append(k) flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:] sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
if kb_ids:
kb_filter = "(" + " OR ".join([f"kb_id = '{kb_id}'" for kb_id in kb_ids]) + ")"
if "where" not in sql.lower():
sql += f" WHERE {kb_filter}"
else:
sql += f" AND {kb_filter}"
logging.debug(f"{question} get SQL(refined): {sql}") logging.debug(f"{question} get SQL(refined): {sql}")
tried_times += 1 tried_times += 1
return settings.retrievaler.sql_retrieval(sql, format="json"), sql return settings.retrievaler.sql_retrieval(sql, format="json"), sql
@ -813,4 +843,4 @@ def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
) )
mindmap = MindMapExtractor(chat_mdl) mindmap = MindMapExtractor(chat_mdl)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]]) mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
return mind_map.output return mind_map.output

View File

@ -152,7 +152,7 @@ class LLMBundle(LLM4Tenant):
def describe_with_prompt(self, image, prompt): def describe_with_prompt(self, image, prompt):
if self.langfuse: if self.langfuse:
generation = self.language.start_generation(trace_context=self.trace_context, name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt}) generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
txt, used_tokens = self.mdl.describe_with_prompt(image, prompt) txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens): if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):

View File

@ -54,15 +54,15 @@ def trim_header_by_lines(text: str, max_length) -> str:
class TaskService(CommonService): class TaskService(CommonService):
"""Service class for managing document processing tasks. """Service class for managing document processing tasks.
This class extends CommonService to provide specialized functionality for document This class extends CommonService to provide specialized functionality for document
processing task management, including task creation, progress tracking, and chunk processing task management, including task creation, progress tracking, and chunk
management. It handles various document types (PDF, Excel, etc.) and manages their management. It handles various document types (PDF, Excel, etc.) and manages their
processing lifecycle. processing lifecycle.
The class implements a robust task queue system with retry mechanisms and progress The class implements a robust task queue system with retry mechanisms and progress
tracking, supporting both synchronous and asynchronous task execution. tracking, supporting both synchronous and asynchronous task execution.
Attributes: Attributes:
model: The Task model class for database operations. model: The Task model class for database operations.
""" """
@ -72,14 +72,14 @@ class TaskService(CommonService):
@DB.connection_context() @DB.connection_context()
def get_task(cls, task_id): def get_task(cls, task_id):
"""Retrieve detailed task information by task ID. """Retrieve detailed task information by task ID.
This method fetches comprehensive task details including associated document, This method fetches comprehensive task details including associated document,
knowledge base, and tenant information. It also handles task retry logic and knowledge base, and tenant information. It also handles task retry logic and
progress updates. progress updates.
Args: Args:
task_id (str): The unique identifier of the task to retrieve. task_id (str): The unique identifier of the task to retrieve.
Returns: Returns:
dict: Task details dictionary containing all task information and related metadata. dict: Task details dictionary containing all task information and related metadata.
Returns None if task is not found or has exceeded retry limit. Returns None if task is not found or has exceeded retry limit.
@ -139,13 +139,13 @@ class TaskService(CommonService):
@DB.connection_context() @DB.connection_context()
def get_tasks(cls, doc_id: str): def get_tasks(cls, doc_id: str):
"""Retrieve all tasks associated with a document. """Retrieve all tasks associated with a document.
This method fetches all processing tasks for a given document, ordered by page This method fetches all processing tasks for a given document, ordered by page
number and creation time. It includes task progress and chunk information. number and creation time. It includes task progress and chunk information.
Args: Args:
doc_id (str): The unique identifier of the document. doc_id (str): The unique identifier of the document.
Returns: Returns:
list[dict]: List of task dictionaries containing task details. list[dict]: List of task dictionaries containing task details.
Returns None if no tasks are found. Returns None if no tasks are found.
@ -170,10 +170,10 @@ class TaskService(CommonService):
@DB.connection_context() @DB.connection_context()
def update_chunk_ids(cls, id: str, chunk_ids: str): def update_chunk_ids(cls, id: str, chunk_ids: str):
"""Update the chunk IDs associated with a task. """Update the chunk IDs associated with a task.
This method updates the chunk_ids field of a task, which stores the IDs of This method updates the chunk_ids field of a task, which stores the IDs of
processed document chunks in a space-separated string format. processed document chunks in a space-separated string format.
Args: Args:
id (str): The unique identifier of the task. id (str): The unique identifier of the task.
chunk_ids (str): Space-separated string of chunk identifiers. chunk_ids (str): Space-separated string of chunk identifiers.
@ -184,11 +184,11 @@ class TaskService(CommonService):
@DB.connection_context() @DB.connection_context()
def get_ongoing_doc_name(cls): def get_ongoing_doc_name(cls):
"""Get names of documents that are currently being processed. """Get names of documents that are currently being processed.
This method retrieves information about documents that are in the processing state, This method retrieves information about documents that are in the processing state,
including their locations and associated IDs. It uses database locking to ensure including their locations and associated IDs. It uses database locking to ensure
thread safety when accessing the task information. thread safety when accessing the task information.
Returns: Returns:
list[tuple]: A list of tuples, each containing (parent_id/kb_id, location) list[tuple]: A list of tuples, each containing (parent_id/kb_id, location)
for documents currently being processed. Returns empty list if for documents currently being processed. Returns empty list if
@ -238,14 +238,14 @@ class TaskService(CommonService):
@DB.connection_context() @DB.connection_context()
def do_cancel(cls, id): def do_cancel(cls, id):
"""Check if a task should be cancelled based on its document status. """Check if a task should be cancelled based on its document status.
This method determines whether a task should be cancelled by checking the This method determines whether a task should be cancelled by checking the
associated document's run status and progress. A task should be cancelled associated document's run status and progress. A task should be cancelled
if its document is marked for cancellation or has negative progress. if its document is marked for cancellation or has negative progress.
Args: Args:
id (str): The unique identifier of the task to check. id (str): The unique identifier of the task to check.
Returns: Returns:
bool: True if the task should be cancelled, False otherwise. bool: True if the task should be cancelled, False otherwise.
""" """
@ -311,18 +311,18 @@ class TaskService(CommonService):
def queue_tasks(doc: dict, bucket: str, name: str, priority: int): def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
"""Create and queue document processing tasks. """Create and queue document processing tasks.
This function creates processing tasks for a document based on its type and configuration. This function creates processing tasks for a document based on its type and configuration.
It handles different document types (PDF, Excel, etc.) differently and manages task It handles different document types (PDF, Excel, etc.) differently and manages task
chunking and configuration. It also implements task reuse optimization by checking chunking and configuration. It also implements task reuse optimization by checking
for previously completed tasks. for previously completed tasks.
Args: Args:
doc (dict): Document dictionary containing metadata and configuration. doc (dict): Document dictionary containing metadata and configuration.
bucket (str): Storage bucket name where the document is stored. bucket (str): Storage bucket name where the document is stored.
name (str): File name of the document. name (str): File name of the document.
priority (int, optional): Priority level for task queueing (default is 0). priority (int, optional): Priority level for task queueing (default is 0).
Note: Note:
- For PDF documents, tasks are created per page range based on configuration - For PDF documents, tasks are created per page range based on configuration
- For Excel documents, tasks are created per row range - For Excel documents, tasks are created per row range
@ -410,19 +410,19 @@ def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict): def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
"""Attempt to reuse chunks from previous tasks for optimization. """Attempt to reuse chunks from previous tasks for optimization.
This function checks if chunks from previously completed tasks can be reused for This function checks if chunks from previously completed tasks can be reused for
the current task, which can significantly improve processing efficiency. It matches the current task, which can significantly improve processing efficiency. It matches
tasks based on page ranges and configuration digests. tasks based on page ranges and configuration digests.
Args: Args:
task (dict): Current task dictionary to potentially reuse chunks for. task (dict): Current task dictionary to potentially reuse chunks for.
prev_tasks (list[dict]): List of previous task dictionaries to check for reuse. prev_tasks (list[dict]): List of previous task dictionaries to check for reuse.
chunking_config (dict): Configuration dictionary for chunk processing. chunking_config (dict): Configuration dictionary for chunk processing.
Returns: Returns:
int: Number of chunks successfully reused. Returns 0 if no chunks could be reused. int: Number of chunks successfully reused. Returns 0 if no chunks could be reused.
Note: Note:
Chunks can only be reused if: Chunks can only be reused if:
- A previous task exists with matching page range and configuration digest - A previous task exists with matching page range and configuration digest
@ -470,3 +470,39 @@ def has_canceled(task_id):
except Exception as e: except Exception as e:
logging.exception(e) logging.exception(e)
return False return False
def queue_dataflow(dsl:str, tenant_id:str, doc_id:str, task_id:str, flow_id:str, priority: int, callback=None) -> tuple[bool, str]:
"""
Returns a tuple (success: bool, error_message: str).
"""
_ = callback
task = dict(
id=get_uuid() if not task_id else task_id,
doc_id=doc_id,
from_page=0,
to_page=100000000,
task_type="dataflow",
priority=priority,
)
TaskService.model.delete().where(TaskService.model.id == task["id"]).execute()
bulk_insert_into_db(model=Task, data_source=[task], replace_on_conflict=True)
kb_id = DocumentService.get_knowledgebase_id(doc_id)
if not kb_id:
return False, f"Can't find KB of this document: {doc_id}"
task["kb_id"] = kb_id
task["tenant_id"] = tenant_id
task["task_type"] = "dataflow"
task["dsl"] = dsl
task["dataflow_id"] = get_uuid() if not flow_id else flow_id
if not REDIS_CONN.queue_product(
get_svr_queue_name(priority), message=task
):
return False, "Can't access Redis. Please check the Redis' status."
return True, ""

View File

@ -133,6 +133,13 @@ class UserService(CommonService):
cls.model.update(user_dict).where( cls.model.update(user_dict).where(
cls.model.id == user_id).execute() cls.model.id == user_id).execute()
@classmethod
@DB.connection_context()
def is_admin(cls, user_id):
return cls.model.select().where(
cls.model.id == user_id,
cls.model.is_superuser == 1).count() > 0
class TenantService(CommonService): class TenantService(CommonService):
"""Service class for managing tenant-related database operations. """Service class for managing tenant-related database operations.

View File

@ -17,6 +17,7 @@ import asyncio
import functools import functools
import json import json
import logging import logging
import os
import queue import queue
import random import random
import threading import threading
@ -55,6 +56,30 @@ from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder) requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
def serialize_for_json(obj):
"""
Recursively serialize objects to make them JSON serializable.
Handles ModelMetaclass and other non-serializable objects.
"""
if hasattr(obj, '__dict__'):
# For objects with __dict__, try to serialize their attributes
try:
return {key: serialize_for_json(value) for key, value in obj.__dict__.items()
if not key.startswith('_')}
except (AttributeError, TypeError):
return str(obj)
elif hasattr(obj, '__name__'):
# For classes and metaclasses, return their name
return f"<{obj.__module__}.{obj.__name__}>" if hasattr(obj, '__module__') else f"<{obj.__name__}>"
elif isinstance(obj, (list, tuple)):
return [serialize_for_json(item) for item in obj]
elif isinstance(obj, dict):
return {key: serialize_for_json(value) for key, value in obj.items()}
elif isinstance(obj, (str, int, float, bool)) or obj is None:
return obj
else:
# Fallback: convert to string representation
return str(obj)
def request(**kwargs): def request(**kwargs):
sess = requests.Session() sess = requests.Session()
@ -127,7 +152,11 @@ def server_error_response(e):
except BaseException: except BaseException:
pass pass
if len(e.args) > 1: if len(e.args) > 1:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1]) try:
serialized_data = serialize_for_json(e.args[1])
return get_json_result(code= settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
except Exception:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=None)
if repr(e).find("index_not_found_exception") >= 0: if repr(e).find("index_not_found_exception") >= 0:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.") return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
@ -291,6 +320,8 @@ def construct_error_response(e):
def token_required(func): def token_required(func):
@wraps(func) @wraps(func)
def decorated_function(*args, **kwargs): def decorated_function(*args, **kwargs):
if os.environ.get("DISABLE_SDK"):
return get_json_result(data=False, message="`Authorization` can't be empty")
authorization_str = flask_request.headers.get("Authorization") authorization_str = flask_request.headers.get("Authorization")
if not authorization_str: if not authorization_str:
return get_json_result(data=False, message="`Authorization` can't be empty") return get_json_result(data=False, message="`Authorization` can't be empty")
@ -353,7 +384,7 @@ def get_parser_config(chunk_method, parser_config):
if not chunk_method: if not chunk_method:
chunk_method = "naive" chunk_method = "naive"
# Define default configurations for each chunk method # Define default configurations for each chunking method
key_mapping = { key_mapping = {
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}}, "naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}}, "qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
@ -667,7 +698,10 @@ def timeout(seconds: float | int = None, attempts: int = 2, *, exception: Option
for a in range(attempts): for a in range(attempts):
try: try:
result = result_queue.get(timeout=seconds) if os.environ.get("ENABLE_TIMEOUT_ASSERTION"):
result = result_queue.get(timeout=seconds)
else:
result = result_queue.get()
if isinstance(result, Exception): if isinstance(result, Exception):
raise result raise result
return result return result
@ -682,7 +716,10 @@ def timeout(seconds: float | int = None, attempts: int = 2, *, exception: Option
for a in range(attempts): for a in range(attempts):
try: try:
with trio.fail_after(seconds): if os.environ.get("ENABLE_TIMEOUT_ASSERTION"):
with trio.fail_after(seconds):
return await func(*args, **kwargs)
else:
return await func(*args, **kwargs) return await func(*args, **kwargs)
except trio.TooSlowError: except trio.TooSlowError:
if a < attempts - 1: if a < attempts - 1:

View File

@ -302,6 +302,20 @@
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
}, },
{
"llm_name": "qwen-plus-2025-07-28",
"tags": "LLM,CHAT,132k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen-plus-2025-07-14",
"tags": "LLM,CHAT,132k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{ {
"llm_name": "qwq-plus-latest", "llm_name": "qwq-plus-latest",
"tags": "LLM,CHAT,132k", "tags": "LLM,CHAT,132k",
@ -309,6 +323,27 @@
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
}, },
{
"llm_name": "qwen-flash",
"tags": "LLM,CHAT,1M",
"max_tokens": 1000000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen-flash-2025-07-28",
"tags": "LLM,CHAT,1M",
"max_tokens": 1000000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-max-preview",
"tags": "LLM,CHAT,256k",
"max_tokens": 256000,
"model_type": "chat",
"is_tools": true
},
{ {
"llm_name": "qwen3-coder-480b-a35b-instruct", "llm_name": "qwen3-coder-480b-a35b-instruct",
"tags": "LLM,CHAT,256k", "tags": "LLM,CHAT,256k",
@ -532,23 +567,65 @@
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION", "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
"status": "1", "status": "1",
"llm": [ "llm": [
{
"llm_name": "glm-4.5",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5-x",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5-air",
"tags": "LLM,CHAT,128K",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5-airx",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5-flash",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "glm-4.5v",
"tags": "LLM,IMAGE2TEXT,64,",
"max_tokens": 64000,
"model_type": "image2text",
"is_tools": false
},
{ {
"llm_name": "glm-4-plus", "llm_name": "glm-4-plus",
"tags": "LLM,CHAT,", "tags": "LLM,CHAT,128K",
"max_tokens": 128000, "max_tokens": 128000,
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
}, },
{ {
"llm_name": "glm-4-0520", "llm_name": "glm-4-0520",
"tags": "LLM,CHAT,", "tags": "LLM,CHAT,128K",
"max_tokens": 128000, "max_tokens": 128000,
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
}, },
{ {
"llm_name": "glm-4", "llm_name": "glm-4",
"tags": "LLM,CHAT,", "tags":"LLM,CHAT,128K",
"max_tokens": 128000, "max_tokens": 128000,
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
@ -678,6 +755,20 @@
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
}, },
{
"llm_name": "kimi-k2-0905-preview",
"tags": "LLM,CHAT,256k",
"max_tokens": 262144,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "kimi-k2-turbo-preview",
"tags": "LLM,CHAT,256k",
"max_tokens": 262144,
"model_type": "chat",
"is_tools": true
},
{ {
"llm_name": "kimi-latest", "llm_name": "kimi-latest",
"tags": "LLM,CHAT,8k,32k,128k", "tags": "LLM,CHAT,8k,32k,128k",
@ -2620,21 +2711,21 @@
"status": "1", "status": "1",
"llm": [ "llm": [
{ {
"llm_name": "Qwen3-Embedding-8B", "llm_name": "Qwen/Qwen3-Embedding-8B",
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k", "tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
"max_tokens": 32000, "max_tokens": 32000,
"model_type": "embedding", "model_type": "embedding",
"is_tools": false "is_tools": false
}, },
{ {
"llm_name": "Qwen3-Embedding-4B", "llm_name": "Qwen/Qwen3-Embedding-4B",
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k", "tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
"max_tokens": 32000, "max_tokens": 32000,
"model_type": "embedding", "model_type": "embedding",
"is_tools": false "is_tools": false
}, },
{ {
"llm_name": "Qwen3-Embedding-0.6B", "llm_name": "Qwen/Qwen3-Embedding-0.6B",
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k", "tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
"max_tokens": 32000, "max_tokens": 32000,
"model_type": "embedding", "model_type": "embedding",
@ -2717,6 +2808,20 @@
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
}, },
{
"llm_name": "Pro/deepseek-ai/DeepSeek-V3.1",
"tags": "LLM,CHAT,160k",
"max_tokens": 160000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-ai/DeepSeek-V3.1",
"tags": "LLM,CHAT,160",
"max_tokens": 160000,
"model_type": "chat",
"is_tools": true
},
{ {
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"tags": "LLM,CHAT,32k", "tags": "LLM,CHAT,32k",
@ -4371,6 +4476,21 @@
"is_tools": false "is_tools": false
} }
] ]
},
{
"name": "Meituan",
"logo": "",
"tags": "LLM",
"status": "1",
"llm": [
{
"llm_name": "LongCat-Flash-Chat",
"tags": "LLM,CHAT,8000",
"max_tokens": 8000,
"model_type": "chat",
"is_tools": true
}
]
} }
] ]
} }

View File

@ -14,13 +14,15 @@
# limitations under the License. # limitations under the License.
# #
from .pdf_parser import RAGFlowPdfParser as PdfParser, PlainParser
from .docx_parser import RAGFlowDocxParser as DocxParser from .docx_parser import RAGFlowDocxParser as DocxParser
from .excel_parser import RAGFlowExcelParser as ExcelParser from .excel_parser import RAGFlowExcelParser as ExcelParser
from .ppt_parser import RAGFlowPptParser as PptParser
from .html_parser import RAGFlowHtmlParser as HtmlParser from .html_parser import RAGFlowHtmlParser as HtmlParser
from .json_parser import RAGFlowJsonParser as JsonParser from .json_parser import RAGFlowJsonParser as JsonParser
from .markdown_parser import MarkdownElementExtractor
from .markdown_parser import RAGFlowMarkdownParser as MarkdownParser from .markdown_parser import RAGFlowMarkdownParser as MarkdownParser
from .pdf_parser import PlainParser
from .pdf_parser import RAGFlowPdfParser as PdfParser
from .ppt_parser import RAGFlowPptParser as PptParser
from .txt_parser import RAGFlowTxtParser as TxtParser from .txt_parser import RAGFlowTxtParser as TxtParser
__all__ = [ __all__ = [
@ -33,4 +35,6 @@ __all__ = [
"JsonParser", "JsonParser",
"MarkdownParser", "MarkdownParser",
"TxtParser", "TxtParser",
] "MarkdownElementExtractor",
]

View File

@ -124,13 +124,19 @@ class RAGFlowExcelParser:
if c.value is None: if c.value is None:
tb += "<td></td>" tb += "<td></td>"
else: else:
tb += f"<td>{c.value}</td>" tb += f"<td>{escape(_fmt(c.value))}</td>"
tb += "</tr>" tb += "</tr>"
tb += "</table>\n" tb += "</table>\n"
tb_chunks.append(tb) tb_chunks.append(tb)
return tb_chunks return tb_chunks
def markdown(self, fnm):
import pandas as pd
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
df = pd.read_excel(file_like_object)
return df.to_markdown(index=False)
def __call__(self, fnm): def __call__(self, fnm):
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
wb = RAGFlowExcelParser._load_excel_to_workbook(file_like_object) wb = RAGFlowExcelParser._load_excel_to_workbook(file_like_object)

View File

@ -15,35 +15,200 @@
# limitations under the License. # limitations under the License.
# #
from rag.nlp import find_codec from rag.nlp import find_codec, rag_tokenizer
import readability import uuid
import html_text
import chardet import chardet
from bs4 import BeautifulSoup, NavigableString, Tag, Comment
import html
def get_encoding(file): def get_encoding(file):
with open(file,'rb') as f: with open(file,'rb') as f:
tmp = chardet.detect(f.read()) tmp = chardet.detect(f.read())
return tmp['encoding'] return tmp['encoding']
BLOCK_TAGS = [
"h1", "h2", "h3", "h4", "h5", "h6",
"p", "div", "article", "section", "aside",
"ul", "ol", "li",
"table", "pre", "code", "blockquote",
"figure", "figcaption"
]
TITLE_TAGS = {"h1": "#", "h2": "##", "h3": "###", "h4": "#####", "h5": "#####", "h6": "######"}
class RAGFlowHtmlParser: class RAGFlowHtmlParser:
def __call__(self, fnm, binary=None): def __call__(self, fnm, binary=None, chunk_token_num=None):
if binary: if binary:
encoding = find_codec(binary) encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore") txt = binary.decode(encoding, errors="ignore")
else: else:
with open(fnm, "r",encoding=get_encoding(fnm)) as f: with open(fnm, "r",encoding=get_encoding(fnm)) as f:
txt = f.read() txt = f.read()
return self.parser_txt(txt) return self.parser_txt(txt, chunk_token_num)
@classmethod @classmethod
def parser_txt(cls, txt): def parser_txt(cls, txt, chunk_token_num):
if not isinstance(txt, str): if not isinstance(txt, str):
raise TypeError("txt type should be string!") raise TypeError("txt type should be string!")
html_doc = readability.Document(txt)
title = html_doc.title() temp_sections = []
content = html_text.extract_text(html_doc.summary(html_partial=True)) soup = BeautifulSoup(txt, "html5lib")
txt = f"{title}\n{content}" # delete <style> tag
sections = txt.split("\n") for style_tag in soup.find_all(["style", "script"]):
style_tag.decompose()
# delete <script> tag in <div>
for div_tag in soup.find_all("div"):
for script_tag in div_tag.find_all("script"):
script_tag.decompose()
# delete inline style
for tag in soup.find_all(True):
if 'style' in tag.attrs:
del tag.attrs['style']
# delete HTML comment
for comment in soup.find_all(string=lambda text: isinstance(text, Comment)):
comment.extract()
cls.read_text_recursively(soup.body, temp_sections, chunk_token_num=chunk_token_num)
block_txt_list, table_list = cls.merge_block_text(temp_sections)
sections = cls.chunk_block(block_txt_list, chunk_token_num=chunk_token_num)
for table in table_list:
sections.append(table.get("content", ""))
return sections return sections
@classmethod
def split_table(cls, html_table, chunk_token_num=512):
soup = BeautifulSoup(html_table, "html.parser")
rows = soup.find_all("tr")
tables = []
current_table = []
current_count = 0
table_str_list = []
for row in rows:
tks_str = rag_tokenizer.tokenize(str(row))
token_count = len(tks_str.split(" ")) if tks_str else 0
if current_count + token_count > chunk_token_num:
tables.append(current_table)
current_table = []
current_count = 0
current_table.append(row)
current_count += token_count
if current_table:
tables.append(current_table)
for table_rows in tables:
new_table = soup.new_tag("table")
for row in table_rows:
new_table.append(row)
table_str_list.append(str(new_table))
return table_str_list
@classmethod
def read_text_recursively(cls, element, parser_result, chunk_token_num=512, parent_name=None, block_id=None):
if isinstance(element, NavigableString):
content = element.strip()
def is_valid_html(content):
try:
soup = BeautifulSoup(content, "html.parser")
return bool(soup.find())
except Exception:
return False
return_info = []
if content:
if is_valid_html(content):
soup = BeautifulSoup(content, "html.parser")
child_info = cls.read_text_recursively(soup, parser_result, chunk_token_num, element.name, block_id)
parser_result.extend(child_info)
else:
info = {"content": element.strip(), "tag_name": "inner_text", "metadata": {"block_id": block_id}}
if parent_name:
info["tag_name"] = parent_name
return_info.append(info)
return return_info
elif isinstance(element, Tag):
if str.lower(element.name) == "table":
table_info_list = []
table_id = str(uuid.uuid1())
table_list = [html.unescape(str(element))]
for t in table_list:
table_info_list.append({"content": t, "tag_name": "table",
"metadata": {"table_id": table_id, "index": table_list.index(t)}})
return table_info_list
else:
block_id = None
if str.lower(element.name) in BLOCK_TAGS:
block_id = str(uuid.uuid1())
for child in element.children:
child_info = cls.read_text_recursively(child, parser_result, chunk_token_num, element.name,
block_id)
parser_result.extend(child_info)
return []
@classmethod
def merge_block_text(cls, parser_result):
block_content = []
current_content = ""
table_info_list = []
lask_block_id = None
for item in parser_result:
content = item.get("content")
tag_name = item.get("tag_name")
title_flag = tag_name in TITLE_TAGS
block_id = item.get("metadata", {}).get("block_id")
if block_id:
if title_flag:
content = f"{TITLE_TAGS[tag_name]} {content}"
if lask_block_id != block_id:
if lask_block_id is not None:
block_content.append(current_content)
current_content = content
lask_block_id = block_id
else:
current_content += (" " if current_content else "") + content
else:
if tag_name == "table":
table_info_list.append(item)
else:
current_content += (" " if current_content else "" + content)
if current_content:
block_content.append(current_content)
return block_content, table_info_list
@classmethod
def chunk_block(cls, block_txt_list, chunk_token_num=512):
chunks = []
current_block = ""
current_token_count = 0
for block in block_txt_list:
tks_str = rag_tokenizer.tokenize(block)
block_token_count = len(tks_str.split(" ")) if tks_str else 0
if block_token_count > chunk_token_num:
if current_block:
chunks.append(current_block)
start = 0
tokens = tks_str.split(" ")
while start < len(tokens):
end = start + chunk_token_num
split_tokens = tokens[start:end]
chunks.append(" ".join(split_tokens))
start = end
current_block = ""
current_token_count = 0
else:
if current_token_count + block_token_count <= chunk_token_num:
current_block += ("\n" if current_block else "") + block
current_token_count += block_token_count
else:
chunks.append(current_block)
current_block = block
current_token_count = block_token_count
if current_block:
chunks.append(current_block)
return chunks

