Compare commits

...

238 Commits

Author SHA1 Message Date
32dbed36e3 Fix: Unified terminology to "Pipeline" and optimized related component logic. #9869 (#10394)
### What problem does this PR solve?

Fix: Unified terminology to "Pipeline" and optimized related component
logic. #9869

- Added logic to clear pipeline_id when parseType changes in the chunk
method dialog.
- Fixed an issue in the Tooltip form component that prevented clicks
from triggering saves.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 19:53:15 +08:00
7f62ab8eb3 Feat: View data flow test results #9869 (#10392)
### What problem does this PR solve?

Feat: View data flow test results #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-30 18:55:55 +08:00
e87987785c fix(web): add data stream selection component (#10387)
### What problem does this PR solve?

fix(web): add data stream selection component

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 17:35:06 +08:00
b3b0be832a Fix: input (#10386)
### What problem does this PR solve?

Fix input of some parser.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 15:39:09 +08:00
20b577a72c Fix: Merge main branch (#10377)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: jinhai <haijin.chn@gmail.com>
Signed-off-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: Lynn <lynn_inf@hotmail.com>
Co-authored-by: chanx <1243304602@qq.com>
Co-authored-by: balibabu <cike8899@users.noreply.github.com>
Co-authored-by: 纷繁下的无奈 <zhileihuang@126.com>
Co-authored-by: huangzl <huangzl@shinemo.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
Co-authored-by: Wilmer <33392318@qq.com>
Co-authored-by: Adrian Weidig <adrianweidig@gmx.net>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: Liu An <asiro@qq.com>
Co-authored-by: buua436 <66937541+buua436@users.noreply.github.com>
Co-authored-by: BadwomanCraZY <511528396@qq.com>
Co-authored-by: cucusenok <31804608+cucusenok@users.noreply.github.com>
Co-authored-by: Russell Valentine <russ@coldstonelabs.org>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Billy Bao <newyorkupperbay@gmail.com>
Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
Co-authored-by: TensorNull <129579691+TensorNull@users.noreply.github.com>
Co-authored-by: TensorNull <tensor.null@gmail.com>
Co-authored-by: Ajay <160579663+aybanda@users.noreply.github.com>
Co-authored-by: AB <aj@Ajays-MacBook-Air.local>
Co-authored-by: 天海蒼灆 <huangaoqin@tecpie.com>
Co-authored-by: He Wang <wanghechn@qq.com>
Co-authored-by: Atsushi Hatakeyama <atu729@icloud.com>
Co-authored-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: Mohamed Mathari <155896313+melmathari@users.noreply.github.com>
Co-authored-by: Mohamed Mathari <nocodeventure@Mac-mini-van-Mohamed.fritz.box>
Co-authored-by: Stephen Hu <stephenhu@seismic.com>
Co-authored-by: Shaun Zhang <zhangwfjh@users.noreply.github.com>
Co-authored-by: zhimeng123 <60221886+zhimeng123@users.noreply.github.com>
Co-authored-by: mxc <mxc@example.com>
Co-authored-by: Dominik Novotný <50611433+SgtMarmite@users.noreply.github.com>
Co-authored-by: EVGENY M <168018528+rjohny55@users.noreply.github.com>
Co-authored-by: mcoder6425 <mcoder64@gmail.com>
Co-authored-by: TeslaZY <TeslaZY@outlook.com>
Co-authored-by: lemsn <lemsn@msn.com>
Co-authored-by: lemsn <lemsn@126.com>
Co-authored-by: Adrian Gora <47756404+adagora@users.noreply.github.com>
Co-authored-by: Womsxd <45663319+Womsxd@users.noreply.github.com>
Co-authored-by: FatMii <39074672+FatMii@users.noreply.github.com>
2025-09-30 13:13:15 +08:00
4d6ff672eb Fix: Added read-only mode support and optimized navigation logic #9869 (#10370)
### What problem does this PR solve?

Fix: Added read-only mode support and optimized navigation logic #9869

- Added the `isReadonly` property to the parseResult component to
control the enabled state of editing and interactive features
- Added the `navigateToDataFile` navigation method to navigate to the
data file details page
- Refactored the `navigateToDataflowResult` method to use an object
parameter to support more flexible query parameter configuration
- Unified the `var(--accent-primary)` CSS variable format to
`rgb(var(--accent-primary))` to accommodate more styling scenarios
- Extracted the parser initialization logic into a separate hook
(`useParserInit`)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 12:00:29 +08:00
fb19e24f8a Feat: Delete flow related code. #9869 (#10371)
### What problem does this PR solve?

Feat: Delete flow related code. #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-30 12:00:17 +08:00
9989e06abb Fix: debug PDF positions.. (#10365)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 09:24:44 +08:00
c49e81882c Feat: Remove the copy icon from the toolbar for the Splitter and Parser nodes #9869 (#10367)
### What problem does this PR solve?
Feat: Remove the copy icon from the toolbar for the Splitter and Parser
nodes #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-29 18:55:53 +08:00
63cdce660e Feat: Limit the number of Splitter and Parser operators on the canvas to only one #9869 (#10362)
### What problem does this PR solve?

Feat: Limit the number of Splitter and Parser operators on the canvas to
only one #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-29 17:22:40 +08:00
8bc8126848 Feat: Move the github icon to the right #9869 (#10355)
### What problem does this PR solve?

Feat: Move the github icon to the right #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-29 11:50:58 +08:00
71f69cdb75 Fix: debug hierachical merging... (#10337)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-29 09:29:33 +08:00
664bc0b961 Feat: Displays the loading status of the data flow log #9869 (#10347)
### What problem does this PR solve?

Feat: Displays the loading status of the data flow log #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 19:38:46 +08:00
f4cc4dbd30 Fix: Interoperate with the pipeline rerun and unbindTask interfaces. #9869 (#10346)
### What problem does this PR solve?

Fix: Interoperate with the pipeline rerun and unbindTask interfaces.
#9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-28 19:32:19 +08:00
cce361d774 Feat: Filter the agent list by owner and category #9869 (#10344)
### What problem does this PR solve?

Feat: Filter the agent list by owner and category #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 18:43:20 +08:00
7a63b6386e Feat: limit pipeline operation logs to 1000 records (#10341)
### What problem does this PR solve?

 Limit pipeline operation logs to 1000 records.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 18:42:19 +08:00
4996dcb0eb Fix bug of image parser and prompt of parser supports customization (#10319)
### What problem does this PR solve?
BugFix: ERROR: KeyError: 'llm_id'
Feat: The prompt of the describe picture in cv_model supports
customization #10320


### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 12:47:36 +08:00
3521eb61fe Feat: add support for deleting KB tasks (#10335)
### What problem does this PR solve?

Add support for deleting KB tasks.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 12:46:00 +08:00
6b9b785b5c Feat: Fixed the issue where the cursor would go to the end when changing its own data #9869 (#10316)
### What problem does this PR solve?

Feat: Fixed the issue where the cursor would go to the end when changing
its own data #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 19:55:42 +08:00
4c0a89f262 Feat: add initial support for Mindmap (#10310)
### What problem does this PR solve?

Add initial support for Mindmap.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-26 19:45:01 +08:00
76b1ee2a00 Fix: debug pipeline... (#10311)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-26 19:11:30 +08:00
771a38434f Feat: Bring the parser operator when creating a new data flow #9869 (#10309)
### What problem does this PR solve?

Feat: Bring the parser operator when creating a new data flow #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 19:09:27 +08:00
886d38620e Fix: Improved knowledge base configuration and related logic #9869 (#10315)
### What problem does this PR solve?

Fix: Improved knowledge base configuration and related logic #9869
- Optimized the display logic of the Generate Log button to support
displaying completion time and task ID
- Implemented the ability to pause task generation and connect to the
data flow cancellation interface
- Fixed issues with type definitions and optional chaining calls in some
components
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-26 19:09:11 +08:00
c7efaab30e Feat: debug extractor... (#10294)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 10:51:05 +08:00
ff49454501 Feat: fetch KB config for GraphRAG and RAPTOR (#10288)
### What problem does this PR solve?

Fetch KB config for GraphRAG and RAPTOR.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 09:39:58 +08:00
14273b4595 Fix: Optimized knowledge base file parsing and display #9869 (#10292)
### What problem does this PR solve?

Fix: Optimized knowledge base file parsing and display #9869

- Optimized the ChunkMethodDialog component logic and adjusted
FormSchema validation rules
- Updated the document information interface definition, adding
pipeline_id, pipeline_name, and suffix fields
- Refactored the ChunkResultBar component, removing filter-related logic
and simplifying the input box and chunk creation functionality
- Improved FormatPreserveEditor to support text mode switching
(full/omitted) display control
- Updated timeline node titles to more accurate semantic descriptions
(e.g., character splitters)
- Optimized the data flow result page structure and style, dynamically
adjusting height and content display
- Fixed the table sorting function on the dataset overview page and
enhanced the display of task type icons and status mapping.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-25 19:53:49 +08:00
abe7132630 Feat: Change the corresponding prompt word according to the value of fieldName #9869 (#10291)
### What problem does this PR solve?

Feat: Change the corresponding prompt word according to the value of
fieldName #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 19:53:37 +08:00
c1151519a0 Feat: add foundational support for RAPTOR dataset pipeline logs (#10277)
### What problem does this PR solve?

Add foundational support for RAPTOR dataset pipeline logs.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 16:46:24 +08:00
a1147ce609 Feat: Allows the extractor operator's prompt to reference the output of an upstream operator #9869 (#10279)
### What problem does this PR solve?

Feat: Allows the extractor operator's prompt to reference the output of
an upstream operator #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 15:24:24 +08:00
d907e79893 Refa: fake doc ID. (#10276)
### What problem does this PR solve?
#10273
### Type of change

- [x] Refactoring
2025-09-25 13:52:50 +08:00
1b19d302c5 Feat: add extractor component. (#10271)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 11:34:47 +08:00
840b2b5809 Feat: add foundational support for GraphRAG dataset pipeline logs (#10264)
### What problem does this PR solve?

Add foundational support for GraphRAG dataset pipeline logs

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 09:35:50 +08:00
a6039cf563 Fix: Optimized the timeline component and parser editing features #9869 (#10268)
### What problem does this PR solve?

Fix: Optimized the timeline component and parser editing features #9869

- Introduced the TimelineNodeType type, restructured the timeline node
structure, and supported dynamic node generation
- Enhanced the FormatPreserveEditor component to support editing and
line wrapping of JSON-formatted content
- Added a rerun function and loading state to the parser and splitter
components
- Adjusted the timeline style and interaction logic to enhance the user
experience
- Improved the modal component and added a destroy method to support
more flexible control
- Optimized the chunk result display and operation logic, supporting
batch deletion and selection
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-24 19:58:30 +08:00
8be7380b79 Feat: Added the context operator form for data flow #9869 (#10270)
### What problem does this PR solve?
Feat: Added the context operator form for data flow #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-24 19:58:16 +08:00
afb8a84f7b Feat: Add context node #9869 (#10266)
### What problem does this PR solve?

Feat: Add context node #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-24 18:48:31 +08:00
6bf0cda16f Feat: Cancel a running data flow test #9869 (#10257)
### What problem does this PR solve?

Feat: Cancel a running data flow test #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-24 16:33:33 +08:00
5715ca6b74 Fix: pipeline debug... (#10206)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-09-24 11:12:08 +08:00
8f465525f7 Feat: Display the log after the data flow runs #9869 (#10232)
### What problem does this PR solve?

Feat: Display the log after the data flow runs #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-23 19:30:47 +08:00
f20dca2895 Fix: Interface integration for the file log page in the overview #9869 (#10222)
### What problem does this PR solve?

Fix: Interface integration for the file log page in the overview

- Support for selecting data pipeline parsing types
- Use the RunningStatus enumeration instead of numeric status
- Obtain and display data pipeline file log details
- Replace existing mock data with new interface data on the page
- Link the file log list to the real data source
- Optimize log information display
- Fixed a typo in the field name "pipeline_id" → "pipeline_id"

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-23 10:33:17 +08:00
0c557e37ad Feat: add support for pipeline logs operation (#10207)
### What problem does this PR solve?

Add support for pipeline logs operation

### Type of change


- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-09-23 09:46:31 +08:00
d0bfe8b10c Feat: Display the data flow log on the far right. #9869 (#10214)
### What problem does this PR solve?

Feat: Display the data flow log on the far right. #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 19:13:18 +08:00
28afc7e67d Feat: Exporting the results of data flow tests #9869 (#10209)
### What problem does this PR solve?

Feat: Exporting the results of data flow tests #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 18:08:04 +08:00
73c33bc8d2 Fix: Fixed the issue where the drop-down box could not be displayed after selecting a large model #9869 (#10205)
### What problem does this PR solve?

Fix: Fixed the issue where the drop-down box could not be displayed
after selecting a large model #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-22 17:16:34 +08:00
476852e8f1 Feat: Remove useless files from the data flow #9869 (#10198)
### What problem does this PR solve?

Feat: Remove useless files from the data flow #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 15:48:39 +08:00
e6cf00cb33 Feat: Add suffix field to all operators #9869 (#10195)
### What problem does this PR solve?

Feat: Add suffix field to all operators #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 14:37:06 +08:00
d039d1e73d fix: Added dataset generation logging functionality #9869 (#10180)
### What problem does this PR solve?

fix: Added dataset generation logging functionality #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-22 10:01:34 +08:00
d050ef568d Feat: support dataflow run. (#10182)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 09:36:21 +08:00
028c2d83e9 Feat: parse email (#10181)
### What problem does this PR solve?

- Dataflow support email.
- Fix old email parser.
- Add new depends to parse msg file.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Other (please describe): add new depends.
2025-09-22 09:29:38 +08:00
b5d6a6e8f2 Feat: Remove unnecessary data from the dsl #9869 (#10177)
### What problem does this PR solve?
Feat: Remove unnecessary data from the dsl #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 19:06:33 +08:00
5dfdbcce3a Feat: pipeline supports PPTX (#10167)
### What problem does this PR solve?

Pipeline supports parsing PPTX naively (text only).

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 12:14:35 +08:00
4fae40f66a Feat: Translate the splitter operator field #9869 (#10166)
### What problem does this PR solve?

Feat: Translate the splitter operator field #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 11:11:22 +08:00
a1b947ffd6 Feat: add splitter (#10161)
### What problem does this PR solve?


### Type of change
- [x] New Feature (non-breaking change which adds functionality)

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: Lynn <lynn_inf@hotmail.com>
Co-authored-by: chanx <1243304602@qq.com>
Co-authored-by: balibabu <cike8899@users.noreply.github.com>
Co-authored-by: 纷繁下的无奈 <zhileihuang@126.com>
Co-authored-by: huangzl <huangzl@shinemo.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
Co-authored-by: Wilmer <33392318@qq.com>
Co-authored-by: Adrian Weidig <adrianweidig@gmx.net>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: Liu An <asiro@qq.com>
Co-authored-by: buua436 <66937541+buua436@users.noreply.github.com>
Co-authored-by: BadwomanCraZY <511528396@qq.com>
Co-authored-by: cucusenok <31804608+cucusenok@users.noreply.github.com>
Co-authored-by: Russell Valentine <russ@coldstonelabs.org>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Billy Bao <newyorkupperbay@gmail.com>
Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
Co-authored-by: TensorNull <129579691+TensorNull@users.noreply.github.com>
Co-authored-by: TensorNull <tensor.null@gmail.com>
2025-09-19 10:15:19 +08:00
f9c7404bee Fix: Updated color parsing functions and optimized component logic. (#10159)
### What problem does this PR solve?

refactor(timeline, modal, dataflow-result, dataset-overview): Updated
color parsing functions and optimized component logic.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-19 09:57:44 +08:00
5c1791d7f0 Feat: Upload files on the data flow page #9869 (#10153)
### What problem does this PR solve?

Feat: Upload files on the data flow page #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 16:19:53 +08:00
e82617f6de feat(dataset): Added data pipeline configuration functionality #9869 (#10132)
### What problem does this PR solve?

feat(dataset): Added data pipeline configuration functionality #9869

- Added a data pipeline selection component to link data pipelines with
knowledge bases
- Added file filtering functionality, supporting custom file filtering
rules
- Optimized the configuration interface layout, adjusting style and
spacing
- Introduced new icons and buttons to enhance the user experience

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 09:31:57 +08:00
a7abc57f68 Feat: Add SliderInputFormField story #9869 (#10138)
### What problem does this PR solve?

Feat: Add SliderInputFormField story #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 09:29:33 +08:00
cf1f523d03 Feat: Create a data flow #9869 (#10131)
### What problem does this PR solve?

Feat: Create a data flow #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-17 17:54:21 +08:00
ccb255919a Feat: Add HierarchicalMergerForm #9869 (#10122)
### What problem does this PR solve?
Feat:  Add HierarchicalMergerForm #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-17 13:47:50 +08:00
b68c84b52e Feat: Add splitter form #9869 (#10115)
### What problem does this PR solve?

Feat: Add splitter form #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-17 09:36:54 +08:00
93cf0258c3 Feat: Add splitter node component #9869 (#10114)
### What problem does this PR solve?

Feat: Add splitter node component #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-16 17:53:48 +08:00
b79fef1ca8 fix: Modify icon file, knowledge base display style (#10104)
### What problem does this PR solve?

fix: Modify icon file, knowledge base display style #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-16 10:37:08 +08:00
2b50de3186 Feat: Translate the fields of the parsing operator #9869 (#10079)
### What problem does this PR solve?

Feat: Translate the fields of the parsing operator #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-15 11:24:19 +08:00
d8ef22db68 Fix(dataset): Optimized the dataset configuration page UI #9869 (#10066)
### What problem does this PR solve?
fix(dataset): Optimized the dataset configuration page UI

- Added the DataPipelineSelect component for selecting data pipelines
- Restructured the layout and style of the dataset settings page
- Removed unnecessary components and code
- Optimized data pipeline configuration
- Adjusted the Create Dataset dialog box
- Updated the processing log modal style

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-12 16:01:37 +08:00
592f3b1555 Feat: Bind options to the parser operator form. #9869 (#10069)
### What problem does this PR solve?

Feat: Bind options to the parser operator form. #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-12 16:01:24 +08:00
3404469e2a Feat: Dynamically increase the configuration of the parser operator #9869 (#10060)
### What problem does this PR solve?

Feat: Dynamically increase the configuration of the parser operator
#9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-12 10:14:26 +08:00
63d7382dc9 fix: Displays the dataset creation and settings page #9869 (#10052)
### What problem does this PR solve?

[_Briefly describe what this PR aims to solve. Include background
context that will help reviewers understand the purpose of the
PR._](fix: Displays the dataset creation and settings page #9869)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-11 17:25:07 +08:00
179091b1a4 Fix: In ragflow/rag/app /naive.py, if there are multiple images in one line, the other images will be lost (#9968)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/9966

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-11 11:08:31 +08:00
d14d92a900 Feat: Translate the parser operator #9869 (#10037)
### What problem does this PR solve?

Feat: Translate the parser operator #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-11 11:07:26 +08:00
1936ad82d2 Refactor:Improve BytesIO usage for GeminiCV (#10042)
### What problem does this PR solve?
Improve BytesIO usage for GeminiCV

### Type of change
- [x] Refactoring
2025-09-11 11:07:15 +08:00
8a09f07186 feat: Added UI functions related to data-flow knowledge base #3221 (#10038)
### What problem does this PR solve?

feat: Added UI functions related to data-flow knowledge base #3221

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-11 09:51:18 +08:00
df8d31451b Feat: Import dsl from agent list page #9869 (#10033)
### What problem does this PR solve?

Feat: Import dsl from agent list page #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 18:22:16 +08:00
fc95d113c3 Feat(config): Update service config template new defaults (#10029)
### What problem does this PR solve?

- Update default LLM configuration with BAAI and model details #9404
- Add SMTP configuration section #9479
- Add OpenDAL storage configuration option #8232

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 16:39:26 +08:00
7d14455fbe Feat: Add type card to create agent dialog #9869 (#10025)
### What problem does this PR solve?

Feat: Add type card to create agent dialog #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 15:56:10 +08:00
bbe6ed3b90 Fix: Fixed the issue where newly added tool operators would disappear after editing the form #10013 (#10016)
### What problem does this PR solve?

Fix: Fixed the issue where newly added tool operators would disappear
after editing the form #10013

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-10 15:55:59 +08:00
127af4e45c Refactor:Improve BytesIO usage for image2base64 (#9997)
### What problem does this PR solve?

Improve BytesIO usage for image2base64

### Type of change

- [x] Refactoring
2025-09-10 15:55:33 +08:00
41cdba19ba Feat: dataflow supports markdown (#10003)
### What problem does this PR solve?

Dataflow supports markdown.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-10 13:31:02 +08:00
0d9c1f1c3c Feat: dataflow supports Spreadsheet and Word processor document (#9996)
### What problem does this PR solve?

Dataflow supports Spreadsheet and Word processor document

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 13:02:53 +08:00
e650f0d368 Docs: Added v0.20.5 release notes. (#10014)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2025-09-10 11:21:25 +08:00
067b4fc012 Docs: Update version references to v0.20.5 in READMEs and docs (#10015)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.4 to v0.20.5
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-09-10 11:20:43 +08:00
38ff2ffc01 Fix: typo. (#10011)
### What problem does this PR solve?


### Type of change
- [x] Refactoring
2025-09-10 11:07:03 +08:00
a9cc992d13 Feat: Translate the maxRounds field of the chat settings #3221 (#10010)
### What problem does this PR solve?

Feat: Translate the maxRounds field of the chat settings #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 10:56:34 +08:00
5cf2c97908 Docs: v0.20.5 - Added Framework prompt block documentation for the Agent component (#10006)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-09-10 10:46:22 +08:00
81fede0041 Fix: refactor prompts (#10005)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 22:01:44 +08:00
07a83f93d5 Feat: The prompt words "plan" are displayed only when the agent operator has sub-agent operators or sub-tool operators. #10000 (#10001)
### What problem does this PR solve?

Feat: The prompt words "plan" are displayed only when the agent operator
has sub-agent operators or sub-tool operators. . #10000
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-09 21:18:24 +08:00
1a904edd94 Fix: Optimize search functionality #3221 (#10002)
### What problem does this PR solve?

Fix: Optimize search functionality
- Fixed search limitations when no dataset is selected

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 21:18:06 +08:00
906969fe4e Fix: exesql issue. (#9995)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 19:45:10 +08:00
776ea078a6 Fix: Optimized the table of contents style and homepage card layout #3221 (#9993)
### What problem does this PR solve?

Fix: Optimized the table of contents style and homepage card layout
#3221

- Added background color, text color, and shadow styles to the Markdown
table of contents
- Optimized the date display style in the HomeCard component to prevent
overflow
- Standardized the translation of "dataset" to "knowledge base" to
improve terminology consistency

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 18:50:43 +08:00
fcdde26a7f Fix: Highlight the edges after running #9538 (#9994)
### What problem does this PR solve?

Fix: Highlight the edges after running #9538

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 17:04:37 +08:00
79076ffb5f Fix: remove 2 prompts. (#9990)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 14:45:43 +08:00
e8dcdfb9f0 Fix: Issue of ineffective weight adjustment for retrieval_test API-related functions #9854 (#9989)
### What problem does this PR solve?

Fix: Issue of ineffective weight adjustment for retrieval_test
API-related functions #9854

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 12:32:22 +08:00
c4f43a395d Fix: re sub error. (#9985)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 10:52:18 +08:00
a255c78b59 Feat: Add ParserForm to the data pipeline #9869 (#9986)
### What problem does this PR solve?

Feat: Add ParserForm to the data pipeline  #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-09 09:50:46 +08:00
936f27e9e5 Feat: add LongCat-Flash-Chat (#9973)
### What problem does this PR solve?

Add LongCat-Flash-Chat from Meituan, deepseek v3.1 from SiliconFlow,
kimi-k2-09-05-preview and kimi-k2-turbo-preview from Moonshot.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 19:00:52 +08:00
2616f651c9 Feat: The agent's external page should be able to fill in the begin parameter after being reset in task mode #9745 (#9982)
### What problem does this PR solve?

Feat: The agent's external page should be able to fill in the begin
parameter after being reset in task mode #9745

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 18:59:51 +08:00
e8018fde83 Fix: Update the pagination prompt text in zh.ts, changing "page" to "item/page" #3221 (#9978)
### What problem does this PR solve?

Fix: Update the pagination prompt text in zh.ts, changing "page" to
"item/page"

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 17:14:23 +08:00
f514482c0a Feat: Add ConfirmDeleteDialog storybook #9914 (#9977)
### What problem does this PR solve?

Feat: Add ConfirmDeleteDialog storybook #9914

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 17:14:11 +08:00
e9ee9269f5 Feat: user defined prompt. (#9972)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 14:05:01 +08:00
cf18231713 Fix: Optimized the test results page layout and internationalization #3221 (#9974)
### What problem does this PR solve?

Fix: Optimized the test results page layout and internationalization

- Added an empty data component for when test results are empty
- Optimized internationalization support for the paging component
- Updated the layout and style of the test results page
- Added a tooltip for when test results are empty

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 12:49:12 +08:00
f48aed6d4a Fix: The files in the knowledge base folder on the file management page should not be deleted #9975 (#9976)
### What problem does this PR solve?

Fix: The files in the knowledge base folder on the file management page
should not be deleted #9975

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 12:48:58 +08:00
b524cf0ec8 Feat: Delete unused code in the data pipeline #9869 (#9971)
### What problem does this PR solve?