View File

@ -17,8 +17,10 @@
import re import re
import mistune
from markdown import markdown from markdown import markdown
class RAGFlowMarkdownParser: class RAGFlowMarkdownParser:
def __init__(self, chunk_token_num=128): def __init__(self, chunk_token_num=128):
self.chunk_token_num = int(chunk_token_num) self.chunk_token_num = int(chunk_token_num)
@ -35,40 +37,44 @@ class RAGFlowMarkdownParser:
table_list.append(raw_table) table_list.append(raw_table)
if separate_tables: if separate_tables:
# Skip this match (i.e., remove it) # Skip this match (i.e., remove it)
new_text += working_text[last_end:match.start()] + "\n\n" new_text += working_text[last_end : match.start()] + "\n\n"
else: else:
# Replace with rendered HTML # Replace with rendered HTML
html_table = markdown(raw_table, extensions=['markdown.extensions.tables']) if render else raw_table html_table = markdown(raw_table, extensions=["markdown.extensions.tables"]) if render else raw_table
new_text += working_text[last_end:match.start()] + html_table + "\n\n" new_text += working_text[last_end : match.start()] + html_table + "\n\n"
last_end = match.end() last_end = match.end()
new_text += working_text[last_end:] new_text += working_text[last_end:]
return new_text return new_text
if "|" in markdown_text: # for optimize performance if "|" in markdown_text: # for optimize performance
# Standard Markdown table # Standard Markdown table
border_table_pattern = re.compile( border_table_pattern = re.compile(
r''' r"""
(?:\n|^) (?:\n|^)
(?:\|.*?\|.*?\|.*?\n) (?:\|.*?\|.*?\|.*?\n)
(?:\|(?:\s*[:-]+[-| :]*\s*)\|.*?\n) (?:\|(?:\s*[:-]+[-| :]*\s*)\|.*?\n)
(?:\|.*?\|.*?\|.*?\n)+ (?:\|.*?\|.*?\|.*?\n)+
''', re.VERBOSE) """,
re.VERBOSE,
)
working_text = replace_tables_with_rendered_html(border_table_pattern, tables) working_text = replace_tables_with_rendered_html(border_table_pattern, tables)
# Borderless Markdown table # Borderless Markdown table
no_border_table_pattern = re.compile( no_border_table_pattern = re.compile(
r''' r"""
(?:\n|^) (?:\n|^)
(?:\S.*?\|.*?\n) (?:\S.*?\|.*?\n)
(?:(?:\s*[:-]+[-| :]*\s*).*?\n) (?:(?:\s*[:-]+[-| :]*\s*).*?\n)
(?:\S.*?\|.*?\n)+ (?:\S.*?\|.*?\n)+
''', re.VERBOSE) """,
re.VERBOSE,
)
working_text = replace_tables_with_rendered_html(no_border_table_pattern, tables) working_text = replace_tables_with_rendered_html(no_border_table_pattern, tables)
if "<table>" in working_text.lower(): # for optimize performance if "<table>" in working_text.lower(): # for optimize performance
#HTML table extraction - handle possible html/body wrapper tags # HTML table extraction - handle possible html/body wrapper tags
html_table_pattern = re.compile( html_table_pattern = re.compile(
r''' r"""
(?:\n|^) (?:\n|^)
\s* \s*
(?: (?:
@ -83,9 +89,10 @@ class RAGFlowMarkdownParser:
) )
\s* \s*
(?=\n|$) (?=\n|$)
''', """,
re.VERBOSE | re.DOTALL | re.IGNORECASE re.VERBOSE | re.DOTALL | re.IGNORECASE,
) )
def replace_html_tables(): def replace_html_tables():
nonlocal working_text nonlocal working_text
new_text = "" new_text = ""
@ -94,9 +101,9 @@ class RAGFlowMarkdownParser:
raw_table = match.group() raw_table = match.group()
tables.append(raw_table) tables.append(raw_table)
if separate_tables: if separate_tables:
new_text += working_text[last_end:match.start()] + "\n\n" new_text += working_text[last_end : match.start()] + "\n\n"
else: else:
new_text += working_text[last_end:match.start()] + raw_table + "\n\n" new_text += working_text[last_end : match.start()] + raw_table + "\n\n"
last_end = match.end() last_end = match.end()
new_text += working_text[last_end:] new_text += working_text[last_end:]
working_text = new_text working_text = new_text
@ -104,3 +111,163 @@ class RAGFlowMarkdownParser:
replace_html_tables() replace_html_tables()
return working_text, tables return working_text, tables
class MarkdownElementExtractor:
def __init__(self, markdown_content):
self.markdown_content = markdown_content
self.lines = markdown_content.split("\n")
self.ast_parser = mistune.create_markdown(renderer="ast")
self.ast_nodes = self.ast_parser(markdown_content)
def extract_elements(self):
"""Extract individual elements (headers, code blocks, lists, etc.)"""
sections = []
i = 0
while i < len(self.lines):
line = self.lines[i]
if re.match(r"^#{1,6}\s+.*$", line):
# header
element = self._extract_header(i)
sections.append(element["content"])
i = element["end_line"] + 1
elif line.strip().startswith("```"):
# code block
element = self._extract_code_block(i)
sections.append(element["content"])
i = element["end_line"] + 1
elif re.match(r"^\s*[-*+]\s+.*$", line) or re.match(r"^\s*\d+\.\s+.*$", line):
# list block
element = self._extract_list_block(i)
sections.append(element["content"])
i = element["end_line"] + 1
elif line.strip().startswith(">"):
# blockquote
element = self._extract_blockquote(i)
sections.append(element["content"])
i = element["end_line"] + 1
elif line.strip():
# text block (paragraphs and inline elements until next block element)
element = self._extract_text_block(i)
sections.append(element["content"])
i = element["end_line"] + 1
else:
i += 1
sections = [section for section in sections if section.strip()]
return sections
def _extract_header(self, start_pos):
return {
"type": "header",
"content": self.lines[start_pos],
"start_line": start_pos,
"end_line": start_pos,
}
def _extract_code_block(self, start_pos):
end_pos = start_pos
content_lines = [self.lines[start_pos]]
# Find the end of the code block
for i in range(start_pos + 1, len(self.lines)):
content_lines.append(self.lines[i])
end_pos = i
if self.lines[i].strip().startswith("```"):
break
return {
"type": "code_block",
"content": "\n".join(content_lines),
"start_line": start_pos,
"end_line": end_pos,
}
def _extract_list_block(self, start_pos):
end_pos = start_pos
content_lines = []
i = start_pos
while i < len(self.lines):
line = self.lines[i]
# check if this line is a list item or continuation of a list
if (
re.match(r"^\s*[-*+]\s+.*$", line)
or re.match(r"^\s*\d+\.\s+.*$", line)
or (i > start_pos and not line.strip())
or (i > start_pos and re.match(r"^\s{2,}[-*+]\s+.*$", line))
or (i > start_pos and re.match(r"^\s{2,}\d+\.\s+.*$", line))
or (i > start_pos and re.match(r"^\s+\w+.*$", line))
):
content_lines.append(line)
end_pos = i
i += 1
else:
break
return {
"type": "list_block",
"content": "\n".join(content_lines),
"start_line": start_pos,
"end_line": end_pos,
}
def _extract_blockquote(self, start_pos):
end_pos = start_pos
content_lines = []
i = start_pos
while i < len(self.lines):
line = self.lines[i]
if line.strip().startswith(">") or (i > start_pos and not line.strip()):
content_lines.append(line)
end_pos = i
i += 1
else:
break
return {
"type": "blockquote",
"content": "\n".join(content_lines),
"start_line": start_pos,
"end_line": end_pos,
}
def _extract_text_block(self, start_pos):
"""Extract a text block (paragraphs, inline elements) until next block element"""
end_pos = start_pos
content_lines = [self.lines[start_pos]]
i = start_pos + 1
while i < len(self.lines):
line = self.lines[i]
# stop if we encounter a block element
if re.match(r"^#{1,6}\s+.*$", line) or line.strip().startswith("```") or re.match(r"^\s*[-*+]\s+.*$", line) or re.match(r"^\s*\d+\.\s+.*$", line) or line.strip().startswith(">"):
break
elif not line.strip():
# check if the next line is a block element
if i + 1 < len(self.lines) and (
re.match(r"^#{1,6}\s+.*$", self.lines[i + 1])
or self.lines[i + 1].strip().startswith("```")
or re.match(r"^\s*[-*+]\s+.*$", self.lines[i + 1])
or re.match(r"^\s*\d+\.\s+.*$", self.lines[i + 1])
or self.lines[i + 1].strip().startswith(">")
):
break
else:
content_lines.append(line)
end_pos = i
i += 1
else:
content_lines.append(line)
end_pos = i
i += 1
return {
"type": "text_block",
"content": "\n".join(content_lines),
"start_line": start_pos,
"end_line": end_pos,
}

View File

@ -93,6 +93,7 @@ class RAGFlowPdfParser:
model_dir, "updown_concat_xgb.model")) model_dir, "updown_concat_xgb.model"))
self.page_from = 0 self.page_from = 0
self.column_num = 1
def __char_width(self, c): def __char_width(self, c):
return (c["x1"] - c["x0"]) // max(len(c["text"]), 1) return (c["x1"] - c["x0"]) // max(len(c["text"]), 1)
@ -427,10 +428,18 @@ class RAGFlowPdfParser:
i += 1 i += 1
self.boxes = bxs self.boxes = bxs
def _naive_vertical_merge(self): def _naive_vertical_merge(self, zoomin=3):
bxs = Recognizer.sort_Y_firstly( bxs = Recognizer.sort_Y_firstly(
self.boxes, np.median( self.boxes, np.median(
self.mean_height) / 3) self.mean_height) / 3)
column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
logging.info("Multi-column................... {} {}".format(column_width,
self.page_images[0].size[0] / zoomin / self.column_num))
self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
i = 0 i = 0
while i + 1 < len(bxs): while i + 1 < len(bxs):
b = bxs[i] b = bxs[i]
@ -1139,20 +1148,94 @@ class RAGFlowPdfParser:
need_image, zoomin, return_html, False) need_image, zoomin, return_html, False)
return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls return self.__filterout_scraps(deepcopy(self.boxes), zoomin), tbls
def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
start = timer()
self.__images__(fnm, zoomin)
if callback:
callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start))
start = timer()
self._layouts_rec(zoomin)
if callback:
callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._table_transformer_job(zoomin)
if callback:
callback(0.83, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer()
self._text_merge()
self._concat_downward()
self._naive_vertical_merge(zoomin)
if callback:
callback(0.92, "Text merged ({:.2f}s)".format(timer() - start))
start = timer()
tbls, figs = self._extract_table_figure(True, zoomin, True, True, True)
def insert_table_figures(tbls_or_figs, layout_type):
def min_rectangle_distance(rect1, rect2):
import math
pn1, left1, right1, top1, bottom1 = rect1
pn2, left2, right2, top2, bottom2 = rect2
if (right1 >= left2 and right2 >= left1 and
bottom1 >= top2 and bottom2 >= top1):
return 0 + (pn1-pn2)*10000
if right1 < left2:
dx = left2 - right1
elif right2 < left1:
dx = left1 - right2
else:
dx = 0
if bottom1 < top2:
dy = top2 - bottom1
elif bottom2 < top1:
dy = top1 - bottom2
else:
dy = 0
return math.sqrt(dx*dx + dy*dy) + (pn1-pn2)*10000
for (img, txt), poss in tbls_or_figs:
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
dists = [(min_rectangle_distance((pn, left, right, top, bott), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
min_i = np.argmin(dists, axis=0)[0]
min_i, rect = bboxes[dists[min_i][-1]]
if isinstance(txt, list):
txt = "\n".join(txt)
self.boxes.insert(min_i, {
"page_number": rect[0], "x0": rect[1], "x1": rect[2], "top": rect[3], "bottom": rect[4], "layout_type": layout_type, "text": txt, "image": img
})
for b in self.boxes:
b["position_tag"] = self._line_tag(b, zoomin)
b["image"] = self.crop(b["position_tag"], zoomin)
insert_table_figures(tbls, "table")
insert_table_figures(figs, "figure")
if callback:
callback(1, "Structured ({:.2f}s)".format(timer() - start))
return deepcopy(self.boxes)
@staticmethod @staticmethod
def remove_tag(txt): def remove_tag(txt):
return re.sub(r"@@[\t0-9.-]+?##", "", txt) return re.sub(r"@@[\t0-9.-]+?##", "", txt)
def crop(self, text, ZM=3, need_position=False): @staticmethod
imgs = [] def extract_positions(txt):
poss = [] poss = []
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", text): for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
pn, left, right, top, bottom = tag.strip( pn, left, right, top, bottom = tag.strip(
"#").strip("@").split("\t") "#").strip("@").split("\t")
left, right, top, bottom = float(left), float( left, right, top, bottom = float(left), float(
right), float(top), float(bottom) right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")], poss.append(([int(p) - 1 for p in pn.split("-")],
left, right, top, bottom)) left, right, top, bottom))
return poss
def crop(self, text, ZM=3, need_position=False):
imgs = []
poss = self.extract_positions(text)
if not poss: if not poss:
if need_position: if need_position:
return None, None return None, None
@ -1296,8 +1379,8 @@ class VisionParser(RAGFlowPdfParser):
def __call__(self, filename, from_page=0, to_page=100000, **kwargs): def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
callback = kwargs.get("callback", lambda prog, msg: None) callback = kwargs.get("callback", lambda prog, msg: None)
zoomin = kwargs.get("zoomin", 3)
self.__images__(fnm=filename, zoomin=3, page_from=from_page, page_to=to_page, **kwargs) self.__images__(fnm=filename, zoomin=zoomin, page_from=from_page, page_to=to_page, callback=callback)
total_pdf_pages = self.total_page total_pdf_pages = self.total_page
@ -1311,16 +1394,19 @@ class VisionParser(RAGFlowPdfParser):
if pdf_page_num < start_page or pdf_page_num >= end_page: if pdf_page_num < start_page or pdf_page_num >= end_page:
continue continue
docs = picture_vision_llm_chunk( text = picture_vision_llm_chunk(
binary=img_binary, binary=img_binary,
vision_model=self.vision_model, vision_model=self.vision_model,
prompt=vision_llm_describe_prompt(page=pdf_page_num+1), prompt=vision_llm_describe_prompt(page=pdf_page_num+1),
callback=callback, callback=callback,
) )
if kwargs.get("callback"):
kwargs["callback"](idx*1./len(self.page_images), f"Processed: {idx+1}/{len(self.page_images)}")
if docs: if text:
all_docs.append(docs) width, height = self.page_images[idx].size
return [(doc, "") for doc in all_docs], [] all_docs.append((text, f"{pdf_page_num+1} 0 {width/zoomin} 0 {height/zoomin}"))
return all_docs, []
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -31,11 +31,11 @@ def save_results(image_list, results, labels, output_dir='output/', threshold=0.
logging.debug("save result to: " + out_path) logging.debug("save result to: " + out_path)
def draw_box(im, result, lables, threshold=0.5): def draw_box(im, result, labels, threshold=0.5):
draw_thickness = min(im.size) // 320 draw_thickness = min(im.size) // 320
draw = ImageDraw.Draw(im) draw = ImageDraw.Draw(im)
color_list = get_color_map_list(len(lables)) color_list = get_color_map_list(len(labels))
clsid2color = {n.lower():color_list[i] for i,n in enumerate(lables)} clsid2color = {n.lower():color_list[i] for i,n in enumerate(labels)}
result = [r for r in result if r["score"] >= threshold] result = [r for r in result if r["score"] >= threshold]
for dt in result: for dt in result:

View File

@ -93,13 +93,13 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380 SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download. # The RAGFlow Docker image to download.
# Defaults to the v0.20.1-slim edition, which is the RAGFlow Docker image without embedding models. # Defaults to the v0.20.5-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3-slim RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5-slim
# #
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead: # To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.1 # RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5
# #
# The Docker image of the v0.20.1 edition includes built-in embedding models: # The Docker image of the v0.20.5 edition includes built-in embedding models:
# - BAAI/bge-large-zh-v1.5 # - BAAI/bge-large-zh-v1.5
# - maidalun1020/bce-embedding-base_v1 # - maidalun1020/bce-embedding-base_v1
# #
@ -115,7 +115,7 @@ RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3-slim
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly # RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly
# The local time zone. # The local time zone.
TIMEZONE='Asia/Shanghai' TIMEZONE=Asia/Shanghai
# Uncomment the following line if you have limited access to huggingface.co: # Uncomment the following line if you have limited access to huggingface.co:
# HF_ENDPOINT=https://hf-mirror.com # HF_ENDPOINT=https://hf-mirror.com

View File

@ -79,8 +79,8 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE` - `RAGFLOW-IMAGE`
The Docker image edition. Available editions: The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models. - `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including: - `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models: - Built-in embedding models:
- `BAAI/bge-large-zh-v1.5` - `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1` - `maidalun1020/bce-embedding-base_v1`

View File

@ -99,8 +99,8 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
- `RAGFLOW-IMAGE` - `RAGFLOW-IMAGE`
The Docker image edition. Available editions: The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models. - `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including: - `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models: - Built-in embedding models:
- `BAAI/bge-large-zh-v1.5` - `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1` - `maidalun1020/bce-embedding-base_v1`

View File

@ -11,7 +11,7 @@ An API key is required for the RAGFlow server to authenticate your HTTP/Python o
2. Click **API** to switch to the **API** page. 2. Click **API** to switch to the **API** page.
3. Obtain a RAGFlow API key: 3. Obtain a RAGFlow API key:
![ragflow_api_key](https://github.com/user-attachments/assets/f461ed61-04c6-4faf-b3d8-6b5fa56be4e7) ![ragflow_api_key](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ragflow_api_key.jpg)
:::tip NOTE :::tip NOTE
See the [RAGFlow HTTP API reference](../references/http_api_reference.md) or the [RAGFlow Python API reference](../references/python_api_reference.md) for a complete reference of RAGFlow's HTTP or Python APIs. See the [RAGFlow HTTP API reference](../references/http_api_reference.md) or the [RAGFlow Python API reference](../references/python_api_reference.md) for a complete reference of RAGFlow's HTTP or Python APIs.