Feat: Delete unused code in the data pipeline #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 11:42:46 +08:00
994517495f add model: qwen3-max-preview (#9959)
### What problem does this PR solve?
add qwen3-max-preview model,
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 10:39:23 +08:00
63781bde3f Refa: import issue. (#9958)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-09-05 19:26:15 +08:00
91d6fb8061 Fix miscalculated token count (#9776)
### What problem does this PR solve?

The total token was incorrectly accumulated when using the
OpenAI-API-Compatible api.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-05 19:17:21 +08:00
45f52e85d7 Feat: refine dataflow and initialize dataflow app (#9952)
### What problem does this PR solve?

Refine dataflow and initialize dataflow app.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 18:50:46 +08:00
9aa8cfb73a Feat: Use sonner to replace the requested prompt message component #3221 (#9951)
### What problem does this PR solve?

Feat: Use sonner to replace the requested prompt message component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 18:43:33 +08:00
79ca25ec7e Feat: Allow users to select prompt word templates in agent operators. #9935 (#9936)
### What problem does this PR solve?

Feat: Allow users to select prompt word templates in agent operators.
#9935

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 15:48:57 +08:00
6ff7cfe005 Fix bugs for agent/tools. (#9930)
### What problem does this PR solve?
1 Fix typos
2 Fix agent/tools/crawler.py return bug.
3 Fix agent/tools/deepl.py  component_name  bug.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
- [x] Performance Improvement

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-05 12:31:44 +08:00
4e16936fa4 Refactor: Use re compile for weight method (#9929)
### What problem does this PR solve?

Use re compile for the weight method

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-09-05 12:29:44 +08:00
677c99b090 Feat: Add metadata filtering function for /api/v1/retrieval (#9877)
-Added the metadata_dedition parameter in the document retrieval
interface to filter document metadata -Updated the API documentation and
added explanations for the metadata_dedition parameter

### What problem does this PR solve?

Make /api/v1/retrieval api also can use metadata filter

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 11:12:15 +08:00
8e30a75e5c Update .env (#9923)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-05 10:20:36 +08:00
b14052e5a2 code cleans. (#9916)
### What problem does this PR solve?



### Type of change

- [x] Refactoring
- [x] Performance Improvement

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-05 09:59:27 +08:00
ddaed541ff Fix S3 client initialization with signature_version and addressing_style (#9911)
### What problem does this PR solve?

Moved `signature_version` and `addressing_style` parameters to a
`Config` object from `botocore.config`
`signature_version` is now passed as `Config(signature_version='v4')`
`addressing_style` is now passed as `Config(s3={'addressing_style':
'path'})`
The `Config` object is then passed to `boto3.client()` via the `config`
parameter



## Changes Made
- Modified `rag/utils/s3_conn.py` in the `__open__()` method
- Updated parameter handling logic to use `config_kwargs` dictionary
- Maintained backward compatibility for configurations without these
parameters



## Related Issue
Fixes #9910


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Syed Shahmeer Ali <ashahmeer73@gmail.com>
2025-09-05 09:58:30 +08:00
1ee9c0b8d9 fix xss in excel_parser (#9909)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
- [x] Performance Improvement

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-05 09:58:03 +08:00
9b724b3b5e Fix python_version in show_env.sh when its meets python3. (#9894)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-05 09:57:39 +08:00
3b1ee769eb fix: Optimize internationalization configuration #3221 (#9924)
### What problem does this PR solve?

fix: Optimize internationalization configuration

- Update multi-language options, adding general translations for
functions like Select All and Clear
- Add internationalization support for modules like Chat, Search, and
Datasets

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-05 09:57:15 +08:00
41cb94324a Feat: Added RenameDialog NumberInput and Spin storybook #9914 (#9925)
### What problem does this PR solve?

Feat: Added RenameDialog NumberInput and Spin storybook 

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 09:57:00 +08:00
982ec24fa7 Fix kb isolation infinity conn (#9913)
### What problem does this PR solve?

This PR fixes a critical bug in the knowledge base isolation feature
where chat responses were referencing documents from incorrect knowledge
bases. The issue was in the `infinity_conn.py` file where the
`equivalent_condition_to_str()` function was incorrectly skipping
`kb_id` filtering, causing documents from unintended knowledge bases to
be included in search results.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Syed Shahmeer Ali <ashahmeer73@gmail.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-04 21:14:56 +08:00
1f7a035340 before docker-compose up, first down it,and cleans. (#9908)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

Fix the issue in ci.
[ci
err](https://github.com/infiniflow/ragflow/actions/runs/17452439789/job/49559702590?pr=9894)

```
 Container ragflow-redis  Error response from daemon: Conflict. The container name "/ragflow-redis" is already in use by container "b6cbde4d186ffba701f6e2a85f37e1d053d7197adb2938547f1df08cfcadf355". You have to remove (or rename) that container to be able to reuse that name.
Error response from daemon: Conflict. The container name "/ragflow-redis" is already in use by container "b6cbde4d186ffba701f6e2a85f37e1d053d7197adb2938547f1df08cfcadf355". You have to remove (or rename) that container to be able to reuse that name.
Error: Process completed with exit code 1.
```

### Type of change
- [x] Refactoring
- [x] Performance Improvement

Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-09-04 18:47:27 +08:00
d04ae3f943 Feat: Display AvatarUpload and RAGFlowAvatar in Storybook #9914 (#9920)
### What problem does this PR solve?

Feat: Display AvatarUpload and RAGFlowAvatar in Storybook #9914

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-04 18:02:17 +08:00
abd19b0f48 Fix: wrong chunk number while re-parsing document and keeping original chunks (#9912)
### What problem does this PR solve?

Fix wrong chunk number while re-parsing document and keeping original
chunks

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-04 17:48:00 +08:00
aa1251af9a Feat: Use storybook to display public components. #9914 (#9915)
### What problem does this PR solve?
Feat: Use storybook to display public components. #9914
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-04 17:03:36 +08:00
483f3aa71d Update API reference to use 'title' instead of 'name' for listing agents (#9907)
### What problem does this PR solve?

HTTP API documentation incorrectly refers `agent_name` as `name` instead
of `title`. This PR updates that documentation with the correct terms.
As per the codebase, the GET request for listing agents is accepting
`title` as a parameter:

9b026fc5b6/api/apps/sdk/agent.py (L32)
This is referred to as `name` parameter in the HTTP API documentation
([link](https://ragflow.io/docs/dev/http_api_reference#list-documents))
```
GET /api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}&create_time_from={timestamp}&create_time_to={timestamp}
```
Meanwhile, it is correctly mentioned in the Python API docs
([link](https://ragflow.io/docs/dev/python_api_reference#list-agents)):
```
RAGFlow.list_agents(
    page: int = 1, 
    page_size: int = 30, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    title: str = None
) -> List[Agent]
```
### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-09-04 16:53:55 +08:00
72bb79e8dd During the chat, the assistant's response cited documents outside current chat's kbs (#9900)
### What problem does this PR solve?

During the chat, the assistant's response cited documents outside the
current knowledge base。

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-04 16:51:13 +08:00
927a195008 Feat: Allow users to enter SQL in the SQL operator #9897 (#9898)
### What problem does this PR solve?

Feat: Allow users to enter SQL in the SQL operator #9897

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-04 11:26:55 +08:00
d13dc0c24d Update README (#9904)
### Type of change

- [x] Documentation Update
2025-09-04 11:16:42 +08:00
37ac7576f1 Docs: Updated instructions on importing third-party packages to Sandbox (#9890)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-09-03 15:47:07 +08:00
c832e0b858 Feat: add canvas_category field for UserCanvas and CanvasTemplate (#9885)
### What problem does this PR solve?

Add `canvas_category` field for UserCanvas and CanvasTemplate.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-03 14:55:24 +08:00
5d015e48c1 Docs: Updated the Code component reference (#9884)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-09-03 14:23:03 +08:00
b58e882eaa Feat: add exponential back-off for Chat LiteLLM (#9880)
### What problem does this PR solve?

Add exponential back-off for Chat LiteLLM. #9858.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-03 13:31:43 +08:00
1bc33009c7 Fix: The operator added by clicking the plus sign will overlap with the original operator. #9886 (#9887)
### What problem does this PR solve?

Fix: The operator added by clicking the plus sign will overlap with the
original operator. #9886

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-03 13:03:23 +08:00
cb731dce34 Add jemalloc install instruction for mac (#9879)
### What problem does this PR solve?

Add jemalloc install instruction for mac

### Type of change

- [x] Documentation Update
2025-09-03 10:50:39 +08:00
1595cdc48f Fix: Optimize list display and rename functionality #3221 (#9875)
### What problem does this PR solve?

Fix: Optimize list display and rename functionality #3221

- Updated the homepage search list display style and added rename
functionality
- Used the RenameDialog component for rename searches
- Optimized list height calculation
- Updated the style and layout of related pages
- fix issue #9779

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 17:43:37 +08:00
4179ecd469 Fix JSON serialization error for ModelMetaclass objects (#9812)
- Add robust serialize_for_json() function to handle non-serializable
objects
- Update server_error_response() to safely serialize exception data
- Update get_json_result() with fallback error handling
- Handles ModelMetaclass, functions, and other problematic objects
- Maintains proper JSON response format instead of server crashes

Fixes #9797

### What problem does this PR solve?
Currently, error responses and certain result objects may include types
that are not JSON serializable (e.g., ModelMetaclass, functions). This
causes server crashes instead of returning valid JSON responses.

This PR introduces a robust serializer that converts unsupported types
into string representations, ensuring the server always returns a valid
JSON response.
### Type of change

- [] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 16:17:34 +08:00
cb14dafaca Feat: Initialize the data pipeline canvas. #9869 (#9870)
### What problem does this PR solve?
Feat: Initialize the data pipeline canvas. #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-02 15:47:33 +08:00
c2567844ea Feat: By default, 50 records are displayed per page. #3221 (#9867)
### What problem does this PR solve?

Feat: By default, 50 records are displayed per page. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-02 14:12:41 +08:00
757c5376be Fix: Fixed the issue where the agent and chat cards on the home page could not be deleted #3221 (#9864)
### What problem does this PR solve?

Fix: Fixed the issue where the agent and chat cards on the home page
could not be deleted #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 11:10:57 +08:00
79968c37a8 Fix: agent second round issue. (#9863)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-02 11:06:17 +08:00
2e00d8d3d4 Use 'float' explicitly for OpenAI's embedding "encoding_format" (#9838)
### What problem does this PR solve?

The default value for OpenAI '/v1/embeddings' parameter
'encoding_format' is 'base64'. Use 'float' explicitly to avoid base64
encoding & decoding, larger data size.


https://github.com/openai/openai-python/blob/main/src/openai/resources/embeddings.py
        if not is_given(encoding_format):
            params["encoding_format"] = "base64"

### Type of change

- [x] Performance Improvement
2025-09-02 10:31:51 +08:00
0b456a18a3 Refactor: Improve the buffer close for vision_llm_chunk (#9845)
### What problem does this PR solve?

Improve the buffer close for vision_llm_chunk

### Type of change

- [x] Refactoring
2025-09-02 10:31:37 +08:00
dd8e660f0a Docs: Refactored Retrieval component reference (#9862)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-09-02 10:28:23 +08:00
98ee3dee74 Feat: Move the dataset permission drop-down box to a separate file for better permission control #3221 (#9850)
### What problem does this PR solve?

Feat: Move the dataset permission drop-down box to a separate file for
better permission control #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-01 19:09:25 +08:00
d4b0cd8599 Fix: Optimize page layout and style #3221 (#9852)
### What problem does this PR solve?

Fix: Optimize page layout and style #3221

- Added the cursor-pointer class to the logo in the Header component
- Added an icon property to the ListFilterBar in the Agents and ChatList
components
- Adjusted the Dataset page layout and set a minimum width
- Optimized the DatasetWrapper page layout and added the overflow-auto
class
- Simplified the search icon in the SearchList component

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-01 18:52:32 +08:00
3398dac906 Fix: Optimize styling and add a search settings loading state #3221 (#9830)
### What problem does this PR solve?

Fix: Optimize styling and add a search settings loading state #3221

- Updated the calendar component's background color to use a variable
- Modified the Spin component's styling to use the primary text color
instead of black
- Added a form submission loading state to the search settings component
- Optimized the search settings form, unifying the styles of the model
selection and input fields

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-01 11:45:49 +08:00
7eb25e0de6 UI updates (#9836)
### What problem does this PR solve?

### Type of change


- [x] Documentation Update
2025-08-30 21:44:58 +08:00
bed77ee28f Feat: Create a conversation before uploading files #3221 (#9832)
### What problem does this PR solve?