View File

@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
1. Edit Docker Compose Configuration 1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.3-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image. Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.5-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
2. Launch the Service 2. Launch the Service

View File

@ -30,17 +30,17 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
Each RAGFlow release is available in two editions: Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.3-slim` - **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.5-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.3` - **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.5`
--- ---
### Which embedding models can be deployed locally? ### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.20.3-slim` and `v0.20.3`: RAGFlow offers two Docker image editions, `v0.20.5-slim` and `v0.20.5`:
- `infiniflow/ragflow:v0.20.3-slim` (default): The RAGFlow Docker image without embedding models. - `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.3`: The RAGFlow Docker image with embedding models including: - `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models: - Built-in embedding models:
- `BAAI/bge-large-zh-v1.5` - `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1` - `maidalun1020/bce-embedding-base_v1`

View File

@ -9,7 +9,7 @@ The component equipped with reasoning, tool usage, and multi-agent collaboration
--- ---
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.3 onwards, an **Agent** component is able to work independently and with the following capabilities: An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.5 onwards, an **Agent** component is able to work independently and with the following capabilities:
- Autonomous reasoning with reflection and adjustment based on environmental feedback. - Autonomous reasoning with reflection and adjustment based on environmental feedback.
- Use of tools or subagents to complete tasks. - Use of tools or subagents to complete tasks.
@ -18,6 +18,14 @@ An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.3 onwa
An **Agent** component is essential when you need the LLM to assist with summarizing, translating, or controlling various tasks. An **Agent** component is essential when you need the LLM to assist with summarizing, translating, or controlling various tasks.
## Prerequisites
1. Ensure you have a chat model properly configured:
![Set default models](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/set_default_models.jpg)
2. If your Agent involves dataset retrieval, ensure you [have properly configured your target knowledge base(s)](../../dataset/configure_knowledge_base.md).
## Configurations ## Configurations
### Model ### Model
@ -57,13 +65,44 @@ Click the dropdown menu of **Model** to show the model configuration window.
Typically, you use the system prompt to describe the task for the LLM, specify how it should respond, and outline other miscellaneous requirements. We do not plan to elaborate on this topic, as it can be as extensive as prompt engineering. However, please be aware that the system prompt is often used in conjunction with keys (variables), which serve as various data inputs for the LLM. Typically, you use the system prompt to describe the task for the LLM, specify how it should respond, and outline other miscellaneous requirements. We do not plan to elaborate on this topic, as it can be as extensive as prompt engineering. However, please be aware that the system prompt is often used in conjunction with keys (variables), which serve as various data inputs for the LLM.
:::danger IMPORTANT
An **Agent** component relies on keys (variables) to specify its data inputs. Its immediate upstream component is *not* necessarily its data input, and the arrows in the workflow indicate *only* the processing sequence. Keys in a **Agent** component are used in conjunction with the system prompt to specify data inputs for the LLM. Use a forward slash `/` or the **(x)** button to show the keys to use. An **Agent** component relies on keys (variables) to specify its data inputs. Its immediate upstream component is *not* necessarily its data input, and the arrows in the workflow indicate *only* the processing sequence. Keys in a **Agent** component are used in conjunction with the system prompt to specify data inputs for the LLM. Use a forward slash `/` or the **(x)** button to show the keys to use.
:::
#### Advanced usage
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
- `task_analysis` prompt block
- This block is responsible for analyzing tasks — either a user task or a task assigned by the lead Agent when the **Agent** component is acting as a Sub-Agent.
- Reference design: [analyze_task_system.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/analyze_task_system.md) and [analyze_task_user.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/analyze_task_user.md)
- Available *only* when this **Agent** component is acting as a planner, with either tools or sub-Agents under it.
- Input variables:
- `agent_prompt`: The system prompt.
- `task`: The user prompt for either a lead Agent or a sub-Agent. The lead Agent's user prompt is defined by the user, while a sub-Agent's user prompt is defined by the lead Agent when delegating tasks.
- `tool_desc`: A description of the tools and sub_Agents that can be called.
- `context`: The operational context, which stores interactions between the Agent, tools, and sub-agents; initially empty.
- `plan_generation` prompt block
- This block creates a plan for the **Agent** component to execute next, based on the task analysis results.
- Reference design: [next_step.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/next_step.md)
- Available *only* when this **Agent** component is acting as a planner, with either tools or sub-Agents under it.
- Input variables:
- `task_analysis`: The analysis result of the current task.
- `desc`: A description of the tools or sub-Agents currently being called.
- `today`: The date of today.
- `reflection` prompt block
- This block enables the **Agent** component to reflect, improving task accuracy and efficiency.
- Reference design: [reflect.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/reflect.md)
- Available *only* when this **Agent** component is acting as a planner, with either tools or sub-Agents under it.
- Input variables:
- `goal`: The goal of the current task. It is the user prompt for either a lead Agent or a sub-Agent. The lead Agent's user prompt is defined by the user, while a sub-Agent's user prompt is defined by the lead Agent.
- `tool_calls`: The history of tool calling
- `call.name`The name of the tool called.
- `call.result`The result of tool calling
- `citation_guidelines` prompt block
- Reference design: [citation_prompt.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/citation_prompt.md)
### User prompt ### User prompt
The user-defined prompt. Defaults to `sys.query`, the user query. The user-defined prompt. Defaults to `sys.query`, the user query. As a general rule, when using the **Agent** component as a standalone module (not as a planner), you usually need to specify the corresponding **Retrieval** components output variable (`formalized_content`) here as part of the input to the LLM.
### Tools ### Tools
@ -100,4 +139,24 @@ Increasing this value will significantly extend your agent's response time.
### Output ### Output
The global variable name for the output of the **Agent** component, which can be referenced by other components in the workflow. The global variable name for the output of the **Agent** component, which can be referenced by other components in the workflow.
## Frequently asked questions
### Why does it take so long for my Agent to respond?
An Agents response time generally depends on two key factors: the LLMs capabilities and the prompt, the latter reflecting task complexity. When using an Agent, you should always balance task demands with the LLMs ability. See [How to balance task complexity with an Agent's performance and speed?](#how-to-balance-task-complexity-with-an-agents-performance-and-speed) for details.
## Best practices
### How to balance task complexity with an Agents performance and speed?
- For simple tasks, such as retrieval, rewriting, formatting, or structured data extraction, use concise prompts, remove planning or reasoning instructions, enforce output length limits, and select smaller or Turbo-class models. This significantly reduces latency and cost with minimal impact on quality.
- For complex tasks, like multi-step reasoning, cross-document synthesis, or tool-based workflows, maintain or enhance prompts that include planning, reflection, and verification steps.
- In multi-Agent orchestration systems, delegate simple subtasks to sub-Agents using smaller, faster models, and reserve more powerful models for the lead Agent to handle complexity and uncertainty.
:::tip KEY INSIGHT
Focus on minimizing output tokens — through summarization, bullet points, or explicit length limits — as this has far greater impact on reducing latency than optimizing input size.
:::

View File

@ -13,6 +13,32 @@ A component that enables users to integrate Python or JavaScript codes into thei
A **Code** component is essential when you need to integrate complex code logic (Python or JavaScript) into your Agent for dynamic data processing. A **Code** component is essential when you need to integrate complex code logic (Python or JavaScript) into your Agent for dynamic data processing.
## Prerequisites
### 1. Ensure gVisor is properly installed
We use gVisor to isolate code execution from the host system. Please follow [the official installation guide](https://gvisor.dev/docs/user_guide/install/) to install gVisor, ensuring your operating system is compatible before proceeding.
### 2. Ensure Sandbox is properly installed
RAGFlow Sandbox is a secure, pluggable code execution backend. It serves as the code executor for the **Code** component. Please follow the [instructions here](https://github.com/infiniflow/ragflow/tree/main/sandbox) to install RAGFlow Sandbox.
:::tip NOTE
If your RAGFlow Sandbox is not working, please be sure to consult the [Troubleshooting](#troubleshooting) section in this document. We assure you that it addresses 99.99% of the issues!
:::
### 3. (Optional) Install necessary dependencies
If you need to import your own Python or JavaScript packages into Sandbox, please follow the commands provided in the [How to import my own Python or JavaScript packages into Sandbox?](#how-to-import-my-own-python-or-javascript-packages-into-sandbox) section to install the additional dependencies.
### 4. Enable Sandbox-specific settings in RAGFlow
Ensure all Sandbox-specific settings are enabled in **ragflow/docker/.env**.
### 5. Restart the service after making changes
Any changes to the configuration or environment *require* a full service restart to take effect.
## Configurations ## Configurations
### Input ### Input
@ -55,4 +81,112 @@ You define the output variable(s) of the **Code** component here.
The defined output variable(s) will be auto-populated here. The defined output variable(s) will be auto-populated here.
## Troubleshooting
### `HTTPConnectionPool(host='sandbox-executor-manager', port=9385): Read timed out.`
**Root cause**
- You did not properly install gVisor and `runsc` was not recognized as a valid Docker runtime.
- You did not pull the required base images for the runners and no runner was started.
**Solution**
For the gVisor issue:
1. Install [gVisor](https://gvisor.dev/docs/user_guide/install/).
2. Restart Docker.
3. Run the following to double check:
```bash
docker run --rm --runtime=runsc hello-world
```
For the base image issue, pull the required base images:
```bash
docker pull infiniflow/sandbox-base-nodejs:latest
docker pull infiniflow/sandbox-base-python:latest
```
### `HTTPConnectionPool(host='none', port=9385): Max retries exceeded.`
**Root cause**
`sandbox-executor-manager` is not mapped in `/etc/hosts`.
**Solution**
Add a new entry to `/etc/hosts`:
`127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager`
### `Container pool is busy`
**Root cause**
All runners are currently in use, executing tasks.
**Solution**
Please try again shortly or increase the pool size in the configuration to improve availability and reduce waiting times.
## Frequently asked questions
### How to import my own Python or JavaScript packages into Sandbox?
To import your Python packages, update **sandbox_base_image/python/requirements.txt** to install the required dependencies. For example, to add the `openpyxl` package, proceed with the following command lines:
```bash {4,6}
(ragflow) ➜ ragflow/sandbox main ✓ pwd # make sure you are in the right directory
/home/infiniflow/workspace/ragflow/sandbox
(ragflow) ➜ ragflow/sandbox main ✓ echo "openpyxl" >> sandbox_base_image/python/requirements.txt # add the package to the requirements.txt file
(ragflow) ➜ ragflow/sandbox main ✗ cat sandbox_base_image/python/requirements.txt # make sure the package is added
numpy
pandas
requests
openpyxl # here it is
(ragflow) ➜ ragflow/sandbox main ✗ make # rebuild the docker image, this command will rebuild the iamge and start the service immediately. To build image only, using `make build` instead.
(ragflow) ➜ ragflow/sandbox main ✗ docker exec -it sandbox_python_0 /bin/bash # entering container to check if the package is installed
# in the container
nobody@ffd8a7dd19da:/workspace$ python # launch python shell
Python 3.11.13 (main, Aug 12 2025, 22:46:03) [GCC 12.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import openpyxl # import the package to verify installation
>>>
# That's okay!
```
To import your JavaScript packages, navigate to `sandbox_base_image/nodejs` and use `npm` to install the required packages. For example, to add the `lodash` package, run the following commands:
```bash
(ragflow) ➜ ragflow/sandbox main ✓ pwd
/home/infiniflow/workspace/ragflow/sandbox
(ragflow) ➜ ragflow/sandbox main ✓ cd sandbox_base_image/nodejs
(ragflow) ➜ ragflow/sandbox/sandbox_base_image/nodejs main ✓ npm install lodash
(ragflow) ➜ ragflow/sandbox/sandbox_base_image/nodejs main ✓ cd ../.. # go back to sandbox root directory
(ragflow) ➜ ragflow/sandbox main ✗ make # rebuild the docker image, this command will rebuild the iamge and start the service immediately. To build image only, using `make build` instead.
(ragflow) ➜ ragflow/sandbox main ✗ docker exec -it sandbox_nodejs_0 /bin/bash # entering container to check if the package is installed
# in the container
nobody@dd4bbcabef63:/workspace$ npm list lodash # verify via npm list
/workspace
`-- lodash@4.17.21 extraneous
nobody@dd4bbcabef63:/workspace$ ls node_modules | grep lodash # or verify via listing node_modules
lodash
# That's okay!
```

View File

@ -9,19 +9,70 @@ A component that retrieves information from specified datasets.
## Scenarios ## Scenarios
A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. As of v0.20.3, a **Retrieval** component can operate either as a workflow component or as a tool of an **Agent**, enabling the Agent to control its invocation and search queries. A **Retrieval** component is essential in most RAG scenarios, where information is extracted from designated knowledge bases before being sent to the LLM for content generation. A **Retrieval** component can operate either as a standalone workflow module or as a tool for an **Agent** component. In the latter role, the **Agent** component has autonomous control over when to invoke it for query and retrieval.
The following screenshot shows a reference design using the **Retrieval** component, where the component serves as a tool for an **Agent** component. You can find it from the **Report Agent Using Knowledge Base** Agent template.
![retrieval_reference_design](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/retrieval_reference_design.jpg)
## Prerequisites
Ensure you [have properly configured your target knowledge base(s)](../../dataset/configure_knowledge_base.md).
## Quickstart
### 1. Click on a **Retrieval** component to show its configuration panel
The corresponding configuration panel appears to the right of the canvas. Use this panel to define and fine-tune the **Retrieval** component's search behavior.
### 2. Input query variable(s)
The **Retrieval** component depends on query variables to specify its queries.
:::caution IMPORTANT
- If you use the **Retrieval** component as a standalone workflow module, input query variables in the **Input Variables** text box.
- If it is used as a tool for an **Agent** component, input the query variables in the **Agent** component's **User prompt** field.
:::
By default, you can use `sys.query`, which is the user query and the default output of the **Begin** component. All global variables defined before the **Retrieval** component can also be used as query statements. Use the `(x)` button or type `/` to show all the available query variables.
### 3. Select knowledge base(s) to query
You can specify one or multiple knowledge bases to retrieve data from. If selecting mutiple, ensure they use the same embedding model.
### 4. Expand **Advanced Settings** to configure the retrieval method
By default, a combination of weighted keyword similarity and weighted vector cosine similarity is used for retrieval. If a rerank model is selected, a combination of weighted keyword similarity and weighted reranking score will be used instead.
As a starter, you can skip this step to stay with the default retrieval method.
:::caution WARNING
Using a rerank model will *significantly* increase the system's response time. If you must use a rerank model, ensure you use a SaaS reranker; if you prefer a locally deployed rerank model, ensure you start RAGFlow with **docker-compose-gpu.yml**.
:::
### 5. Enable cross-language search
If your user query is different from the languages of the knowledge bases, you can select the target languages in the **Cross-language search** dropdown menu. The model will then translates queries to ensure accurate matching of semantic meaning across languages.
### 6. Test retrieval results
Click the **Run** button on the top of canvas to test the retrieval results.
### 7. Choose the next component
When necessary, click the **+** button on the **Retrieval** component to choose the next component in the worflow from the dropdown list.
## Configurations ## Configurations
Click on a **Retrieval** component to open its configuration window.
### Query variables ### Query variables
*Mandatory* *Mandatory*
Select the query source for retrieval. Select the query source for retrieval. Defaults to `sys.query`, which is the default output of the **Begin** component.
The **Retrieval** component relies on query variables to specify its data inputs (queries). All global variables defined before the **Retrieval** component are available in the dropdown list. The **Retrieval** component relies on query variables to specify its queries. All global variables defined before the **Retrieval** component can also be used as queries. Use the `(x)` button or type `/` to show all the available query variables.
### Knowledge bases ### Knowledge bases
@ -72,8 +123,23 @@ Select one or more languages for crosslanguage search. If no language is sele
### Use knowledge graph ### Use knowledge graph
:::caution IMPORTANT
Before enabling this feature, ensure you have properly [constructed a knowledge graph from each target knowledge base](../../dataset/construct_knowledge_graph.md).
:::
Whether to use knowledge graph(s) in the specified knowledge base(s) during retrieval for multi-hop question answering. When enabled, this would involve iterative searches across entity, relationship, and community report chunks, greatly increasing retrieval time. Whether to use knowledge graph(s) in the specified knowledge base(s) during retrieval for multi-hop question answering. When enabled, this would involve iterative searches across entity, relationship, and community report chunks, greatly increasing retrieval time.
### Output ### Output
The global variable name for the output of the **Retrieval** component, which can be referenced by other components in the workflow. The global variable name for the output of the **Retrieval** component, which can be referenced by other components in the workflow.
## Frequently asked questions
### How to reduce response time?
Go through the checklist below for best performance:
- Leave the **Rerank model** field empty.
- If you must use a rerank model, ensure you use a SaaS reranker; if you prefer a locally deployed rerank model, ensure you start RAGFlow with **docker-compose-gpu.yml**.
- Disable **Use knowledge graph**.

View File

@ -9,12 +9,12 @@ Key concepts, basic operations, a quick view of the agent editor.
--- ---
## Key concepts
:::danger DEPRECATED! :::danger DEPRECATED!
A new version is coming soon. A new version is coming soon.
::: :::
## Key concepts
Agents and RAG are complementary techniques, each enhancing the others capabilities in business applications. RAGFlow v0.8.0 introduces an agent mechanism, featuring a no-code workflow editor on the front end and a comprehensive graph-based task orchestration framework on the back end. This mechanism is built on top of RAGFlow's existing RAG solutions and aims to orchestrate search technologies such as query intent classification, conversation leading, and query rewriting to: Agents and RAG are complementary techniques, each enhancing the others capabilities in business applications. RAGFlow v0.8.0 introduces an agent mechanism, featuring a no-code workflow editor on the front end and a comprehensive graph-based task orchestration framework on the back end. This mechanism is built on top of RAGFlow's existing RAG solutions and aims to orchestrate search technologies such as query intent classification, conversation leading, and query rewriting to:
- Provide higher retrievals and, - Provide higher retrievals and,
@ -33,55 +33,19 @@ Before proceeding, ensure that:
Click the **Agent** tab in the middle top of the page to show the **Agent** page. As shown in the screenshot below, the cards on this page represent the created agents, which you can continue to edit. Click the **Agent** tab in the middle top of the page to show the **Agent** page. As shown in the screenshot below, the cards on this page represent the created agents, which you can continue to edit.
![agent_mainpage](https://github.com/user-attachments/assets/5c0bb123-8f4e-42ea-b250-43f640dc6814) ![Agent_list](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/agent_list.jpg)
We also provide templates catered to different business scenarios. You can either generate your agent from one of our agent templates or create one from scratch: We also provide templates catered to different business scenarios. You can either generate your agent from one of our agent templates or create one from scratch:
1. Click **+ Create agent** to show the **agent template** page: 1. Click **+ Create agent** to show the **agent template** page:
![agent_templates](https://github.com/user-attachments/assets/73bd476c-4bab-4c8c-82f8-6b00fb2cd044) ![agent_template](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/agent_template_list.jpg)
2. To create an agent from scratch, click the **Blank** card. Alternatively, to create an agent from one of our templates, hover over the desired card, such as **General-purpose chatbot**, click **Use this template**, name your agent in the pop-up dialogue, and click **OK** to confirm. 2. To create an agent from scratch, click **Create Agent**. Alternatively, to create an agent from one of our templates, click the desired card, such as **Deep Research**, name your agent in the pop-up dialogue, and click **OK** to confirm.
*You are now taken to the **no-code workflow editor** page. The left panel lists the components (operators): Above the dividing line are the RAG-specific components; below the line are tools. We are still working to expand the component list.* *You are now taken to the **no-code workflow editor** page.*
![workflow_editor](https://github.com/user-attachments/assets/47b4d5ce-b35a-4d6b-b483-ba495a75a65d) ![add_component](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/add_component.jpg)
3. General speaking, now you can do the following: 3. Click the **+** button on the **Begin** component to select the desired components in your workflow.
- Drag and drop a desired component to your workflow, 4. Click **Save** to apply changes to your agent.
- Select the knowledge base to use,
- Update settings of specific components,
- Update LLM settings
- Sets the input and output for a specific component, and more.
4. Click **Save** to apply changes to your agent and **Run** to test it.
## Components
Please review the flowing description of the RAG-specific components before you proceed:
| Component | Description |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Retrieval** | A component that retrieves information from specified knowledge bases and returns 'Empty response' if no information is found. Ensure the correct knowledge bases are selected. |
| **Generate** | A component that prompts the LLM to generate responses. You must ensure the prompt is set correctly. |
| **Interact** | A component that serves as the interface between human and the bot, receiving user inputs and displaying the agent's responses. |
| **Categorize** | A component that uses the LLM to classify user inputs into predefined categories. Ensure you specify the name, description, and examples for each category, along with the corresponding next component. |
| **Message** | A component that sends out a static message. If multiple messages are supplied, it randomly selects one to send. Ensure its downstream is **Interact**, the interface component. |
| **Rewrite** | A component that rewrites a user query from the **Interact** component, based on the context of previous dialogues. |
| **Keyword** | A component that extracts keywords from a user query, with TopN specifying the number of keywords to extract. |
:::caution NOTE
- Ensure **Rewrite**'s upstream component is **Relevant** and downstream component is **Retrieval**.
- Ensure the downstream component of **Message** is **Interact**.
- The downstream component of **Begin** is always **Interact**.
:::
## Basic operations
| Operation | Description |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Add a component | Drag and drop the desired component from the left panel onto the canvas. |
| Delete a component | On the canvas, hover over the three dots (...) of the component to display the delete option, then select it to remove the component. |
| Copy a component | On the canvas, hover over the three dots (...) of the component to display the copy option, then select it to make a copy the component. |
| Update component settings | On the canvas, click the desired component to display the component settings. |

View File

@ -10,4 +10,6 @@ You can use iframe to embed an agent into a third-party webpage.
1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear. 1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear.
2. On the **Agent** page, click an intended agent to access its editing page. 2. On the **Agent** page, click an intended agent to access its editing page.
3. Click **Management > Embed into webpage** on the top right corner of the canvas to show the **iframe** window: 3. Click **Management > Embed into webpage** on the top right corner of the canvas to show the **iframe** window:
4. Copy the iframe and embed it into a specific location on your webpage. 4. Copy the iframe and embed it into your webpage.
![Embed_agent](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/embed_agent_into_webpage.jpg)

View File

@ -1,109 +0,0 @@
---
sidebar_position: 2
slug: /general_purpose_chatbot
---
# Create chatbot
Create a general-purpose chatbot.
---
:::danger DEPRECATED!
A new version is coming soon.
:::
Chatbot is one of the most common AI scenarios. However, effectively understanding user queries and responding appropriately remains a challenge. RAGFlow's general-purpose chatbot agent is our attempt to tackle this longstanding issue.
This chatbot closely resembles the chatbot introduced in [Start an AI chat](../chat/start_chat.md), but with a key difference - it introduces a reflective mechanism that allows it to improve the retrieval from the target knowledge bases by rewriting the user's query.
This document provides guides on creating such a chatbot using our chatbot template.
## Prerequisites
1. Ensure you have properly set the LLM to use. See the guides on [Configure your API key](../models/llm_api_key_setup.md) or [Deploy a local LLM](../models/deploy_local_llm.mdx) for more information.
2. Ensure you have a knowledge base configured and the corresponding files properly parsed. See the guide on [Configure a knowledge base](../dataset/configure_knowledge_base.md) for more information.
3. Make sure you have read the [Introduction to Agentic RAG](./agent_introduction.md).
## Create a chatbot agent from template
To create a general-purpose chatbot agent using our template:
1. Click the **Agent** tab in the middle top of the page to show the **Agent** page.
2. Click **+ Create agent** on the top right of the page to show the **agent template** page.
3. On the **agent template** page, hover over the card on **General-purpose chatbot** and click **Use this template**.
*You are now directed to the **no-code workflow editor** page.*
![workflow_editor](https://github.com/user-attachments/assets/52e7dc62-4bf5-4fbb-ab73-4a6e252065f0)
:::tip NOTE
RAGFlow's no-code editor spares you the trouble of coding, making agent development effortless.
:::
## Understand each component in the template
Heres a breakdown of each component and its role and requirements in the chatbot template:
- **Begin**
- Function: Sets an opening greeting for users.
- Purpose: Establishes a welcoming atmosphere and prepares the user for interaction.
- **Interact**
- Function: Serves as the interface between human and the bot.
- Role: Acts as the downstream component of **Begin**.
- **Retrieval**
- Function: Retrieves information from specified knowledge base(s).
- Requirement: Must have `knowledgebases` set up to function.
- **Relevant**
- Function: Assesses the relevance of the retrieved information from the **Retrieval** component to the user query.
- Process:
- If relevant, it directs the data to the **Generate** component for final response generation.
- Otherwise, it triggers the **Rewrite** component to refine the user query and redo the retrival process.
- **Generate**
- Function: Prompts the LLM to generate responses based on the retrieved information.
- Note: The prompt settings allow you to control the way in which the LLM generates responses. Be sure to review the prompts and make necessary changes.
- **Rewrite**:
- Function: Refines a user query when no relevant information from the knowledge base is retrieved.
- Usage: Often used in conjunction with **Relevant** and **Retrieval** to create a reflective/feedback loop.
## Configure your chatbot agent
1. Click **Begin** to set an opening greeting:
![opener](https://github.com/user-attachments/assets/4416bc16-2a84-4f24-a19b-6dc8b1de0908)
2. Click **Retrieval** to select the right knowledge base(s) and make any necessary adjustments:
![setting_knowledge_bases](https://github.com/user-attachments/assets/5f694820-5651-45bc-afd6-cf580ca0228d)
3. Click **Generate** to configure the LLM's summarization behavior:
3.1. Confirm the model.
3.2. Review the prompt settings. If there are variables, ensure they match the correct component IDs:
![prompt_settings](https://github.com/user-attachments/assets/19e94ea7-7f62-4b73-b526-32fcfa62f1e9)
4. Click **Relevant** to review or change its settings:
*You may retain the current settings, but feel free to experiment with changes to understand how the agent operates.*
![relevant_settings](https://github.com/user-attachments/assets/9ff7fdd8-7a69-4ee2-bfba-c7fb8029150f)
5. Click **Rewrite** to select a different model for query rewriting or update the maximum loop times for query rewriting:
![choose_model](https://github.com/user-attachments/assets/2bac1d6c-c4f1-42ac-997b-102858c3f550)
![loop_time](https://github.com/user-attachments/assets/09a4ce34-7aac-496f-aa59-d8aa33bf0b1f)
:::danger NOTE
Increasing the maximum loop times may significantly extend the time required to receive the final response.
:::
1. Update your workflow where you see necessary.
2. Click to **Save** to apply your changes.
*Your agent appears as one of the agent cards on the **Agent** page.*
## Test your chatbot agent
1. Find your chatbot agent on the **Agent** page:
![find_chatbot](https://github.com/user-attachments/assets/6e6382c6-9a86-4190-9fdd-e363b7f64ba9)
2. Experiment with your questions to verify if this chatbot functions as intended:
![test_chatbot](https://github.com/user-attachments/assets/c074d3bd-4c39-4b05-a68b-1fd361f256b3)

View File

@ -11,7 +11,9 @@ Conduct an AI search.
An AI search is a single-turn AI conversation using a predefined retrieval strategy (a hybrid search of weighted keyword similarity and weighted vector similarity) and the system's default chat model. It does not involve advanced RAG strategies like knowledge graph, auto-keyword, or auto-question. The related chunks are listed below the chat model's response in descending order based on their similarity scores. An AI search is a single-turn AI conversation using a predefined retrieval strategy (a hybrid search of weighted keyword similarity and weighted vector similarity) and the system's default chat model. It does not involve advanced RAG strategies like knowledge graph, auto-keyword, or auto-question. The related chunks are listed below the chat model's response in descending order based on their similarity scores.
![](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/ai_search.jpg) ![Create search app](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/create_search_app.jpg)
![Search view](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/search_view.jpg)
:::tip NOTE :::tip NOTE
When debugging your chat assistant, you can use AI search as a reference to verify your model settings and retrieval strategy. When debugging your chat assistant, you can use AI search as a reference to verify your model settings and retrieval strategy.
@ -22,10 +24,8 @@ When debugging your chat assistant, you can use AI search as a reference to veri
- Ensure that you have configured the system's default models on the **Model providers** page. - Ensure that you have configured the system's default models on the **Model providers** page.
- Ensure that the intended knowledge bases are properly configured and the intended documents have finished file parsing. - Ensure that the intended knowledge bases are properly configured and the intended documents have finished file parsing.
## Frequently asked questions ## Frequently asked questions
### Key difference between an AI search and an AI chat? ### Key difference between an AI search and an AI chat?
A chat is a multi-turn AI conversation where you can define your retrieval strategy (a weighted reranking score can be used to replace the weighted vector similarity in a hybrid search) and choose your chat model. In an AI chat, you can configure advanced RAG strategies, such as knowledge graphs, auto-keyword, and auto-question, for your specific case. Retrieved chunks are not displayed along with the answer. A chat is a multi-turn AI conversation where you can define your retrieval strategy (a weighted reranking score can be used to replace the weighted vector similarity in a hybrid search) and choose your chat model. In an AI chat, you can configure advanced RAG strategies, such as knowledge graphs, auto-keyword, and auto-question, for your specific case. Retrieved chunks are not displayed along with the answer.

View File

@ -15,13 +15,13 @@ From v0.17.0 onward, RAGFlow supports integrating agentic reasoning in an AI cha
To activate this feature: To activate this feature:
1. Enable the **Reasoning** toggle under the **Prompt engine** tab of your chat assistant dialogue. 1. Enable the **Reasoning** toggle in **Chat setting**.
![Image](https://github.com/user-attachments/assets/4a1968d0-0128-4371-879f-77f3a70197f5) ![chat_reasoning](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/chat_reasoning.jpg)
2. Enter the correct Tavily API key under the **Assistant settings** tab of your chat assistant dialogue to leverage Tavily-based web search 2. Enter the correct Tavily API key to leverage Tavily-based web search:
![Image](https://github.com/user-attachments/assets/e8787532-7e72-49ef-8951-169ae544512f) ![chat_tavily](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/chat_tavily.jpg)
*The following is a screenshot of a conversation that integrates Deep Research:* *The following is a screenshot of a conversation that integrates Deep Research:*

View File

@ -9,7 +9,7 @@ Set variables to be used together with the system prompt for your LLM.
--- ---
When configuring the system prompt for a chat model, variables play an important role in enhancing flexibility and reusability. With variables, you can dynamically adjust the system prompt to be sent to your model. In the context of RAGFlow, if you have defined variables in the **Chat Configuration** dialogue, except for the system's reserved variable `{knowledge}`, you are required to pass in values for them from RAGFlow's [HTTP API](../../references/http_api_reference.md#converse-with-chat-assistant) or through its [Python SDK](../../references/python_api_reference.md#converse-with-chat-assistant). When configuring the system prompt for a chat model, variables play an important role in enhancing flexibility and reusability. With variables, you can dynamically adjust the system prompt to be sent to your model. In the context of RAGFlow, if you have defined variables in **Chat setting**, except for the system's reserved variable `{knowledge}`, you are required to pass in values for them from RAGFlow's [HTTP API](../../references/http_api_reference.md#converse-with-chat-assistant) or through its [Python SDK](../../references/python_api_reference.md#converse-with-chat-assistant).
:::danger IMPORTANT :::danger IMPORTANT
In RAGFlow, variables are closely linked with the system prompt. When you add a variable in the **Variable** section, include it in the system prompt. Conversely, when deleting a variable, ensure it is removed from the system prompt; otherwise, an error would occur. In RAGFlow, variables are closely linked with the system prompt. When you add a variable in the **Variable** section, include it in the system prompt. Conversely, when deleting a variable, ensure it is removed from the system prompt; otherwise, an error would occur.
@ -17,9 +17,7 @@ In RAGFlow, variables are closely linked with the system prompt. When you add a
## Where to set variables ## Where to set variables
Hover your mouse over your chat assistant, click **Edit** to open its **Chat Configuration** dialogue, then click the **Prompt engine** tab. Here, you can work on your variables in the **System prompt** field and the **Variable** section: ![set_variables](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/chat_variables.jpg)
![set_variables](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/prompt_engine.jpg)
## 1. Manage variables ## 1. Manage variables
@ -42,8 +40,6 @@ Besides `{knowledge}`, you can also define your own variables to pair with the s
- **Disabled** (Default): The variable is mandatory and must be provided. - **Disabled** (Default): The variable is mandatory and must be provided.
- **Enabled**: The variable is optional and can be omitted if not needed. - **Enabled**: The variable is optional and can be omitted if not needed.
## 2. Update system prompt ## 2. Update system prompt
After you add or remove variables in the **Variable** section, ensure your changes are reflected in the system prompt to avoid inconsistencies or errors. Here's an example: After you add or remove variables in the **Variable** section, ensure your changes are reflected in the system prompt to avoid inconsistencies or errors. Here's an example:

View File

@ -48,7 +48,7 @@ You start an AI conversation by creating an assistant.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed. - If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt. - **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
- If you are uncertain about the logic behind **Variable**, leave it *as-is*. - If you are uncertain about the logic behind **Variable**, leave it *as-is*.
- As of v0.20.3, if you add custom variables here, the only way you can pass in their values is to call: - As of v0.20.5, if you add custom variables here, the only way you can pass in their values is to call:
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or - HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant). - Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).
@ -77,28 +77,24 @@ You start an AI conversation by creating an assistant.
5. Now, let's start the show: 5. Now, let's start the show:
![question1](https://github.com/user-attachments/assets/c4114a3d-74ff-40a3-9719-6b47c7b11ab1) ![chat_thermal_solution](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/chat_thermal_solution.jpg)
:::tip NOTE :::tip NOTE
1. Click the light bulb icon above the answer to view the expanded system prompt: 1. Click the light bulb icon above the answer to view the expanded system prompt:
![](https://github.com/user-attachments/assets/515ab187-94e8-412a-82f2-aba52cd79e09) ![prompt_display](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/prompt_display.jpg)
*The light bulb icon is available only for the current dialogue.* *The light bulb icon is available only for the current dialogue.*
2. Scroll down the expanded prompt to view the time consumed for each task: 2. Scroll down the expanded prompt to view the time consumed for each task:
![enlighten](https://github.com/user-attachments/assets/fedfa2ee-21a7-451b-be66-20125619923c) ![time_elapsed](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/time_elapsed.jpg)
::: :::
## Update settings of an existing chat assistant ## Update settings of an existing chat assistant
Hover over an intended chat assistant **>** **Edit** to show the chat configuration dialogue: ![chat_setting](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/chat_setting.jpg)
![edit_chat](https://github.com/user-attachments/assets/5c514cf0-a959-4cfe-abad-5e42a0e23974)
![chat_config](https://github.com/user-attachments/assets/1a4eaed2-5430-4585-8ab6-930549838c5b)
## Integrate chat capabilities into your application or webpage ## Integrate chat capabilities into your application or webpage
@ -113,6 +109,8 @@ You can use iframe to embed the created chat assistant into a third-party webpag
1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear. 1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear.
2. Hover over an intended chat assistant **>** **Edit** to show the **iframe** window: 2. Hover over an intended chat assistant **>** **Edit** to show the **iframe** window:
![chat-embed](https://github.com/user-attachments/assets/13ea3021-31c4-4a14-9b32-328cd3318fb5) ![chat-embed](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/embed_chat_into_webpage.jpg)
3. Copy the iframe and embed it into a specific location on your webpage. 3. Copy the iframe and embed it into your webpage.
![chat-embed](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/embedded_chat_app.jpg)

View File

@ -16,7 +16,7 @@ Knowledge base, hallucination-free chat, and file management are the three pilla
With multiple knowledge bases, you can build more flexible, diversified question answering. To create your first knowledge base: With multiple knowledge bases, you can build more flexible, diversified question answering. To create your first knowledge base:
![create knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/110541ed-6cea-4a03-a11c-414a0948ba80) ![create knowledge base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/create_knowledge_base.jpg)
_Each time a knowledge base is created, a folder with the same name is generated in the **root/.knowledgebase** directory._ _Each time a knowledge base is created, a folder with the same name is generated in the **root/.knowledgebase** directory._
@ -24,7 +24,7 @@ _Each time a knowledge base is created, a folder with the same name is generated
The following screenshot shows the configuration page of a knowledge base. A proper configuration of your knowledge base is crucial for future AI chats. For example, choosing the wrong embedding model or chunking method would cause unexpected semantic loss or mismatched answers in chats. The following screenshot shows the configuration page of a knowledge base. A proper configuration of your knowledge base is crucial for future AI chats. For example, choosing the wrong embedding model or chunking method would cause unexpected semantic loss or mismatched answers in chats.
![knowledge base configuration](https://github.com/infiniflow/ragflow/assets/93570324/384c671a-8b9c-468c-b1c9-1401128a9b65) ![knowledge base configuration](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/configure_knowledge_base.jpg)
This section covers the following topics: This section covers the following topics:
@ -56,7 +56,7 @@ RAGFlow offers multiple chunking template to facilitate chunking files of differ
You can also change a file's chunking method on the **Datasets** page. You can also change a file's chunking method on the **Datasets** page.
![change chunking method](https://github.com/infiniflow/ragflow/assets/93570324/ac116353-2793-42b2-b181-65e7082bed42) ![change chunking method](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/embedded_chat_app.jpg)
### Select embedding model ### Select embedding model
@ -82,10 +82,8 @@ While uploading files directly to a knowledge base seems more convenient, we *hi
File parsing is a crucial topic in knowledge base configuration. The meaning of file parsing in RAGFlow is twofold: chunking files based on file layout and building embedding and full-text (keyword) indexes on these chunks. After having selected the chunking method and embedding model, you can start parsing a file: File parsing is a crucial topic in knowledge base configuration. The meaning of file parsing in RAGFlow is twofold: chunking files based on file layout and building embedding and full-text (keyword) indexes on these chunks. After having selected the chunking method and embedding model, you can start parsing a file:
![parse file](https://github.com/infiniflow/ragflow/assets/93570324/5311f166-6426-447f-aa1f-bd488f1cfc7b) ![parse file](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/parse_file.jpg)
- Click the play button next to **UNSTART** to start file parsing.
- Click the red-cross icon and then refresh, if your file parsing stalls for a long time.
- As shown above, RAGFlow allows you to use a different chunking method for a particular file, offering flexibility beyond the default method. - As shown above, RAGFlow allows you to use a different chunking method for a particular file, offering flexibility beyond the default method.
- As shown above, RAGFlow allows you to enable or disable individual files, offering finer control over knowledge base-based AI chats. - As shown above, RAGFlow allows you to enable or disable individual files, offering finer control over knowledge base-based AI chats.
@ -97,13 +95,13 @@ RAGFlow features visibility and explainability, allowing you to view the chunkin
_You are taken to the **Chunk** page:_ _You are taken to the **Chunk** page:_
![chunks](https://github.com/infiniflow/ragflow/assets/93570324/0547fd0e-e71b-41f8-8e0e-31649c85fd3d) ![chunks](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/file_chunks.jpg)
2. Hover over each snapshot for a quick view of each chunk. 2. Hover over each snapshot for a quick view of each chunk.
3. Double-click the chunked texts to add keywords or make *manual* changes where necessary: 3. Double-click the chunked texts to add keywords, questions, tags, or make *manual* changes where necessary:
![update chunk](https://github.com/infiniflow/ragflow/assets/93570324/1d84b408-4e9f-46fd-9413-8c1059bf9c76) ![update chunk](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/add_keyword_question.jpg)
:::caution NOTE :::caution NOTE
You can add keywords to a file chunk to increase its ranking for queries containing those keywords. This action increases its keyword weight and can improve its position in search list. You can add keywords to a file chunk to increase its ranking for queries containing those keywords. This action increases its keyword weight and can improve its position in search list.
@ -113,7 +111,7 @@ You can add keywords to a file chunk to increase its ranking for queries contain
_As you can tell from the following, RAGFlow responds with truthful citations._ _As you can tell from the following, RAGFlow responds with truthful citations._
![retrieval test](https://github.com/infiniflow/ragflow/assets/93570324/c03f06f6-f41f-4b20-a97e-ae405d3a950c) ![retrieval test](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/retrieval_test.jpg)
### Run retrieval testing ### Run retrieval testing
@ -124,13 +122,11 @@ RAGFlow uses multiple recall of both full-text search and vector search in its c
See [Run retrieval test](./run_retrieval_test.md) for details. See [Run retrieval test](./run_retrieval_test.md) for details.
![retrieval test](https://github.com/infiniflow/ragflow/assets/93570324/c03f06f6-f41f-4b20-a97e-ae405d3a950c)
## Search for knowledge base ## Search for knowledge base
As of RAGFlow v0.20.3, the search feature is still in a rudimentary form, supporting only knowledge base search by name. As of RAGFlow v0.20.5, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e) ![search knowledge base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/search_datasets.jpg)
## Delete knowledge base ## Delete knowledge base
@ -139,4 +135,4 @@ You are allowed to delete a knowledge base. Hover your mouse over the three dot
- The files uploaded directly to the knowledge base are gone; - The files uploaded directly to the knowledge base are gone;
- The file references, which you created from within **File Management**, are gone, but the associated files still exist in **File Management**. - The file references, which you created from within **File Management**, are gone, but the associated files still exist in **File Management**.
![delete knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/fec7a508-6cfe-4bca-af90-81d3fdb94098) ![delete knowledge base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/delete_datasets.jpg)

View File

@ -31,7 +31,7 @@ RAPTOR (Recursive Abstractive Processing for Tree Organized Retrieval) can also
The system's default chat model is used to generate knowledge graph. Before proceeding, ensure that you have a chat model properly configured: The system's default chat model is used to generate knowledge graph. Before proceeding, ensure that you have a chat model properly configured:
![Image](https://github.com/user-attachments/assets/6bc34279-68c3-4d99-8d20-b7bd1dafc1c1) ![Set default models](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/set_default_models.jpg)
## Configurations ## Configurations
@ -74,7 +74,7 @@ In a knowledge graph, a community is a cluster of entities linked by relationshi
3. Click **Knowledge graph** to view the details of the generated graph. 3. Click **Knowledge graph** to view the details of the generated graph.
4. To use the created knowledge graph, do either of the following: 4. To use the created knowledge graph, do either of the following:
- In your **Chat Configuration** dialogue, click the **Assistant settings** tab to add the corresponding knowledge base(s) and click the **Prompt engine** tab to switch on the **Use knowledge graph** toggle. - In the **Chat setting** panel of your chat app, switch on the **Use knowledge graph** toggle.
- If you are using an agent, click the **Retrieval** agent component to specify the knowledge base(s) and switch on the **Use knowledge graph** toggle. - If you are using an agent, click the **Retrieval** agent component to specify the knowledge base(s) and switch on the **Use knowledge graph** toggle.
## Frequently asked questions ## Frequently asked questions

View File

@ -39,7 +39,7 @@ Knowledge graphs can also be used for multi-hop question-answering tasks. See [C
The system's default chat model is used to summarize clustered content. Before proceeding, ensure that you have a chat model properly configured: The system's default chat model is used to summarize clustered content. Before proceeding, ensure that you have a chat model properly configured:
![Image](https://github.com/user-attachments/assets/6bc34279-68c3-4d99-8d20-b7bd1dafc1c1) ![Set default models](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/set_default_models.jpg)
## Configurations ## Configurations

View File

@ -13,13 +13,13 @@ On the **Dataset** page of your knowledge base, you can add metadata to any uplo
For example, if you have a dataset of HTML files and want the LLM to cite the source URL when responding to your query, add a `"url"` parameter to each file's metadata. For example, if you have a dataset of HTML files and want the LLM to cite the source URL when responding to your query, add a `"url"` parameter to each file's metadata.
![Image](https://github.com/user-attachments/assets/78cb5035-e96c-43f9-82d7-8fef1b68c843) ![Set metadata](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/set_metadata.jpg)
:::tip NOTE :::tip NOTE
Ensure that your metadata is in JSON format; otherwise, your updates will not be applied. Ensure that your metadata is in JSON format; otherwise, your updates will not be applied.
::: :::
![Image](https://github.com/user-attachments/assets/379cf2c5-4e37-4b79-8aeb-53bf8e01d326) ![Input metadata](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/input_metadata.jpg)
## Frequently asked questions ## Frequently asked questions

View File

@ -87,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5) ![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.20.3, bulk download is not supported, nor can you download an entire folder. > As of RAGFlow v0.20.5, bulk download is not supported, nor can you download an entire folder.

View File

@ -42,13 +42,7 @@ After logging into RAGFlow, configuring your model API key through the **service
After logging into RAGFlow, you can *only* configure API Key on the **Model providers** page: After logging into RAGFlow, you can *only* configure API Key on the **Model providers** page:
1. Click on your logo on the top right of the page **>** **Model providers**. 1. Click on your logo on the top right of the page **>** **Model providers**.
2. Find your model card under **Models to be added** and click **Add the model**: 2. Find your model card under **Models to be added** and click **Add the model**.
![add model](https://github.com/infiniflow/ragflow/assets/93570324/07e43f63-367c-4c9c-8ed3-8a3a24703f4e)
3. Paste your model API key. 3. Paste your model API key.
4. Fill in your base URL if you use a proxy to connect to the remote service. 4. Fill in your base URL if you use a proxy to connect to the remote service.
5. Click **OK** to confirm your changes. 5. Click **OK** to confirm your changes.
:::note
To update an existing model API key:
![update api key](https://github.com/infiniflow/ragflow/assets/93570324/0bfba679-33f7-4f6b-9ed6-f0e6e4b228ad)
:::

View File

@ -26,20 +26,12 @@ You cannot invite users to a team unless you are its owner.
## Accept or decline team invite ## Accept or decline team invite
1. You will be notified when you receive an invitation to join a team: 1. You will be notified on the top right corner of your system page when you receive an invitation to join a team.
![team_notification](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/team_notification.jpg)
2. Click on your avatar in the top right corner of the page, then select **Team** in the left-hand panel to access the **Team** page. 2. Click on your avatar in the top right corner of the page, then select **Team** in the left-hand panel to access the **Team** page.
![team](https://github.com/user-attachments/assets/0eac2503-26bc-4568-b3f2-bcd84069a07a)
_On the **Team** page, you can view the information about members of your team and the teams you have joined._ _On the **Team** page, you can view the information about members of your team and the teams you have joined._
![accept_or_decline_team_invite](https://github.com/user-attachments/assets/6a2cb61f-03d5-4423-9ed1-71df97ff4114)
_After accepting the team invite, you should be able to view and update the team owner's knowledge bases whose **Permissions** is set to **Team**._ _After accepting the team invite, you should be able to view and update the team owner's knowledge bases whose **Permissions** is set to **Team**._
## Leave a joined team ## Leave a joined team
![leave_team](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/quit.jpg)