Feat: Create a conversation before uploading files #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-29 18:36:40 +08:00
56cd576876 Refa: revise the implementation of LightRAG and enable response caching (#9828)
### What problem does this PR solve?

This revision performed a comprehensive check on LightRAG to ensure the
correctness of its implementation. It **did not involve** Entity
Resolution and Community Reports Generation. There is an example using
default entity types and the General chunking method, which shows good
results in both time and effectiveness. Moreover, response caching is
enabled for resuming failed tasks.


[The-Necklace.pdf](https://github.com/user-attachments/files/22042432/The-Necklace.pdf)

After:


![img_v3_02pk_177dbc6a-e7cc-4732-b202-ad4682d171fg](https://github.com/user-attachments/assets/5ef1d93a-9109-4fe9-8a7b-a65add16f82b)


```bash
Begin at:
Fri, 29 Aug 2025 16:48:03 GMT
Duration:
222.31 s
Progress:
16:48:04 Task has been received.
16:48:06 Page(1~7): Start to parse.
16:48:06 Page(1~7): OCR started
16:48:08 Page(1~7): OCR finished (1.89s)
16:48:11 Page(1~7): Layout analysis (3.72s)
16:48:11 Page(1~7): Table analysis (0.00s)
16:48:11 Page(1~7): Text merged (0.00s)
16:48:11 Page(1~7): Finish parsing.
16:48:12 Page(1~7): Generate 7 chunks
16:48:12 Page(1~7): Embedding chunks (0.29s)
16:48:12 Page(1~7): Indexing done (0.04s). Task done (7.84s)
16:48:17 Start processing for f421fb06849e11f0bdd32724b93a52b2: She had no dresses, no je...
16:48:17 Start processing for f421fb06849e11f0bdd32724b93a52b2: Her husband, already half...
16:48:17 Start processing for f421fb06849e11f0bdd32724b93a52b2: And this life lasted ten ...
16:48:17 Start processing for f421fb06849e11f0bdd32724b93a52b2: Then she asked, hesitatin...
16:49:30 Completed processing for f421fb06849e11f0bdd32724b93a52b2: She had no dresses, no je... after 1 gleanings, 21985 tokens.
16:49:30 Entities extraction of chunk 3 1/7 done, 12 nodes, 13 edges, 21985 tokens.
16:49:40 Completed processing for f421fb06849e11f0bdd32724b93a52b2: Finally, she replied, hes... after 1 gleanings, 22584 tokens.
16:49:40 Entities extraction of chunk 5 2/7 done, 19 nodes, 19 edges, 22584 tokens.
16:50:02 Completed processing for f421fb06849e11f0bdd32724b93a52b2: Then she asked, hesitatin... after 1 gleanings, 24610 tokens.
16:50:02 Entities extraction of chunk 0 3/7 done, 16 nodes, 28 edges, 24610 tokens.
16:50:03 Completed processing for f421fb06849e11f0bdd32724b93a52b2: And this life lasted ten ... after 1 gleanings, 24031 tokens.
16:50:04 Entities extraction of chunk 1 4/7 done, 24 nodes, 22 edges, 24031 tokens.
16:50:14 Completed processing for f421fb06849e11f0bdd32724b93a52b2: So they begged the jewell... after 1 gleanings, 24635 tokens.
16:50:14 Entities extraction of chunk 6 5/7 done, 27 nodes, 26 edges, 24635 tokens.
16:50:29 Completed processing for f421fb06849e11f0bdd32724b93a52b2: Her husband, already half... after 1 gleanings, 25758 tokens.
16:50:29 Entities extraction of chunk 2 6/7 done, 25 nodes, 35 edges, 25758 tokens.
16:51:35 Completed processing for f421fb06849e11f0bdd32724b93a52b2: The Necklace By Guy de Ma... after 1 gleanings, 27491 tokens.
16:51:35 Entities extraction of chunk 4 7/7 done, 39 nodes, 37 edges, 27491 tokens.
16:51:35 Entities and relationships extraction done, 147 nodes, 177 edges, 171094 tokens, 198.58s.
16:51:35 Entities merging done, 0.01s.
16:51:35 Relationships merging done, 0.01s.
16:51:35 ignored 7 relations due to missing entities.
16:51:35 generated subgraph for doc f421fb06849e11f0bdd32724b93a52b2 in 198.68 seconds.
16:51:35 run_graphrag f421fb06849e11f0bdd32724b93a52b2 graphrag_task_lock acquired
16:51:35 set_graph removed 0 nodes and 0 edges from index in 0.00s.
16:51:35 Get embedding of nodes: 9/147
16:51:35 Get embedding of nodes: 109/147
16:51:37 Get embedding of edges: 9/170
16:51:37 Get embedding of edges: 109/170
16:51:40 set_graph converted graph change to 319 chunks in 4.21s.
16:51:40 Insert chunks: 4/319
16:51:40 Insert chunks: 104/319
16:51:40 Insert chunks: 204/319
16:51:40 Insert chunks: 304/319
16:51:40 set_graph added/updated 147 nodes and 170 edges from index in 0.53s.
16:51:40 merging subgraph for doc f421fb06849e11f0bdd32724b93a52b2 into the global graph done in 4.79 seconds.
16:51:40 Knowledge Graph done (204.29s)
```

Before:


![img_v3_02pk_63370edf-ecee-4ee8-8ac8-69c8d2c712fg](https://github.com/user-attachments/assets/1162eb0f-68c2-4de5-abe0-cdfa168f71de)

```bash
Begin at:
Fri, 29 Aug 2025 17:00:47 GMT
processDuration:
173.38 s
Progress:
17:00:49 Task has been received.
17:00:51 Page(1~7): Start to parse.
17:00:51 Page(1~7): OCR started
17:00:53 Page(1~7): OCR finished (1.82s)
17:00:57 Page(1~7): Layout analysis (3.64s)
17:00:57 Page(1~7): Table analysis (0.00s)
17:00:57 Page(1~7): Text merged (0.00s)
17:00:57 Page(1~7): Finish parsing.
17:00:57 Page(1~7): Generate 7 chunks
17:00:57 Page(1~7): Embedding chunks (0.31s)
17:00:57 Page(1~7): Indexing done (0.03s). Task done (7.88s)
17:00:57 created task graphrag
17:01:00 Task has been received.
17:02:17 Entities extraction of chunk 1 1/7 done, 9 nodes, 9 edges, 10654 tokens.
17:02:31 Entities extraction of chunk 2 2/7 done, 12 nodes, 13 edges, 11066 tokens.
17:02:33 Entities extraction of chunk 4 3/7 done, 9 nodes, 10 edges, 10433 tokens.
17:02:42 Entities extraction of chunk 5 4/7 done, 11 nodes, 14 edges, 11290 tokens.
17:02:52 Entities extraction of chunk 6 5/7 done, 13 nodes, 15 edges, 11039 tokens.
17:02:55 Entities extraction of chunk 3 6/7 done, 14 nodes, 13 edges, 11466 tokens.
17:03:32 Entities extraction of chunk 0 7/7 done, 19 nodes, 18 edges, 13107 tokens.
17:03:32 Entities and relationships extraction done, 71 nodes, 89 edges, 79055 tokens, 149.66s.
17:03:32 Entities merging done, 0.01s.
17:03:32 Relationships merging done, 0.01s.
17:03:32 ignored 1 relations due to missing entities.
17:03:32 generated subgraph for doc b1d9d3b6848711f0aacd7ddc0714c4d3 in 149.69 seconds.
17:03:32 run_graphrag b1d9d3b6848711f0aacd7ddc0714c4d3 graphrag_task_lock acquired
17:03:32 set_graph removed 0 nodes and 0 edges from index in 0.00s.
17:03:32 Get embedding of nodes: 9/71
17:03:33 Get embedding of edges: 9/88
17:03:34 set_graph converted graph change to 161 chunks in 2.27s.
17:03:34 Insert chunks: 4/161
17:03:34 Insert chunks: 104/161
17:03:34 set_graph added/updated 71 nodes and 88 edges from index in 0.28s.
17:03:34 merging subgraph for doc b1d9d3b6848711f0aacd7ddc0714c4d3 into the global graph done in 2.60 seconds.
17:03:34 Knowledge Graph done (153.18s)

```

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Refactoring
- [x] Performance Improvement
2025-08-29 17:58:36 +08:00
4fbad2828c Feat: Allow users to delete their profile pictures #3221 (#9826)
### What problem does this PR solve?

Feat: Allow users to delete their profile pictures  #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-29 17:12:45 +08:00
e997bf6507 Fix: Optimized the style and functionality of multiple components #3221 (#9824)
### What problem does this PR solve?

Fix: Optimized the style and functionality of multiple components #3221

- Modified the SkeletonCard component, adding a className attribute and
adjusting the style
- Updated the RAGFlowSelect component, adding a disabled attribute
- Adjusted the style of the Tooltip component
- Optimized the layout of the RetrievalTesting and TestingResult pages
- Updated the style and loading status display of NextSearch-related
pages
- Removed unnecessary logs from the Spotlight component

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 16:54:01 +08:00
209b731541 Feat: add SearXNG search tool to Agent (frontend + backend, i18n) (#9699)
### What problem does this PR solve?

This PR integrates SearXNG as a new search tool for Agents. It adds
corresponding form/config UI on the frontend and a new tool
implementation on the backend, enabling aggregated web searches via a
self-hosted SearXNG instance within chats/workflows. It also adds
multilingual copy to support internationalized presentation and
configuration guidance.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

### What’s Changed
- Frontend: new SearXNG tool configuration, forms, and command wiring
  - Main changes under `web/src/pages/agent/`
- New components and form entries are connected to Agent tool selection
and workflow node configuration
- Backend: new tool implementation
- `agent/tools/searxng.py`: connects to a SearXNG instance and performs
search based on the provided instance URL and query parameters
- i18n updates
- Added/updated keys under `web/src/locales/`: `searXNG` and
`searXNGDescription`
- English reference in
[web/src/locales/en.ts](cci:7://file:///c:/Users/ruy_x/Work/CRSC/2025/Software_Development/2025.8/ragflow-pr/ragflow/web/src/locales/en.ts:0:0-0:0):
    - `searXNG: 'SearXNG'`
- `searXNGDescription: 'A component that searches via your provided
SearXNG instance URL. Specify TopN and the instance URL.'`
- Other languages have `searXNG` and `searXNGDescription` added as well,
but accuracy is only guaranteed for English, Simplified Chinese, and
Traditional Chinese.

---------

Co-authored-by: xurui <xurui@crscd.com.cn>
2025-08-29 14:15:40 +08:00
c47a38773c Fix: Fixed the issue that similarity threshold modification in chat and search configuration failed #3221 (#9821)
### What problem does this PR solve?

Fix: Fixed the issue that similarity threshold modification in chat and
search configuration failed #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 14:10:10 +08:00
fcd18d7d87 Fix: Ollama chat cannot access remote deployment (#9816)
### What problem does this PR solve?

Fix Ollama chat can only access localhost instance. #9806.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 13:35:41 +08:00
fe9adbf0a5 Fix: Optimized Input and MultiSelect component functionality and dataSet-chunk page styling #9779 (#9815)
### What problem does this PR solve?

Fix: Optimized Input and MultiSelect component functionality and
dataSet-chunk page styling

- Updated @js-preview/excel to version 1.7.14 #9779
- Optimized the EditTag component
- Updated the Input component to optimize numeric input processing
- Adjusted the MultiSelect component to use lodash's isEmpty method
- Optimized the CheckboxSets component to display action buttons based
on the selected state

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-29 10:57:29 +08:00
c7f7adf029 Feat: Extract the save buttons for dataset and chat configurations to separate files to increase permission control #3221 (#9803)
### What problem does this PR solve?

Feat: Extract the save buttons for dataset and chat configurations to
separate files to increase permission control #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-29 10:40:41 +08:00
c27172b3bc Feat: init dataflow. (#9791)
### What problem does this PR solve?

#9790

Close #9782

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 18:40:32 +08:00
a246949b77 Fix: Fixed the issue where the thinking mode on the chat page could not be turned off #9789 (#9794)
### What problem does this PR solve?

Fix: Fixed the issue where the thinking mode on the chat page could not
be turned off #9789

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 17:33:27 +08:00
0a954d720a Refa: unify reference format of agent completion and OpenAI-compatible completion API (#9792)
### What problem does this PR solve?

Unify reference format of agent completion and OpenAI-compatible
completion API.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Documentation Update
- [x] Refactoring
2025-08-28 16:55:28 +08:00
f89e55ec42 Fix: Optimized variable node display and Agent template multi-language support #3221 (#9787)
### What problem does this PR solve?

Fix: Optimized variable node display and Agent template multi-language
support #3221

- Modified the VariableNode component to add parent label and icon
properties
- Updated the VariablePickerMenuPlugin to support displaying parent
labels and icons
- Adjusted useBuildNodeOutputOptions and useBuildBeginVariableOptions to
pass new properties
- Optimized the Agent TemplateCard component to switch the title and
description based on the language

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 15:43:25 +08:00
5fe8cf6018 Feat: Use AvatarUpload to replace the avatar settings on the dataset and search pages #3221 (#9785)
### What problem does this PR solve?

Feat: Use AvatarUpload to replace the avatar settings on the dataset and
search pages #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 14:45:20 +08:00
4720849ac0 Fix: agent template error. (#9784)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 14:40:27 +08:00
d7721833e7 Improve model tag rendering by splitting comma-separated string into styled <Tag> components (#9762)
### What problem does this PR solve?

This PR enhances the display of tags in the UI.

* Before: Model tags were shown as a single string with commas.
* After: Model tags are split by commas and displayed as individual
<Tag> components , making them visually distinct and easier to read.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 14:06:52 +08:00
7332f1d0f3 The agent directly outputs the results under the task model #9745 (#9746)
### What problem does this PR solve?

The agent directly outputs the results under the task model #9745

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:43:40 +08:00
2d101561f8 Add Russian language Update app.tsx (#9772)
Fix Add Russian language.

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:42:42 +08:00
59590e9aae Feat: Add AvatarUpload component #3221 (#9777)
### What problem does this PR solve?

Feat: Add AvatarUpload component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 11:42:17 +08:00
bb9b9b8357 Clarify installation of pre-commit alongside uv in README (#9749)
### What problem does this PR solve?

Updates the installation step in README.md to explicitly include
pre-commit alongside uv.

Applies the change to all localized versions: English, Chinese,
Japanese, Korean, Indonesian, and Portuguese.
#### Why this is needed:

The installation instructions previously mentioned only uv, but
pre-commit is also required for contributing.

Ensures consistency across all language versions and helps new
contributors set up the environment correctly.

### Type of change

- [x] Documentation Update
2025-08-28 09:53:16 +08:00
a4b368e53f add Russian in translation table index.tsx (#9773)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-28 09:47:04 +08:00
c461261f0b Refactor: Improve the try logic for upload_to_minio (#9735)
### What problem does this PR solve?

Improve the try logic for upload_to_minio

### Type of change

- [x] Refactoring
2025-08-28 09:35:29 +08:00
a1633e0a2f Fix: second round value removal. (#9756)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-28 09:34:47 +08:00
369add35b8 Feature/workflow en cn (#9742)
### What problem does this PR solve?
Update workflow ZH CN title and description.
### Type of change
- [x] Documentation Update
2025-08-28 09:34:30 +08:00
5abd0bbac1 Fix typo (#9766)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-08-27 18:56:40 +08:00
2d89863fdd Fix: search list permission (#9767)
### What problem does this PR solve?

Search list permission.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 18:50:02 +08:00
6cb3e08381 Revert: broken agent completion by #9631 (#9760)
### What problem does this PR solve?

Revert broken agent completion by #9631.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 17:16:55 +08:00
986b9cbb1a Docs: Update version references to v0.20.4 in READMEs and docs (#9758)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.3 to v0.20.4
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-08-27 16:56:55 +08:00
9c456adffd Added v0.20.4 release notes (#9757)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-08-27 15:29:09 +08:00
c15b138839 Create ecommerce_customer_service_workflow.json (#9755)
### What problem does this PR solve?

Update workflow template.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-27 15:15:24 +08:00
ff11348f7c Fix: Optimize the MultiSelect component and system prompt templates #3221 (#9752)
### What problem does this PR solve?

Fix: Optimize the MultiSelect component and system prompt templates
#3221

- Modify the conditional statements in the MultiSelect component, using
the ?. operator to improve code readability
- Optimize the formatting of the system prompt template to make it more
standardized and easier to read
- Update the Chinese translation, changing "ExeSQL" to "Execute SQL"

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-27 15:12:12 +08:00
cbdabbb58f Fix: Fixed the issue that the agent embedded page needs to be logged in #9750 (#9751)
### What problem does this PR solve?

Fix: Fixed the issue that the agent embedded page needs to be logged in
#9750

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 14:18:00 +08:00
cf0011be67 Feat: Upgrade html parser (#9675)
### What problem does this PR solve?

parse more html content.

### Type of change

- [x] Other (please describe):
2025-08-27 12:43:55 +08:00
1f47001c82 Fix: Optimize tooltips and I118n #3221 (#9744)
### What problem does this PR solve?

Fix: Optimize tooltips and I118n #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-27 11:46:51 +08:00
a914535344 Fix: add mode for embeded agent. (#9741)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-27 11:46:15 +08:00
ba1063c2b9 Docs: Miscellaneous updates (#9729)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-08-26 19:35:29 +08:00
2b4bca4447 Fix(i18n): Added new translations #3221 (#9727)
### What problem does this PR solve?

Fix(i18n): Added new translations #3221

- Added and updated internationalization translations in multiple
components


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-26 17:57:53 +08:00
11cf6ae313 Fix: After deleting the knowledge graph, jump to the dataset page #9722 (#9723)
### What problem does this PR solve?

Fix: After deleting the knowledge graph, jump to the dataset page #9722
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 17:57:41 +08:00
88db5d90d1 Fix: Try to fix the issue of not being able to log in through Oauth2 #9601 (#9717)
### What problem does this PR solve?

Fix: Try to fix the issue of not being able to log in through Oauth2
#9601

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 14:06:28 +08:00
209ef09dc3 Feat: add Zhipu GLM-4.5 model series (#9715)
### What problem does this PR solve?

Add Zhipu GLM-4.5 model series. #9708.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-26 13:48:00 +08:00
ycz
370c8bc25b Update llm_factories.json (#9714)
### What problem does this PR solve?

add ZhipuAI GLM-4.5 model series

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-26 11:49:01 +08:00
e90a959b4d Fix: Chunk error when re-parsing created file #9665 (#9711)
### What problem does this PR solve?

Fix: Chunk error when re-parsing created file

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-26 10:50:30 +08:00
ca320a8c30 Refactor: for total_token_count method use if to check first. (#9707)
### What problem does this PR solve?

for total_token_count method use if to check first, to improve the
performance when we need to handle exception cases

### Type of change

- [x] Refactoring
2025-08-26 10:47:20 +08:00
ae505e6165 Fix: Optimize table style #3221 (#9703)
### What problem does this PR solve?

Fix: Optimize table style
-Modify the style of the table scrollbar and remove unnecessary
scrollbars
-Adjust the header style of the table, add background color and
hierarchy
-Optimize the style of datasets and file tables
-Add a new background color variable

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 10:46:54 +08:00
63b5c2292d Fix: Delete the uploaded file in the chat input box, the corresponding file ID is not deleted #9701 (#9702)
### What problem does this PR solve?

Fix: Delete the uploaded file in the chat input box, the corresponding
file ID is not deleted #9701
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-26 09:27:49 +08:00
8d8a5f73b6 Fix: meta data filter with AND logic operations. (#9687)
### What problem does this PR solve?

Close #9648

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 18:29:24 +08:00
d0fa66f4d5 Docs: update API endpoint paths (#9683)
### What problem does this PR solve?

- Update API endpoint paths in docs from `/v1/` to `/api/v1/` for
consistency

### Type of change

- [x] Documentation Update
2025-08-25 17:57:24 +08:00
9dd22e141b fix: validate chunk type before processing to prevent AttributeError (#9698)
### What problem does this PR solve?

This PR fixes a critical bug in the session listing endpoint where the
application crashes with an `AttributeError` when processing chunk data
that contains non-dictionary objects.

**Error before fix:**
```json
{
  "code": 100,
  "data": null,
  "message": "AttributeError(\"'str' object has no attribute 'get'\")"
}
```

**Root cause:**
The code assumes all items in the `chunks` array are dictionary objects
and directly calls the `.get()` method on them. However, in some cases,
the chunks array contains string objects or other non-dictionary types,
causing the application to crash when attempting to call `.get()` on a
string.

**Solution:**
Added type validation to ensure each chunk is a dictionary before
processing. Non-dictionary chunks are safely skipped, preventing the
crash while maintaining functionality for valid chunk data.

This fix improves the robustness of the session listing endpoint and
ensures users can retrieve their conversation sessions without
encountering server errors due to data format inconsistencies.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 17:57:01 +08:00
b6c1ca828e Refa: replace Chat Ollama implementation with LiteLLM (#9693)
### What problem does this PR solve?

replace Chat Ollama implementation with LiteLLM.

### Type of change

- [x] Refactoring
2025-08-25 17:56:31 +08:00
d367c7e226 Fix: Optimize dataset page layout and internationalization and default values for multi selection #3221 (#9695)
### What problem does this PR solve?

Fix: Optimize dataset page layout and internationalization and Fix
setting default values for multi selection drop-down boxes #3221

-Adjust the style and layout of each component on the dataset page
-Add and update multilingual translation content

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 17:29:15 +08:00
a3aa3f0d36 Refa: improve lightrag (#9690)
### What problem does this PR solve?

Improve lightrag.
#9647

### Type of change

- [x] Refactoring
2025-08-25 17:08:44 +08:00
7b8752fe24 fix: Create conversation sessions will lost prologue (#9666)
### What problem does this PR solve?

When create conversation,the prologue hasn't save in conversation.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 14:09:28 +08:00
5e2c33e5b0 Fix: grow reference list (#9674)
### What problem does this PR solve?

Fix Multiple conversations cause the reference list to grow indefinitely
due to Python's mutable default argument behavior.
Explicitly initialize reference as empty list when creating new sessions

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 14:08:15 +08:00
e40be8e541 Feat: Exclude operator_permission field from renaming chat fields #3221 (#9692)
### What problem does this PR solve?

Feat: Exclude operator_permission field from renaming chat fields #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-25 14:06:06 +08:00
23d0b564d3 Fix: Wrap VersionDialog in DropdownProvider for proper context (#9677)
### What problem does this PR solve?

The VersionDialog component was not receiving the correct context for
dropdown handling, causing improper behavior in its interactions.
This PR wraps VersionDialog in DropdownProvider to ensure it gets the
proper context and functions as expected.

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 10:18:04 +08:00
ecaa9de843 Fix:[ERROR]'LLMBundle' object has no attribute 'language' (#9682)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9672

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 10:17:10 +08:00
2f74727bb9 Fix: meta data error. (#9670)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 09:41:52 +08:00
adbb038a87 Fix: Place the invitation reminder icon in a separate file #9634 (#9662)
### What problem does this PR solve?

Fix: Place the invitation reminder icon in a separate file #9634
Fix: After receiving the agent message, pull the agent data to highlight
the edges passed #9538

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 20:08:55 +08:00
3947da10ae Fix: unexpected LLM parameters (#9661)
### What problem does this PR solve?

Remove unexpected LLM parameters.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 19:33:09 +08:00
4862be28ad Fix: Search app AI summary ERROR And The tag set cannot be selected #9649 #9652 (#9664)
### What problem does this PR solve?
Fix: Search app AI summary ERROR And The tag set cannot be selected
#9649 #9652
- Search app AI summary ERROR: 'dict' object has no attribute 'split'
#9649
- fix The tag set cannot be selected in the knowledge base. #9652
- Added custom parameter options to the LlmSettingFieldItems component
- Adjusted the document preview height to improve page layout
adaptability

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 19:32:32 +08:00
035e8ed0f7 Fix: code executor timeout (#9671)
### What problem does this PR solve?

Code executor timeout.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 19:31:49 +08:00
cc167ae619 Fix: Display the invited icon in the header #9634 (#9659)
### What problem does this PR solve?

Fix: Display the invited icon in the header #9634

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 15:05:56 +08:00
f8847e7bcd Fix: embedded search AI summary (#9658)
### What problem does this PR solve?

Fix search app AI summary ERROR: 'dict' object has no attribute 'split'.
#9649

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 12:55:29 +08:00
3baebd709b Refactoring: Agent completions API change response structure (#9631)
### What problem does this PR solve?

Resolve #9549 and #9436 , In v0.20.x,Agent completions API changed a
lot,such as without reference and so on

### Type of change

- [x] Refactoring
2025-08-22 12:04:15 +08:00
3e6a4b2628 Fix: Document Previewer is not working #9606 (#9656)
### What problem does this PR solve?
Fix: Document Previewer is not working #9606
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 12:03:51 +08:00
312635cb13 Refactor: based on async await to handle Redis when raptor (#9576)
### What problem does this PR solve?

based on async await to handle Redis when raptor

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-08-22 10:58:02 +08:00
756d454122 fix(sdk): add default empty dict for metadata_condition (#9640)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-22 10:57:48 +08:00
a4cab371fa Update fr.ts - RAPTOR Issue prompt (#9646)
Removed a line break causing problems with execution in Raptor.