View File

@ -29,14 +29,14 @@ By default, each RAGFlow user is assigned a single team named after their name.
Click on your avatar in the top right corner of the page, then select **Team** in the left-hand panel to access the **Team** page. Click on your avatar in the top right corner of the page, then select **Team** in the left-hand panel to access the **Team** page.
![team](https://github.com/user-attachments/assets/0eac2503-26bc-4568-b3f2-bcd84069a07a) ![team_view](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/team_view.jpg)
_On the **Team** page, you can view the information about members of your team and the teams you have joined._ _On the **Team** page, you can view the information about members of your team and the teams you have joined._
You are, by default, the owner of your own team and the only person permitted to invite users to join your team or remove team members. You are, by default, the owner of your own team and the only person permitted to invite users to join your team or remove team members.
![invite_team_member](https://github.com/user-attachments/assets/d85b55c3-7e86-4f04-a414-ca18a9ee8963) ![invite_user](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/invite_user.jpg)
## Remove team members ## Remove team members
![remove_members](https://github.com/user-attachments/assets/5c1a6ab5-8862-47a0-ad09-77fe88866508) ![delete_invite](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/delete_invite.jpg)

View File

@ -12,12 +12,8 @@ Share an Agent with your team members.
When ready, you may share your Agents with your team members so that they can use them. Please note that your Agents are not shared automatically; you must manually enable sharing by selecting the corresponding **Permissions** radio button: When ready, you may share your Agents with your team members so that they can use them. Please note that your Agents are not shared automatically; you must manually enable sharing by selecting the corresponding **Permissions** radio button:
1. Click the intended Agent to open its editing canvas. 1. Click the intended Agent to open its editing canvas.
2. Click **Settings** to show the **Agent settings** dialogue. 2. Click **Management** > **Settings** to show the **Agent settings** dialogue.
3. Change **Permissions** from **Only me** to **Team**. 3. Change **Permissions** from **Only me** to **Team**.
4. Click **Save** to apply your changes. 4. Click **Save** to apply your changes.
![share_agent](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/share_agent.jpg) *When completed, your team members will see your shared Agents.*
*When completed, your team members will see your shared Agents like this:*
![shared_agent](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/shared_agent.jpg)

View File

@ -15,8 +15,4 @@ When ready, you may share your knowledge bases with your team members so that th
2. Change **Permissions** from **Only me** to **Team**. 2. Change **Permissions** from **Only me** to **Team**.
3. Click **Save** to apply your changes. 3. Click **Save** to apply your changes.
![share_knowledge_base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/share_knowledge_base.jpg) *Once completed, your team members will see your shared knowledge bases.*
*Once completed, your team members will see your shared knowledge bases like this:*
![shared_knowledge_base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/shared_knowledge_base.jpg)

View File

@ -18,7 +18,7 @@ RAGFlow ships with a built-in [Langfuse](https://langfuse.com) integration so th
Langfuse stores traces, spans and prompt payloads in a purpose-built observability backend and offers filtering and visualisations on top. Langfuse stores traces, spans and prompt payloads in a purpose-built observability backend and offers filtering and visualisations on top.
:::info NOTE :::info NOTE
• RAGFlow **≥ 0.20.3** (contains the Langfuse connector) • RAGFlow **≥ 0.20.5** (contains the Langfuse connector)
• A Langfuse workspace (cloud or self-hosted) with a _Project Public Key_ and _Secret Key_ • A Langfuse workspace (cloud or self-hosted) with a _Project Public Key_ and _Secret Key_
::: :::

View File

@ -66,10 +66,10 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git clone https://github.com/infiniflow/ragflow.git git clone https://github.com/infiniflow/ragflow.git
``` ```
2. Switch to the latest, officially published release, e.g., `v0.20.3`: 2. Switch to the latest, officially published release, e.g., `v0.20.5`:
```bash ```bash
git checkout -f v0.20.3 git checkout -f v0.20.5
``` ```
3. Update **ragflow/docker/.env**: 3. Update **ragflow/docker/.env**:
@ -83,14 +83,14 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
<TabItem value="slim"> <TabItem value="slim">
```bash ```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3-slim RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5-slim
``` ```
</TabItem> </TabItem>
<TabItem value="full"> <TabItem value="full">
```bash ```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5
``` ```
</TabItem> </TabItem>
@ -114,10 +114,10 @@ No, you do not need to. Upgrading RAGFlow in itself will *not* remove your uploa
1. From an environment with Internet access, pull the required Docker image. 1. From an environment with Internet access, pull the required Docker image.
2. Save the Docker image to a **.tar** file. 2. Save the Docker image to a **.tar** file.
```bash ```bash
docker save -o ragflow.v0.20.3.tar infiniflow/ragflow:v0.20.3 docker save -o ragflow.v0.20.5.tar infiniflow/ragflow:v0.20.5
``` ```
3. Copy the **.tar** file to the target server. 3. Copy the **.tar** file to the target server.
4. Load the **.tar** file into Docker: 4. Load the **.tar** file into Docker:
```bash ```bash
docker load -i ragflow.v0.20.3.tar docker load -i ragflow.v0.20.5.tar
``` ```

View File

@ -44,7 +44,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation. `vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.20.3 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component. RAGFlow v0.20.5 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs <Tabs
defaultValue="linux" defaultValue="linux"
@ -184,13 +184,13 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash ```bash
$ git clone https://github.com/infiniflow/ragflow.git $ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/docker $ cd ragflow/docker
$ git checkout -f v0.20.3 $ git checkout -f v0.20.5
``` ```
3. Use the pre-built Docker images and start up the server: 3. Use the pre-built Docker images and start up the server:
:::tip NOTE :::tip NOTE
The command below downloads the `v0.20.3-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.3-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.3` for the full edition `v0.20.3`. The command below downloads the `v0.20.5-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.5-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` for the full edition `v0.20.5`.
::: :::
```bash ```bash
@ -207,8 +207,8 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? | | RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? |
| ------------------- | --------------- | ----------------------------------------- | ------------------------ | | ------------------- | --------------- | ----------------------------------------- | ------------------------ |
| `v0.20.3` | &approx;9 | :heavy_check_mark: | Stable release | | `v0.20.5` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.20.3-slim` | &approx;2 | ❌ | Stable release | | `v0.20.5-slim` | &approx;2 | ❌ | Stable release |
| `nightly` | &approx;9 | :heavy_check_mark: | *Unstable* nightly build | | `nightly` | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| `nightly-slim` | &approx;2 | ❌ | *Unstable* nightly build | | `nightly-slim` | &approx;2 | ❌ | *Unstable* nightly build |
@ -217,7 +217,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
``` ```
:::danger IMPORTANT :::danger IMPORTANT
The embedding models included in `v0.20.3` and `nightly` are: The embedding models included in `v0.20.5` and `nightly` are:
- BAAI/bge-large-zh-v1.5 - BAAI/bge-large-zh-v1.5
- maidalun1020/bce-embedding-base_v1 - maidalun1020/bce-embedding-base_v1
@ -267,25 +267,16 @@ RAGFlow also supports deploying LLMs locally using Ollama, Xinference, or LocalA
To add and configure an LLM: To add and configure an LLM:
1. Click on your logo on the top right of the page **>** **Model providers**: 1. Click on your logo on the top right of the page **>** **Model providers**.
![add llm](https://github.com/infiniflow/ragflow/assets/93570324/10635088-028b-4b3d-add9-5c5a6e626814) 2. Click on the desired LLM and update the API key accordingly.
2. Click on the desired LLM and update the API key accordingly (DeepSeek-V2 in this case):
![update api key](https://github.com/infiniflow/ragflow/assets/93570324/4e5e13ef-a98d-42e6-bcb1-0c6045fc1666)
*Your added models appear as follows:*
![added available models](https://github.com/infiniflow/ragflow/assets/93570324/d08b80e4-f921-480a-b41d-11832489c916)
3. Click **System Model Settings** to select the default models: 3. Click **System Model Settings** to select the default models:
- Chat model, - Chat model,
- Embedding model, - Embedding model,
- Image-to-text model. - Image-to-text model,
- and more.
![system model settings](https://github.com/infiniflow/ragflow/assets/93570324/cdcc1da5-4494-44cd-ad5b-1222ed6acc3f)
> Some models, such as the image-to-text model **qwen-vl-max**, are subsidiary to a specific LLM. And you may need to update your API key to access these models. > Some models, such as the image-to-text model **qwen-vl-max**, are subsidiary to a specific LLM. And you may need to update your API key to access these models.
@ -295,13 +286,13 @@ You are allowed to upload files to a knowledge base in RAGFlow and parse them in
To create your first knowledge base: To create your first knowledge base:
1. Click the **Knowledge Base** tab in the top middle of the page **>** **Create knowledge base**. 1. Click the **Dataset** tab in the top middle of the page **>** **Create dataset**.
2. Input the name of your knowledge base and click **OK** to confirm your changes. 2. Input the name of your knowledge base and click **OK** to confirm your changes.
_You are taken to the **Configuration** page of your knowledge base._ _You are taken to the **Configuration** page of your knowledge base._
![knowledge base configuration](https://github.com/infiniflow/ragflow/assets/93570324/384c671a-8b9c-468c-b1c9-1401128a9b65) ![knowledge base configuration](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/configure_knowledge_base.jpg)
3. RAGFlow offers multiple chunk templates that cater to different document layouts and file formats. Select the embedding model and chunking method (template) for your knowledge base. 3. RAGFlow offers multiple chunk templates that cater to different document layouts and file formats. Select the embedding model and chunking method (template) for your knowledge base.
@ -315,9 +306,7 @@ Once you have selected an embedding model and used it to parse a file, you are n
5. In the uploaded file entry, click the play button to start file parsing: 5. In the uploaded file entry, click the play button to start file parsing:
![file parsing](https://github.com/infiniflow/ragflow/assets/93570324/19f273fa-0ab0-435e-bdf4-a47fb080a078) ![parse file](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/parse_file.jpg)
_When the file parsing completes, its parsing status changes to **SUCCESS**._
:::caution NOTE :::caution NOTE
- If your file parsing gets stuck at below 1%, see [this FAQ](./faq.mdx#why-does-my-document-parsing-stall-at-under-one-percent). - If your file parsing gets stuck at below 1%, see [this FAQ](./faq.mdx#why-does-my-document-parsing-stall-at-under-one-percent).
@ -332,23 +321,23 @@ RAGFlow features visibility and explainability, allowing you to view the chunkin
_You are taken to the **Chunk** page:_ _You are taken to the **Chunk** page:_
![chunks](https://github.com/infiniflow/ragflow/assets/93570324/0547fd0e-e71b-41f8-8e0e-31649c85fd3d) ![chunks](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/file_chunks.jpg)
2. Hover over each snapshot for a quick view of each chunk. 2. Hover over each snapshot for a quick view of each chunk.
3. Double click the chunked texts to add keywords or make *manual* changes where necessary: 3. Double click the chunked texts to add keywords or make *manual* changes where necessary:
![update chunk](https://github.com/infiniflow/ragflow/assets/93570324/1d84b408-4e9f-46fd-9413-8c1059bf9c76) ![update chunk](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/add_keyword_question.jpg)
:::caution NOTE :::caution NOTE
You can add keywords to a file chunk to improve its ranking for queries containing those keywords. This action increases its keyword weight and can improve its position in search list. You can add keywords or questions to a file chunk to improve its ranking for queries containing those keywords. This action increases its keyword weight and can improve its position in search list.
::: :::
4. In Retrieval testing, ask a quick question in **Test text** to double check if your configurations work: 4. In Retrieval testing, ask a quick question in **Test text** to double check if your configurations work:
_As you can tell from the following, RAGFlow responds with truthful citations._ _As you can tell from the following, RAGFlow responds with truthful citations._
![retrieval test](https://github.com/infiniflow/ragflow/assets/93570324/c03f06f6-f41f-4b20-a97e-ae405d3a950c) ![retrieval test](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/retrieval_test.jpg)
## Set up an AI chat ## Set up an AI chat
@ -370,9 +359,7 @@ Conversations in RAGFlow are based on a particular knowledge base or multiple kn
5. Now, let's start the show: 5. Now, let's start the show:
![question1](https://github.com/infiniflow/ragflow/assets/93570324/bb72dd67-b35e-4b2a-87e9-4e4edbd6e677) ![chat_thermal_solution](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/chat_thermal_solution.jpg)
![question2](https://github.com/infiniflow/ragflow/assets/93570324/7cc585ae-88d0-4aa2-817d-0370b2ad7230)
:::tip NOTE :::tip NOTE

View File

@ -19,7 +19,7 @@ import TOCInline from '@theme/TOCInline';
### Cross-language search ### Cross-language search
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.3. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages. Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.5. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
By enabling cross-language search, users can effortlessly access a broader range of information regardless of language barriers, significantly enhancing the systems usability and inclusiveness. By enabling cross-language search, users can effortlessly access a broader range of information regardless of language barriers, significantly enhancing the systems usability and inclusiveness.