### What problem does this PR solve?

When I activate Raptor without changing anything in French, I encounter
a problem that I don't have with the English version. I noticed in the
logs that there was an extra line break, so I suggest removing it.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 09:54:49 +08:00
0d7e52338e Fix: Fixed an issue where knowledge base could not be shared #9634 (#9642)
### What problem does this PR solve?

Fix: Fixed an issue where knowledge base could not be shared #9634

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-22 09:34:11 +08:00
4110f7f5ce Fix: The buttons at the bottom of the dataset settings page are not visible on small screens #9638 (#9639)
### What problem does this PR solve?

Fix: The buttons at the bottom of the dataset settings page are not
visible on small screens #9638
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 19:25:14 +08:00
0af57ff772 fix(dataset, next-chats): Fix data form data acquisition logic And Optimize the chat settings interface and add language selection (#9629)
### What problem does this PR solve?

fix(dataset): data form data acquisition logic
fix(next-chats): Optimize the chat settings interface and add language
selection

- Replace form.formControl.trigger with form.trigger
- Use form.getValues() instead of form.formState.values
- Add language selection to support multiple languages
- Add default chat settings values
- Add new settings: icon, description, knowledge base ID, etc.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-21 16:57:46 +08:00
0bd58038a8 Fixes (web): Optimized search page style and functionality #3221 (#9627)
### What problem does this PR solve?

Fixes (web): Optimized search page style and functionality #3221

- Updated search page and view title styles
- Modified dataset list and multi-select control styles
- Optimized text field and button styles
- Updated filter button icons
- Adjusted metadata filter styles
- Added default descriptions for the smart assistant

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 16:57:14 +08:00
0cbcfcfedf Chore: Update infinity-sdk from 0.6.0.dev4 to 0.6.0.dev5 (#9628)
### What problem does this PR solve?

Bump infinity-sdk dependency to the latest development version
(0.6.0.dev5) in both pyproject.toml and uv.lock files to incorporate
recent changes and fixes from the SDK.

### Type of change

- [x] Other (please describe): Update deps
2025-08-21 16:56:57 +08:00
fbdde0259a Feat: Allow users to parse documents directly after uploading files #3221 (#9633)
### What problem does this PR solve?

Feat: Allow users to parse documents directly after uploading files
#3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-21 16:56:22 +08:00
d482173c9b Fix (style): Optimized Datasets color scheme and layout #3221 (#9620)
### What problem does this PR solve?


Fix (style): Optimized Datasets color scheme and layout #3221

- Updated background and text colors for multiple components

- Adjusted some layout structures, such as the paging position of
dataset tables

- Unified status icons and color mapping

- Optimized responsive layout to improve compatibility across different
screen sizes

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 12:14:56 +08:00
929dc97509 Fix: duplicated role... (#9622)
### What problem does this PR solve?

#9611
#9603 #9597

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 12:14:43 +08:00
30005c0203 Fix: Remove the file size and quantity restrictions of the upload control #9613 #9598 (#9618)
### What problem does this PR solve?

Fix: Remove the file size and quantity restrictions of the upload
control #9613 #9598

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 10:54:17 +08:00
382458ace7 Feat: advanced markdown parsing (#9607)
### What problem does this PR solve?

Using AST parsing to handle markdown more accurately, preventing
components from being cut off by chunking. #9564

<img width="1746" height="993" alt="image"
src="https://github.com/user-attachments/assets/4aaf4bf6-5714-4d48-a9cf-864f59633f7f"
/>

<img width="1739" height="982" alt="image"
src="https://github.com/user-attachments/assets/dc00233f-7a55-434f-bbb7-74ce7f57a6cf"
/>

<img width="559" height="100" alt="image"
src="https://github.com/user-attachments/assets/4a556b5b-d9c6-4544-a486-8ac342bd504e"
/>


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-08-21 09:36:18 +08:00
4080f6a54a Feature (web): Optimize dataset pages and segmented components #3221 (#9605)
### What problem does this PR solve?

Feature (web): Optimize dataset pages and segmented components #3221
-Add the activeClassName property to Segmented components to customize
the selected state style
-Update the icons and captions of the relevant components on the dataset
page
-Modify the parsing status column title of the dataset table
-Optimize the Segmented component style of the homepage application
section

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-21 09:32:04 +08:00
09570c7eef Feat: expand the capabilities of the MCP Server (#8707)
### What problem does this PR solve?

Expand the capabilities of the MCP Server. #8644.

Special thanks to @Drasek, this change is largely based on his original
implementation, it is super neat and well-structured to me. I basically
just integrated his code into the codebase with minimal modifications.

My main contribution is implementing a proper cache layer for dataset
and document metadata, using the LRU strategy with a 300s ± random 30s
TTL. The original code did not actually perform caching.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Caspar Armster <caspar@armster.de>
2025-08-20 19:30:25 +08:00
312f1a0477 Fix: enlarge raptor timeout limits. (#9600)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 17:29:15 +08:00
1ca226e43b Feat: Updated some colors according to the design draft #3221 (#9599)
### What problem does this PR solve?

Feat: Updated some colors according to the design draft #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-20 16:32:29 +08:00
830cda6a3a Fix (web): Optimize text display effect #3221 (#9594)
### What problem does this PR solve?

Fix (web): Optimize text display effect
-Add text ellipsis and overflow hidden classes to the HomeCard component
to achieve text overflow hiding and ellipsis effects
-Add text ellipsis and overflow hidden classes to the DatasetSidebar
component to improve the display of dataset names

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 15:42:21 +08:00
c66dbbe433 Fix: Fixed the issue where the save button at the bottom of the chat page could not be displayed on small screens #3221 (#9596)
### What problem does this PR solve?

Fix: Fixed the issue where the save button at the bottom of the chat
page could not be displayed on small screens #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 15:42:09 +08:00
3b218b2dc0 fix:passing empty database array when updating assistant (#9570)
### What problem does this PR solve?

When the `dataset_ids` parameter is omitted in the **update assistant**
request, Passing an empty array `[]` triggers a misleading
message"Dataset use different embedding models", while omitting the
field does not.
To fix this, we:
- Provide a default empty list: `ids = req.get("dataset_ids", [])`.  
- Replace the `is not None` check with a truthy check: `if ids:`.

**Files changed**  
`api/apps/sdk/chat.py`  
- L153: `ids = req.get("dataset_ids")` → `ids = req.get("dataset_ids",
[])`
- L156: `if ids is not None:` → `if ids:`

### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 13:40:05 +08:00
d58ef6127f Fix:KeyError: 'globals' KeyError: 'globals' (#9571)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/9545
add backward compatible logics

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 13:39:38 +08:00
55173c7201 Fix (web): Update the style of segmented controls and add metallic texture gradients (#9591)
### What problem does this PR solve?

Fix (web): Update the style of segmented controls and add metallic
texture gradients #3221
-Modified the selected state style of Segmented components, adding
metallic texture gradient and lower border
-Added a metallic gradient background image in tailwind.diag.js
-Added the -- metallic variable in tailwind.css to define metallic
texture colors

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 13:39:23 +08:00
f860bdf0ad Revert "Feat: reference should also be list after 0.20.x" (#9592)
Reverts infiniflow/ragflow#9582
2025-08-20 13:38:57 +08:00
997627861a Feat: reference should also be list after 0.20.x (#9582)
### What problem does this PR solve?

In 0.19.0 reference is list,and it should be a list,otherwise last
conversation's reference will be lost

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 13:38:14 +08:00
9f9d32d2cd Feat: Make the old page accessible via URL #3221 (#9589)
### What problem does this PR solve?

Feat: Make the old page accessible via URL #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-20 13:37:06 +08:00
d55f44601a Docs: Updated v0.20.3 release notes (#9583)
### What problem does this PR solve?
### Type of change

- [x] Documentation Update

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-08-20 10:52:50 +08:00
abb6359547 Docs: Update version references to v0.20.3 in READMEs and docs (#9581)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.2 to v0.20.3
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-08-20 10:45:44 +08:00
f55ff590d7 Fix: Fixed the issue where the model configuration page could not be scrolled #9572 (#9579)
### What problem does this PR solve?

Fix: Fixed the issue where the model configuration page could not be
scrolled #9572

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-20 10:30:08 +08:00
7d3bb3a2f9 Fix dataset card not responding to click events (#9574)
### What problem does this PR solve?

Fix home card not responding to click events

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-08-20 10:06:14 +08:00
904 changed files with 42450 additions and 20787 deletions

View File

@ -88,7 +88,9 @@ jobs:
with:
context: .
push: true
tags: infiniflow/ragflow:${{ env.RELEASE_TAG }}
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}
infiniflow/ragflow:latest-full
file: Dockerfile
platforms: linux/amd64
@ -98,7 +100,9 @@ jobs:
with:
context: .
push: true
tags: infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
infiniflow/ragflow:latest-slim
file: Dockerfile
build-args: LIGHTEN=1
platforms: linux/amd64

View File

@ -67,6 +67,7 @@ jobs:
- name: Start ragflow:nightly-slim
run: |
sudo docker compose -f docker/docker-compose.yml down --volumes --remove-orphans
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.2">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -71,10 +71,7 @@
## 💡 What is RAGFlow?
[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document
understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models)
to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted
data.
[RAGFlow](https://ragflow.io/) is a leading open-source Retrieval-Augmented Generation (RAG) engine that fuses cutting-edge RAG with Agent capabilities to create a superior context layer for LLMs. It offers a streamlined RAG workflow adaptable to enterprises of any scale. Powered by a converged context engine and pre-built agent templates, RAGFlow enables developers to transform complex data into high-fidelity, production-ready AI systems with exceptional efficiency and precision.
## 🎮 Demo
@ -190,7 +187,7 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.20.2-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.2-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.2` for the full edition `v0.20.2`.
> The command below downloads the `v0.20.5-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.5-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` for the full edition `v0.20.5`.
```bash
$ cd ragflow/docker
@ -203,8 +200,8 @@ releases! 🌟
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.20.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.2-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -307,7 +304,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Launch service from source for development
1. Install uv, or skip this step if it is already installed:
1. Install `uv` and `pre-commit`, or skip this step if they are already installed:
```bash
pipx install uv pre-commit
@ -348,6 +345,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
# mac
sudo brew install jemalloc
```
6. Launch backend service:

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.2">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -67,7 +67,7 @@
## 💡 Apa Itu RAGFlow?
[RAGFlow](https://ragflow.io/) adalah mesin RAG (Retrieval-Augmented Generation) open-source berbasis pemahaman dokumen yang mendalam. Platform ini menyediakan alur kerja RAG yang efisien untuk bisnis dengan berbagai skala, menggabungkan LLM (Large Language Models) untuk menyediakan kemampuan tanya-jawab yang benar dan didukung oleh referensi dari data terstruktur kompleks.
[RAGFlow](https://ragflow.io/) adalah mesin RAG (Retrieval-Augmented Generation) open-source terkemuka yang mengintegrasikan teknologi RAG mutakhir dengan kemampuan Agent untuk menciptakan lapisan kontekstual superior bagi LLM. Menyediakan alur kerja RAG yang efisien dan dapat diadaptasi untuk perusahaan segala skala. Didukung oleh mesin konteks terkonvergensi dan template Agent yang telah dipra-bangun, RAGFlow memungkinkan pengembang mengubah data kompleks menjadi sistem AI kesetiaan-tinggi dan siap-produksi dengan efisiensi dan presisi yang luar biasa.
## 🎮 Demo
@ -181,7 +181,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.20.2-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.2-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.2 untuk edisi lengkap v0.20.2.
> Perintah di bawah ini mengunduh edisi v0.20.5-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.5-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5 untuk edisi lengkap v0.20.5.
```bash
$ cd ragflow/docker
@ -194,8 +194,8 @@ $ docker compose -f docker-compose.yml up -d
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.2-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -271,7 +271,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
1. Instal uv, atau lewati langkah ini jika sudah terinstal:
1. Instal `uv` dan `pre-commit`, atau lewati langkah ini jika sudah terinstal:
```bash
pipx install uv pre-commit
@ -312,6 +312,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
# mac
sudo brew install jemalloc
```
6. Jalankan aplikasi backend:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.2">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -47,7 +47,7 @@
## 💡 RAGFlow とは?
[RAGFlow](https://ragflow.io/) は、深い文書理解に基づいたオープンソースの RAG (Retrieval-Augmented Generation) エンジンである。LLM大規模言語モデルを組み合わせることで、様々な複雑なフォーマットのデータから根拠のある引用に裏打ちされた、信頼できる質問応答機能を実現し、あらゆる規模のビジネスに適した RAG ワークフローを提供します。
[RAGFlow](https://ragflow.io/) は、先進的なRAGRetrieval-Augmented Generation)技術と Agent 機能を融合し、大規模言語モデルLLMに優れたコンテキスト層を構築する最先端のオープンソース RAG エンジンです。あらゆる規模の企業に対応可能な合理化された RAG ワークフローを提供し、統合型コンテキストエンジンと事前構築されたAgentテンプレートにより、開発者が複雑なデータを驚異的な効率性と精度で高精細なプロダクションレディAIシステムへ変換することを可能にします。
## 🎮 Demo
@ -160,7 +160,7 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.2-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.2-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.2 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.2 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.5-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.5-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.5 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5 と設定します。
```bash
$ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.2-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -266,7 +266,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 ソースコードからサービスを起動する方法
1. uv をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
1. `uv` と `pre-commit` をインストールする。すでにインストールされている場合は、このステップをスキップしてください:
```bash
pipx install uv pre-commit
@ -307,6 +307,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
# mac
sudo brew install jemalloc
```
6. バックエンドサービスを起動する:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.2">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -47,7 +47,7 @@
## 💡 RAGFlow란?
[RAGFlow](https://ragflow.io/)는 심층 문서 이해에 기반한 오픈소스 RAG (Retrieval-Augmented Generation) 엔진입니다. 이 엔진은 대규모 언어 모델(LLM)과 결합하여 정확한 질문 응답 기능을 제공하며, 다양한 복잡한 형식의 데이터에서 신뢰할 수 있는 출처를 바탕으로 한 인용을 통해 이를 뒷받침합니다. RAGFlow는 규모에 상관없이 모든 기업에 최적화된 RAG 워크플로우를 제공합니다.
[RAGFlow](https://ragflow.io/) 는 최첨단 RAG(Retrieval-Augmented Generation)와 Agent 기능을 융합하여 대규모 언어 모델(LLM)을 위한 우수한 컨텍스트 계층을 생성하는 선도적인 오픈소스 RAG 엔진입니다. 모든 규모의 기업에 적용 가능한 효율적인 RAG 워크플로를 제공하며, 통합 컨텍스트 엔진과 사전 구축된 Agent 템플릿을 통해 개발자들이 복잡한 데이터를 예외적인 효율성과 정밀도로 고급 구현도의 프로덕션 준비 완료 AI 시스템으로 변환할 수 있도록 지원합니다.
## 🎮 데모
@ -160,7 +160,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.2-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.2-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.2을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.2로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.5-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.5-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.5을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5로 설정합니다.
```bash
$ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.2-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -265,7 +265,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 소스 코드로 서비스를 시작합니다.
1. uv를 설치하거나 이미 설치된 경우 이 단계를 건너뜁니다:
1. `uv` 와 `pre-commit` 을 설치하거나, 이미 설치된 경우 이 단계를 건너뜁니다:
```bash
pipx install uv pre-commit
@ -306,6 +306,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
# mac
sudo brew install jemalloc
```
6. 백엔드 서비스를 시작합니다:

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.2">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -67,7 +67,7 @@
## 💡 O que é o RAGFlow?
[RAGFlow](https://ragflow.io/) é um mecanismo RAG (Geração Aumentada por Recuperação) de código aberto baseado em entendimento profundo de documentos. Ele oferece um fluxo de trabalho RAG simplificado para empresas de qualquer porte, combinando LLMs (Modelos de Linguagem de Grande Escala) para fornecer capacidades de perguntas e respostas verídicas, respaldadas por citações bem fundamentadas de diversos dados complexos formatados.
[RAGFlow](https://ragflow.io/) é um mecanismo de RAG (Retrieval-Augmented Generation) open-source líder que fusiona tecnologias RAG de ponta com funcionalidades Agent para criar uma camada contextual superior para LLMs. Oferece um fluxo de trabalho RAG otimizado adaptável a empresas de qualquer escala. Alimentado por um motor de contexto convergente e modelos Agent pré-construídos, o RAGFlow permite que desenvolvedores transformem dados complexos em sistemas de IA de alta fidelidade e pronto para produção com excepcional eficiência e precisão.
## 🎮 Demo
@ -180,7 +180,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.20.2-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.2-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.2` para a edição completa `v0.20.2`.
> O comando abaixo baixa a edição `v0.20.5-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.5-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` para a edição completa `v0.20.5`.
```bash
$ cd ragflow/docker
@ -193,8 +193,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.20.2 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.2-slim | ~2 | ❌ | Lançamento estável |
| v0.20.5 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.5-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
@ -289,7 +289,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
1. Instale o `uv`, ou pule esta etapa se ele já estiver instalado:
1. Instale o `uv` e o `pre-commit`, ou pule esta etapa se eles já estiverem instalados:
```bash
pipx install uv pre-commit
@ -330,6 +330,8 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
sudo apt-get install libjemalloc-dev
# centos
sudo yum instalar jemalloc
# mac
sudo brew install jemalloc
```
6. Lance o serviço de back-end:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.2">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -70,7 +70,7 @@
## 💡 RAGFlow 是什麼?
[RAGFlow](https://ragflow.io/) 是一款基於深度文件理解所建構的開源 RAGRetrieval-Augmented Generation引擎。 RAGFlow 可以為各種規模的企業及個人提供一套精簡的 RAG 工作流程結合大語言模型LLM針對用戶各類不同的複雜格式數據提供可靠的問答以及有理有據的引用
[RAGFlow](https://ragflow.io/) 是一款領先的開源 RAGRetrieval-Augmented Generation引擎,通過融合前沿的 RAG 技術與 Agent 能力,為大型語言模型提供卓越的上下文層。它提供可適配任意規模企業的端到端 RAG 工作流,憑藉融合式上下文引擎與預置的 Agent 模板,助力開發者以極致效率與精度將複雜數據轉化為高可信、生產級的人工智能系統
## 🎮 Demo 試用
@ -183,7 +183,7 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.2-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.2-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.2` 來下載 RAGFlow 鏡像的 `v0.20.2` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.5-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.5-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` 來下載 RAGFlow 鏡像的 `v0.20.5` 完整發行版。
```bash
$ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.2-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -301,7 +301,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🔨 以原始碼啟動服務
1. 安裝 uv。如已安裝,可跳過此步驟:
1. 安裝 `uv` 和 `pre-commit`。如已安裝,可跳過此步驟:
```bash
pipx install uv pre-commit
@ -343,6 +343,8 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
# mac
sudo brew install jemalloc
```
6. 啟動後端服務:

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.2">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -70,7 +70,7 @@
## 💡 RAGFlow 是什么?
[RAGFlow](https://ragflow.io/) 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用
[RAGFlow](https://ragflow.io/) 是一款领先的开源检索增强生成RAG引擎通过融合前沿的 RAG 技术与 Agent 能力,为大型语言模型提供卓越的上下文层。它提供可适配任意规模企业的端到端 RAG 工作流,凭借融合式上下文引擎与预置的 Agent 模板,助力开发者以极致效率与精度将复杂数据转化为高可信、生产级的人工智能系统
## 🎮 Demo 试用
@ -183,7 +183,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.2-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.2-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.2` 来下载 RAGFlow 镜像的 `v0.20.2` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.5-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.5-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` 来下载 RAGFlow 镜像的 `v0.20.5` 完整发行版。
```bash
$ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.2-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -301,7 +301,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
## 🔨 以源代码启动服务
1. 安装 uv。如已经安装,可跳过本步骤:
1. 安装 `uv` 和 `pre-commit`。如已经安装,可跳过本步骤:
```bash
pipx install uv pre-commit
@ -342,6 +342,8 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
sudo apt-get install libjemalloc-dev
# centos
sudo yum install jemalloc
# mac
sudo brew install jemalloc
```
6. 启动后端服务:

101
admin/README.md Normal file
View File

@ -0,0 +1,101 @@
# RAGFlow Admin Service & CLI
### Introduction
Admin Service is a dedicated management component designed to monitor, maintain, and administrate the RAGFlow system. It provides comprehensive tools for ensuring system stability, performing operational tasks, and managing users and permissions efficiently.
The service offers real-time monitoring of critical components, including the RAGFlow server, Task Executor processes, and dependent services such as MySQL, Elasticsearch, Redis, and MinIO. It automatically checks their health status, resource usage, and uptime, and performs restarts in case of failures to minimize downtime.
For user and system management, it supports listing, creating, modifying, and deleting users and their associated resources like knowledge bases and Agents.
Built with scalability and reliability in mind, the Admin Service ensures smooth system operation and simplifies maintenance workflows.
It consists of a server-side Service and a command-line client (CLI), both implemented in Python. User commands are parsed using the Lark parsing toolkit.
- **Admin Service**: A backend service that interfaces with the RAGFlow system to execute administrative operations and monitor its status.
- **Admin CLI**: A command-line interface that allows users to connect to the Admin Service and issue commands for system management.
### Starting the Admin Service
1. Before start Admin Service, please make sure RAGFlow system is already started.
2. Run the service script:
```bash
python admin/admin_server.py
```
The service will start and listen for incoming connections from the CLI on the configured port.
### Using the Admin CLI
1. Ensure the Admin Service is running.
2. Launch the CLI client:
```bash
python admin/admin_client.py -h 0.0.0.0 -p 9381
## Supported Commands
Commands are case-insensitive and must be terminated with a semicolon (`;`).
### Service Management Commands
- `LIST SERVICES;`
- Lists all available services within the RAGFlow system.
- `SHOW SERVICE <id>;`
- Shows detailed status information for the service identified by `<id>`.
- `STARTUP SERVICE <id>;`
- Attempts to start the service identified by `<id>`.
- `SHUTDOWN SERVICE <id>;`
- Attempts to gracefully shut down the service identified by `<id>`.
- `RESTART SERVICE <id>;`
- Attempts to restart the service identified by `<id>`.
### User Management Commands
- `LIST USERS;`
- Lists all users known to the system.
- `SHOW USER '<username>';`
- Shows details and permissions for the specified user. The username must be enclosed in single or double quotes.
- `DROP USER '<username>';`
- Removes the specified user from the system. Use with caution.
- `ALTER USER PASSWORD '<username>' '<new_password>';`
- Changes the password for the specified user.
### Data and Agent Commands
- `LIST DATASETS OF '<username>';`
- Lists the datasets associated with the specified user.
- `LIST AGENTS OF '<username>';`
- Lists the agents associated with the specified user.
### Meta-Commands
Meta-commands are prefixed with a backslash (`\`).
- `\?` or `\help`
- Shows help information for the available commands.
- `\q` or `\quit`
- Exits the CLI application.
## Examples
```commandline
admin> list users;
+-------------------------------+------------------------+-----------+-------------+
| create_date | email | is_active | nickname |
+-------------------------------+------------------------+-----------+-------------+
| Fri, 22 Nov 2024 16:03:41 GMT | jeffery@infiniflow.org | 1 | Jeffery |
| Fri, 22 Nov 2024 16:10:55 GMT | aya@infiniflow.org | 1 | Waterdancer |
+-------------------------------+------------------------+-----------+-------------+
admin> list services;
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| extra | host | id | name | port | service_type |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| {} | 0.0.0.0 | 0 | ragflow_0 | 9380 | ragflow_server |
| {'meta_type': 'mysql', 'password': 'infini_rag_flow', 'username': 'root'} | localhost | 1 | mysql | 5455 | meta_data |
| {'password': 'infini_rag_flow', 'store_type': 'minio', 'user': 'rag_flow'} | localhost | 2 | minio | 9000 | file_store |
| {'password': 'infini_rag_flow', 'retrieval_type': 'elasticsearch', 'username': 'elastic'} | localhost | 3 | elasticsearch | 1200 | retrieval |
| {'db_name': 'default_db', 'retrieval_type': 'infinity'} | localhost | 4 | infinity | 23817 | retrieval |
| {'database': 1, 'mq_type': 'redis', 'password': 'infini_rag_flow'} | localhost | 5 | redis | 6379 | message_queue |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
```