View File

@ -5,7 +5,7 @@ slug: /http_api_reference
# HTTP API # HTTP API
A complete reference for RAGFlow's RESTful API. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](../develop/acquire_ragflow_api_key.md). A complete reference for RAGFlow's RESTful API. Before proceeding, please ensure you [have your RAGFlow API key ready for authentication](https://ragflow.io/docs/dev/acquire_ragflow_api_key).
--- ---
@ -143,7 +143,6 @@ Non-stream:
} }
``` ```
Failure: Failure:
```json ```json
@ -200,19 +199,24 @@ curl --request POST \
- `stream` (*Body parameter*) `boolean` - `stream` (*Body parameter*) `boolean`
Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream. Whether to receive the response as a stream. Set this to `false` explicitly if you prefer to receive the entire response in one go instead of as a stream.
- `session_id` (*Body parameter*) `string`
Agent session id.
#### Response #### Response
Stream: Stream:
```json ```json
...
data: { data: {
"id": "5fa65c94-e316-4954-800a-06dfd5827052", "id": "c39f6f9c83d911f0858253708ecb6573",
"object": "chat.completion.chunk", "object": "chat.completion.chunk",
"model": "99ee29d6783511f09c921a6272e682d8", "model": "d1f79142831f11f09cc51795b9eb07c0",
"choices": [ "choices": [
{ {
"delta": { "delta": {
"content": "Hello" "content": " terminal"
}, },
"finish_reason": null, "finish_reason": null,
"index": 0 "index": 0
@ -220,21 +224,83 @@ data: {
] ]
} }
data: {"id": "518022d9-545b-4100-89ed-ecd9e46fa753", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": "!"}, "finish_reason": null, "index": 0}]} data: {
"id": "c39f6f9c83d911f0858253708ecb6573",
"object": "chat.completion.chunk",
"model": "d1f79142831f11f09cc51795b9eb07c0",
"choices": [
{
"delta": {
"content": "."
},
"finish_reason": null,
"index": 0
}
]
}
data: {"id": "f37c4af0-8187-4c86-8186-048c3c6ffe4e", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " How"}, "finish_reason": null, "index": 0}]} data: {
"id": "c39f6f9c83d911f0858253708ecb6573",
data: {"id": "3ebc0fcb-0f85-4024-b4a5-3b03234a16df", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " can"}, "finish_reason": null, "index": 0}]} "object": "chat.completion.chunk",
"model": "d1f79142831f11f09cc51795b9eb07c0",
data: {"id": "efa1f3cf-7bc4-47a4-8e53-cd696f290587", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " I"}, "finish_reason": null, "index": 0}]} "choices": [
{
data: {"id": "2eb6f741-50a3-4d3d-8418-88be27895611", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " assist"}, "finish_reason": null, "index": 0}]} "delta": {
"content": "",
data: {"id": "f1227e4f-bf8b-462c-8632-8f5269492ce9", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " you"}, "finish_reason": null, "index": 0}]} "reference": {
"chunks": {
data: {"id": "35b669d0-b2be-4c0c-88d8-17ff98592b21", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": " today"}, "finish_reason": null, "index": 0}]} "20": {
"id": "4b8935ac0a22deb1",
data: {"id": "f00d8a39-af60-4f32-924f-d64106a7fdf1", "object": "chat.completion.chunk", "model": "99ee29d6783511f09c921a6272e682d8", "choices": [{"delta": {"content": "?"}, "finish_reason": null, "index": 0}]} "content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"url": null,
"similarity": 0.5697155305154673,
"vector_similarity": 0.7323851005515574,
"term_similarity": 0.5000000005,
"doc_type": ""
}
},
"doc_aggs": {
"INSTALL22.md": {
"doc_name": "INSTALL22.md",
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"count": 3
},
"INSTALL.md": {
"doc_name": "INSTALL.md",
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"count": 2
},
"INSTALL(1).md": {
"doc_name": "INSTALL(1).md",
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"count": 2
},
"INSTALL3.md": {
"doc_name": "INSTALL3.md",
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"count": 1
}
}
}
},
"finish_reason": null,
"index": 0
}
]
}
data: [DONE] data: [DONE]
``` ```
@ -249,30 +315,77 @@ Non-stream:
"index": 0, "index": 0,
"logprobs": null, "logprobs": null,
"message": { "message": {
"content": "Hello! How can I assist you today?", "content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For Windows:\n1. **Download from GitHub**: \n - Visit the [Neovim releases page](https://github.com/neovim/neovim/releases)\n - Download the latest Windows installer (nvim-win64.msi)\n - Run the installer and follow the prompts\n\n2. **Using winget** (Windows Package Manager):\n...",
"reference": {
"chunks": {
"20": {
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"doc_type": "",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"id": "4b8935ac0a22deb1",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"similarity": 0.5697155305154673,
"term_similarity": 0.5000000005,
"url": null,
"vector_similarity": 0.7323851005515574
}
},
"doc_aggs": {
"INSTALL(1).md": {
"count": 2,
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"doc_name": "INSTALL(1).md"
},
"INSTALL.md": {
"count": 2,
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"doc_name": "INSTALL.md"
},
"INSTALL22.md": {
"count": 3,
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"doc_name": "INSTALL22.md"
},
"INSTALL3.md": {
"count": 1,
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"doc_name": "INSTALL3.md"
}
}
},
"role": "assistant" "role": "assistant"
} }
} }
], ],
"created": null, "created": null,
"id": "17aa4ec5-6d36-40c6-9a96-1b069c216d59", "id": "c39f6f9c83d911f0858253708ecb6573",
"model": "99ee29d6783511f09c921a6272e682d8", "model": "d1f79142831f11f09cc51795b9eb07c0",
"object": "chat.completion", "object": "chat.completion",
"param": null, "param": null,
"usage": { "usage": {
"completion_tokens": 9, "completion_tokens": 415,
"completion_tokens_details": { "completion_tokens_details": {
"accepted_prediction_tokens": 0, "accepted_prediction_tokens": 0,
"reasoning_tokens": 0, "reasoning_tokens": 0,
"rejected_prediction_tokens": 0 "rejected_prediction_tokens": 0
}, },
"prompt_tokens": 1, "prompt_tokens": 6,
"total_tokens": 10 "total_tokens": 421
} }
} }
``` ```
Failure: Failure:
```json ```json
@ -383,7 +496,7 @@ curl --request POST \
- `"layout_recognize"`: `string` - `"layout_recognize"`: `string`
- Defaults to `DeepDOC` - Defaults to `DeepDOC`
- `"tag_kb_ids"`: `array<string>` refer to [Use tag set](https://ragflow.io/docs/dev/use_tag_sets) - `"tag_kb_ids"`: `array<string>` refer to [Use tag set](https://ragflow.io/docs/dev/use_tag_sets)
- Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunk Method - Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunking Method
- `"task_page_size"`: `int` For PDF only. - `"task_page_size"`: `int` For PDF only.
- Defaults to `12` - Defaults to `12`
- Minimum: `1` - Minimum: `1`
@ -604,7 +717,7 @@ curl --request PUT \
- `"layout_recognize"`: `string` - `"layout_recognize"`: `string`
- Defaults to `DeepDOC` - Defaults to `DeepDOC`
- `"tag_kb_ids"`: `array<string>` refer to [Use tag set](https://ragflow.io/docs/dev/use_tag_sets) - `"tag_kb_ids"`: `array<string>` refer to [Use tag set](https://ragflow.io/docs/dev/use_tag_sets)
- Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunk Method - Must include a list of dataset IDs, where each dataset is parsed using the Tag Chunking Method
- `"task_page_size"`: `int` For PDF only. - `"task_page_size"`: `int` For PDF only.
- Defaults to `12` - Defaults to `12`
- Minimum: `1` - Minimum: `1`
@ -729,9 +842,10 @@ Failure:
"message": "The dataset doesn't exist" "message": "The dataset doesn't exist"
} }
``` ```
--- ---
## Get dataset's knowledge graph ### Get knowledge graph
**GET** `/api/v1/datasets/{dataset_id}/knowledge_graph` **GET** `/api/v1/datasets/{dataset_id}/knowledge_graph`
@ -808,9 +922,10 @@ Failure:
"message": "The dataset doesn't exist" "message": "The dataset doesn't exist"
} }
``` ```
--- ---
## Delete dataset's knowledge graph ### Delete knowledge graph
**DELETE** `/api/v1/datasets/{dataset_id}/knowledge_graph` **DELETE** `/api/v1/datasets/{dataset_id}/knowledge_graph`
@ -855,6 +970,7 @@ Failure:
"message": "The dataset doesn't exist" "message": "The dataset doesn't exist"
} }
``` ```
--- ---
## FILE MANAGEMENT WITHIN DATASET ## FILE MANAGEMENT WITHIN DATASET
@ -1692,7 +1808,8 @@ Retrieves chunks from specified datasets.
- `"rerank_id"`: `string` - `"rerank_id"`: `string`
- `"keyword"`: `boolean` - `"keyword"`: `boolean`
- `"highlight"`: `boolean` - `"highlight"`: `boolean`
- `"cross_languages"`: `list[string]` - `"cross_languages"`: `list[string]`
- `"metadata_condition"`: `object`
##### Request example ##### Request example
@ -1739,7 +1856,8 @@ curl --request POST \
- `false`: Disable highlighting of matched terms (default). - `false`: Disable highlighting of matched terms (default).
- `"cross_languages"`: (*Body parameter*) `list[string]` - `"cross_languages"`: (*Body parameter*) `list[string]`
The languages that should be translated into, in order to achieve keywords retrievals in different languages. The languages that should be translated into, in order to achieve keywords retrievals in different languages.
- `"metadata_condition"`: (*Body parameter*), `object`
The metadata condition for filtering chunks.
#### Response #### Response
Success: Success:
@ -3017,41 +3135,88 @@ success without `session_id` provided and with no variables specified in the **B
Stream: Stream:
```json ```json
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": "Hello"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": "!"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
data:{
"event": "message",
"message_id": "eb0c0a5e783511f0b9b61a6272e682d8",
"created_at": 1755083342,
"task_id": "99ee29d6783511f09c921a6272e682d8",
"data": {
"content": " How"
},
"session_id": "eaf19a8e783511f0b9b61a6272e682d8"
}
... ...
data: {
"event": "message",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"content": " themes"
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data: {
"event": "message",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"content": "."
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data: {
"event": "message_end",
"message_id": "cecdcb0e83dc11f0858253708ecb6573",
"created_at": 1756364483,
"task_id": "d1f79142831f11f09cc51795b9eb07c0",
"data": {
"reference": {
"chunks": {
"20": {
"id": "4b8935ac0a22deb1",
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"url": null,
"similarity": 0.5705525104787287,
"vector_similarity": 0.7351750337624289,
"term_similarity": 0.5000000005,
"doc_type": ""
}
},
"doc_aggs": {
"INSTALL22.md": {
"doc_name": "INSTALL22.md",
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"count": 3
},
"INSTALL.md": {
"doc_name": "INSTALL.md",
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"count": 2
},
"INSTALL(1).md": {
"doc_name": "INSTALL(1).md",
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"count": 2
},
"INSTALL3.md": {
"doc_name": "INSTALL3.md",
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"count": 1
}
}
}
},
"session_id": "cd097ca083dc11f0858253708ecb6573"
}
data:[DONE] data:[DONE]
``` ```
@ -3061,21 +3226,77 @@ Non-stream:
{ {
"code": 0, "code": 0,
"data": { "data": {
"created_at": 1755083440, "created_at": 1756363177,
"data": { "data": {
"created_at": 547061.147866385, "content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For macOS:\nUsing Homebrew:\n```bash\nbrew install neovim\n```\n\n### For Linux (Debian/Ubuntu):\n```bash\nsudo apt update\nsudo apt install neovim\n```\n\nFor other Linux distributions, you can use their respective package managers or build from source.\n\n### For Windows:\n1. Download the latest Windows installer from the official Neovim GitHub releases page\n2. Run the installer and follow the prompts\n3. Add Neovim to your PATH if not done automatically\n\n### From source (Unix-like systems):\n```bash\ngit clone https://github.com/neovim/neovim.git\ncd neovim\nmake CMAKE_BUILD_TYPE=Release\nsudo make install\n```\n\nAfter installation, you can verify it by running `nvim --version` in your terminal.",
"elapsed_time": 2.595433341921307, "created_at": 18129.044975627,
"inputs": {}, "elapsed_time": 10.0157331670016,
"inputs": {
"var1": {
"value": "I am var1"
},
"var2": {
"value": "I am var2"
}
},
"outputs": { "outputs": {
"_created_time": 547061.149137775, "_created_time": 18129.502422278,
"_elapsed_time": 8.720310870558023e-05, "_elapsed_time": 0.00013378599760471843,
"content": "Hello! How can I assist you today?" "content": "\nTo install Neovim, the process varies depending on your operating system:\n\n### For macOS:\nUsing Homebrew:\n```bash\nbrew install neovim\n```\n\n### For Linux (Debian/Ubuntu):\n```bash\nsudo apt update\nsudo apt install neovim\n```\n\nFor other Linux distributions, you can use their respective package managers or build from source.\n\n### For Windows:\n1. Download the latest Windows installer from the official Neovim GitHub releases page\n2. Run the installer and follow the prompts\n3. Add Neovim to your PATH if not done automatically\n\n### From source (Unix-like systems):\n```bash\ngit clone https://github.com/neovim/neovim.git\ncd neovim\nmake CMAKE_BUILD_TYPE=Release\nsudo make install\n```\n\nAfter installation, you can verify it by running `nvim --version` in your terminal."
},
"reference": {
"chunks": {
"20": {
"content": "```cd /usr/ports/editors/neovim/ && make install```## Android[Termux](https://github.com/termux/termux-app) offers a Neovim package.",
"dataset_id": "456ce60c5e1511f0907f09f583941b45",
"doc_type": "",
"document_id": "4bdd2ff65e1511f0907f09f583941b45",
"document_name": "INSTALL22.md",
"id": "4b8935ac0a22deb1",
"image_id": "",
"positions": [
[
12,
11,
11,
11,
11
]
],
"similarity": 0.5705525104787287,
"term_similarity": 0.5000000005,
"url": null,
"vector_similarity": 0.7351750337624289
}
},
"doc_aggs": {
"INSTALL(1).md": {
"count": 2,
"doc_id": "4bdfb42e5e1511f0907f09f583941b45",
"doc_name": "INSTALL(1).md"
},
"INSTALL.md": {
"count": 2,
"doc_id": "4bd7fdd85e1511f0907f09f583941b45",
"doc_name": "INSTALL.md"
},
"INSTALL22.md": {
"count": 3,
"doc_id": "4bdd2ff65e1511f0907f09f583941b45",
"doc_name": "INSTALL22.md"
},
"INSTALL3.md": {
"count": 1,
"doc_id": "4bdab5825e1511f0907f09f583941b45",
"doc_name": "INSTALL3.md"
}
}
} }
}, },
"event": "workflow_finished", "event": "workflow_finished",
"message_id": "25807f94783611f095171a6272e682d8", "message_id": "c4692a2683d911f0858253708ecb6573",
"session_id": "25663198783611f095171a6272e682d8", "session_id": "c39f6f9c83d911f0858253708ecb6573",
"task_id": "99ee29d6783511f09c921a6272e682d8" "task_id": "d1f79142831f11f09cc51795b9eb07c0"
} }
} }
``` ```
@ -3501,7 +3722,7 @@ Failure:
### Generate related questions ### Generate related questions
**POST** `/v1/sessions/related_questions` **POST** `/api/v1/sessions/related_questions`
Generates five to ten alternative question strings from the user's original query to retrieve more relevant search results. Generates five to ten alternative question strings from the user's original query to retrieve more relevant search results.
@ -3516,7 +3737,7 @@ The chat model autonomously determines the number of questions to generate based
#### Request #### Request
- Method: POST - Method: POST
- URL: `/v1/sessions/related_questions` - URL: `/api/v1/sessions/related_questions`
- Headers: - Headers:
- `'content-Type: application/json'` - `'content-Type: application/json'`
- `'Authorization: Bearer <YOUR_LOGIN_TOKEN>'` - `'Authorization: Bearer <YOUR_LOGIN_TOKEN>'`
@ -3528,7 +3749,7 @@ The chat model autonomously determines the number of questions to generate based
```bash ```bash
curl --request POST \ curl --request POST \
--url http://{address}/v1/sessions/related_questions \ --url http://{address}/api/v1/sessions/related_questions \
--header 'Content-Type: application/json' \ --header 'Content-Type: application/json' \
--header 'Authorization: Bearer <YOUR_LOGIN_TOKEN>' \ --header 'Authorization: Bearer <YOUR_LOGIN_TOKEN>' \
--data ' --data '
@ -3592,7 +3813,7 @@ Lists agents.
#### Request #### Request
- Method: GET - Method: GET
- URL: `/api/v1/agents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={agent_name}&id={agent_id}` - URL: `/api/v1/agents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&title={agent_name}&id={agent_id}`
- Headers: - Headers:
- `'Authorization: Bearer <YOUR_API_KEY>'` - `'Authorization: Bearer <YOUR_API_KEY>'`
@ -3600,7 +3821,7 @@ Lists agents.
```bash ```bash
curl --request GET \ curl --request GET \
--url http://{address}/api/v1/agents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={agent_name}&id={agent_id} \ --url http://{address}/api/v1/agents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&title={agent_name}&id={agent_id} \
--header 'Authorization: Bearer <YOUR_API_KEY>' --header 'Authorization: Bearer <YOUR_API_KEY>'
``` ```
@ -3618,7 +3839,7 @@ curl --request GET \
Indicates whether the retrieved agents should be sorted in descending order. Defaults to `true`. Indicates whether the retrieved agents should be sorted in descending order. Defaults to `true`.
- `id`: (*Filter parameter*), `string` - `id`: (*Filter parameter*), `string`
The ID of the agent to retrieve. The ID of the agent to retrieve.
- `name`: (*Filter parameter*), `string` - `title`: (*Filter parameter*), `string`
The name of the agent to retrieve. The name of the agent to retrieve.
#### Response #### Response

Some files were not shown because too many files have changed in this diff Show More