574
admin/admin_client.py Normal file
View File

@ -0,0 +1,574 @@
import argparse
import base64
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5
from typing import Dict, List, Any
from lark import Lark, Transformer, Tree
import requests
from requests.auth import HTTPBasicAuth
from api.common.base64 import encode_to_base64
GRAMMAR = r"""
start: command
command: sql_command | meta_command
sql_command: list_services
| show_service
| startup_service
| shutdown_service
| restart_service
| list_users
| show_user
| drop_user
| alter_user
| create_user
| activate_user
| list_datasets
| list_agents
// meta command definition
meta_command: "\\" meta_command_name [meta_args]
meta_command_name: /[a-zA-Z?]+/
meta_args: (meta_arg)+
meta_arg: /[^\\s"']+/ | quoted_string
// command definition
LIST: "LIST"i
SERVICES: "SERVICES"i
SHOW: "SHOW"i
CREATE: "CREATE"i
SERVICE: "SERVICE"i
SHUTDOWN: "SHUTDOWN"i
STARTUP: "STARTUP"i
RESTART: "RESTART"i
USERS: "USERS"i
DROP: "DROP"i
USER: "USER"i
ALTER: "ALTER"i
ACTIVE: "ACTIVE"i
PASSWORD: "PASSWORD"i
DATASETS: "DATASETS"i
OF: "OF"i
AGENTS: "AGENTS"i
list_services: LIST SERVICES ";"
show_service: SHOW SERVICE NUMBER ";"
startup_service: STARTUP SERVICE NUMBER ";"
shutdown_service: SHUTDOWN SERVICE NUMBER ";"
restart_service: RESTART SERVICE NUMBER ";"
list_users: LIST USERS ";"
drop_user: DROP USER quoted_string ";"
alter_user: ALTER USER PASSWORD quoted_string quoted_string ";"
show_user: SHOW USER quoted_string ";"
create_user: CREATE USER quoted_string quoted_string ";"
activate_user: ALTER USER ACTIVE quoted_string status ";"
list_datasets: LIST DATASETS OF quoted_string ";"
list_agents: LIST AGENTS OF quoted_string ";"
identifier: WORD
quoted_string: QUOTED_STRING
status: WORD
QUOTED_STRING: /'[^']+'/ | /"[^"]+"/
WORD: /[a-zA-Z0-9_\-\.]+/
NUMBER: /[0-9]+/
%import common.WS
%ignore WS
"""
class AdminTransformer(Transformer):
def start(self, items):
return items[0]
def command(self, items):
return items[0]
def list_services(self, items):
result = {'type': 'list_services'}
return result
def show_service(self, items):
service_id = int(items[2])
return {"type": "show_service", "number": service_id}
def startup_service(self, items):
service_id = int(items[2])
return {"type": "startup_service", "number": service_id}
def shutdown_service(self, items):
service_id = int(items[2])
return {"type": "shutdown_service", "number": service_id}
def restart_service(self, items):
service_id = int(items[2])
return {"type": "restart_service", "number": service_id}
def list_users(self, items):
return {"type": "list_users"}
def show_user(self, items):
user_name = items[2]
return {"type": "show_user", "username": user_name}
def drop_user(self, items):
user_name = items[2]
return {"type": "drop_user", "username": user_name}
def alter_user(self, items):
user_name = items[3]
new_password = items[4]
return {"type": "alter_user", "username": user_name, "password": new_password}
def create_user(self, items):
user_name = items[2]
password = items[3]
return {"type": "create_user", "username": user_name, "password": password, "role": "user"}
def activate_user(self, items):
user_name = items[3]
activate_status = items[4]
return {"type": "activate_user", "activate_status": activate_status, "username": user_name}
def list_datasets(self, items):
user_name = items[3]
return {"type": "list_datasets", "username": user_name}
def list_agents(self, items):
user_name = items[3]
return {"type": "list_agents", "username": user_name}
def meta_command(self, items):
command_name = str(items[0]).lower()
args = items[1:] if len(items) > 1 else []
# handle quoted parameter
parsed_args = []
for arg in args:
if hasattr(arg, 'value'):
parsed_args.append(arg.value)
else:
parsed_args.append(str(arg))
return {'type': 'meta', 'command': command_name, 'args': parsed_args}
def meta_command_name(self, items):
return items[0]
def meta_args(self, items):
return items
def encrypt(input_string):
pub = '-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEArq9XTUSeYr2+N1h3Afl/z8Dse/2yD0ZGrKwx+EEEcdsBLca9Ynmx3nIB5obmLlSfmskLpBo0UACBmB5rEjBp2Q2f3AG3Hjd4B+gNCG6BDaawuDlgANIhGnaTLrIqWrrcm4EMzJOnAOI1fgzJRsOOUEfaS318Eq9OVO3apEyCCt0lOQK6PuksduOjVxtltDav+guVAA068NrPYmRNabVKRNLJpL8w4D44sfth5RvZ3q9t+6RTArpEtc5sh5ChzvqPOzKGMXW83C95TxmXqpbK6olN4RevSfVjEAgCydH6HN6OhtOQEcnrU97r9H0iZOWwbw3pVrZiUkuRD1R56Wzs2wIDAQAB\n-----END PUBLIC KEY-----'
pub_key = RSA.importKey(pub)
cipher = Cipher_pkcs1_v1_5.new(pub_key)
cipher_text = cipher.encrypt(base64.b64encode(input_string.encode('utf-8')))
return base64.b64encode(cipher_text).decode("utf-8")
class AdminCommandParser:
def __init__(self):
self.parser = Lark(GRAMMAR, start='start', parser='lalr', transformer=AdminTransformer())
self.command_history = []
def parse_command(self, command_str: str) -> Dict[str, Any]:
if not command_str.strip():
return {'type': 'empty'}
self.command_history.append(command_str)
try:
result = self.parser.parse(command_str)
return result
except Exception as e:
return {'type': 'error', 'message': f'Parse error: {str(e)}'}
class AdminCLI:
def __init__(self):
self.parser = AdminCommandParser()
self.is_interactive = False
self.admin_account = "admin@ragflow.io"
self.admin_password: str = "admin"
self.host: str = ""
self.port: int = 0
def verify_admin(self, args):
conn_info = self._parse_connection_args(args)
if 'error' in conn_info:
print(f"Error: {conn_info['error']}")
return
self.host = conn_info['host']
self.port = conn_info['port']
print(f"Attempt to access ip: {self.host}, port: {self.port}")
url = f'http://{self.host}:{self.port}/api/v1/admin/auth'
try_count = 0
while True:
try_count += 1
if try_count > 3:
return False
admin_passwd = input(f"password for {self.admin_account}: ").strip()
try:
self.admin_password = encode_to_base64(admin_passwd)
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
if response.status_code == 200:
res_json = response.json()
error_code = res_json.get('code', -1)
if error_code == 0:
print("Authentication successful.")
return True
else:
error_message = res_json.get('message', 'Unknown error')
print(f"Authentication failed: {error_message}, try again")
continue
else:
print(f"Bad responsestatus: {response.status_code}, try again")
except Exception:
print(f"Can't access {self.host}, port: {self.port}")
def _print_table_simple(self, data):
if not data:
print("No data to print")
return
if isinstance(data, dict):
# handle single row data
data = [data]
columns = list(data[0].keys())
col_widths = {}
for col in columns:
max_width = len(str(col))
for item in data:
value_len = len(str(item.get(col, '')))
if value_len > max_width:
max_width = value_len
col_widths[col] = max(2, max_width)
# Generate delimiter
separator = "+" + "+".join(["-" * (col_widths[col] + 2) for col in columns]) + "+"
# Print header
print(separator)
header = "|" + "|".join([f" {col:<{col_widths[col]}} " for col in columns]) + "|"
print(header)
print(separator)
# Print data
for item in data:
row = "|"
for col in columns:
value = str(item.get(col, ''))
if len(value) > col_widths[col]:
value = value[:col_widths[col] - 3] + "..."
row += f" {value:<{col_widths[col]}} |"
print(row)
print(separator)
def run_interactive(self):
self.is_interactive = True
print("RAGFlow Admin command line interface - Type '\\?' for help, '\\q' to quit")
while True:
try:
command = input("admin> ").strip()
if not command:
continue
print(f"command: {command}")
result = self.parser.parse_command(command)
self.execute_command(result)
if isinstance(result, Tree):
continue
if result.get('type') == 'meta' and result.get('command') in ['q', 'quit', 'exit']:
break
except KeyboardInterrupt:
print("\nUse '\\q' to quit")
except EOFError:
print("\nGoodbye!")
break
def run_single_command(self, args):
conn_info = self._parse_connection_args(args)
if 'error' in conn_info:
print(f"Error: {conn_info['error']}")
return
def _parse_connection_args(self, args: List[str]) -> Dict[str, Any]:
parser = argparse.ArgumentParser(description='Admin CLI Client', add_help=False)
parser.add_argument('-h', '--host', default='localhost', help='Admin service host')
parser.add_argument('-p', '--port', type=int, default=8080, help='Admin service port')
try:
parsed_args, remaining_args = parser.parse_known_args(args)
return {
'host': parsed_args.host,
'port': parsed_args.port,
}
except SystemExit:
return {'error': 'Invalid connection arguments'}
def execute_command(self, parsed_command: Dict[str, Any]):
command_dict: dict
if isinstance(parsed_command, Tree):
command_dict = parsed_command.children[0]
else:
if parsed_command['type'] == 'error':
print(f"Error: {parsed_command['message']}")
return
else:
command_dict = parsed_command
# print(f"Parsed command: {command_dict}")
command_type = command_dict['type']
match command_type:
case 'list_services':
self._handle_list_services(command_dict)
case 'show_service':
self._handle_show_service(command_dict)
case 'restart_service':
self._handle_restart_service(command_dict)
case 'shutdown_service':
self._handle_shutdown_service(command_dict)
case 'startup_service':
self._handle_startup_service(command_dict)
case 'list_users':
self._handle_list_users(command_dict)
case 'show_user':
self._handle_show_user(command_dict)
case 'drop_user':
self._handle_drop_user(command_dict)
case 'alter_user':
self._handle_alter_user(command_dict)
case 'create_user':
self._handle_create_user(command_dict)
case 'activate_user':
self._handle_activate_user(command_dict)
case 'list_datasets':
self._handle_list_datasets(command_dict)
case 'list_agents':
self._handle_list_agents(command_dict)
case 'meta':
self._handle_meta_command(command_dict)
case _:
print(f"Command '{command_type}' would be executed with API")
def _handle_list_services(self, command):
print("Listing all services")
url = f'http://{self.host}:{self.port}/api/v1/admin/services'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all users, code: {res_json['code']}, message: {res_json['message']}")
def _handle_show_service(self, command):
service_id: int = command['number']
print(f"Showing service: {service_id}")
def _handle_restart_service(self, command):
service_id: int = command['number']
print(f"Restart service {service_id}")
def _handle_shutdown_service(self, command):
service_id: int = command['number']
print(f"Shutdown service {service_id}")
def _handle_startup_service(self, command):
service_id: int = command['number']
print(f"Startup service {service_id}")
def _handle_list_users(self, command):
print("Listing all users")
url = f'http://{self.host}:{self.port}/api/v1/admin/users'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all users, code: {res_json['code']}, message: {res_json['message']}")
def _handle_show_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Showing user: {username}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get user {username}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_drop_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Drop user: {username}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}'
response = requests.delete(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
else:
print(f"Fail to drop user, code: {res_json['code']}, message: {res_json['message']}")
def _handle_alter_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
password_tree: Tree = command['password']
password: str = password_tree.children[0].strip("'\"")
print(f"Alter user: {username}, password: {password}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}/password'
response = requests.put(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password),
json={'new_password': encrypt(password)})
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
else:
print(f"Fail to alter password, code: {res_json['code']}, message: {res_json['message']}")
def _handle_create_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
password_tree: Tree = command['password']
password: str = password_tree.children[0].strip("'\"")
role: str = command['role']
print(f"Create user: {username}, password: {password}, role: {role}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users'
response = requests.post(
url,
auth=HTTPBasicAuth(self.admin_account, self.admin_password),
json={'username': username, 'password': encrypt(password), 'role': role}
)
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to create user {username}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_activate_user(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
activate_tree: Tree = command['activate_status']
activate_status: str = activate_tree.children[0].strip("'\"")
if activate_status.lower() in ['on', 'off']:
print(f"Alter user {username} activate status, turn {activate_status.lower()}.")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}/activate'
response = requests.put(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password),
json={'activate_status': activate_status})
res_json = response.json()
if response.status_code == 200:
print(res_json["message"])
else:
print(f"Fail to alter activate status, code: {res_json['code']}, message: {res_json['message']}")
else:
print(f"Unknown activate status: {activate_status}.")
def _handle_list_datasets(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Listing all datasets of user: {username}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}/datasets'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all datasets of {username}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_list_agents(self, command):
username_tree: Tree = command['username']
username: str = username_tree.children[0].strip("'\"")
print(f"Listing all agents of user: {username}")
url = f'http://{self.host}:{self.port}/api/v1/admin/users/{username}/agents'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
self._print_table_simple(res_json['data'])
else:
print(f"Fail to get all agents of {username}, code: {res_json['code']}, message: {res_json['message']}")
def _handle_meta_command(self, command):
meta_command = command['command']
args = command.get('args', [])
if meta_command in ['?', 'h', 'help']:
self.show_help()
elif meta_command in ['q', 'quit', 'exit']:
print("Goodbye!")
else:
print(f"Meta command '{meta_command}' with args {args}")
def show_help(self):
"""Help info"""
help_text = """
Commands:
LIST SERVICES
SHOW SERVICE <service>
STARTUP SERVICE <service>
SHUTDOWN SERVICE <service>
RESTART SERVICE <service>
LIST USERS
SHOW USER <user>
DROP USER <user>
CREATE USER <user> <password>
ALTER USER PASSWORD <user> <new_password>
ALTER USER ACTIVE <user> <on/off>
LIST DATASETS OF <user>
LIST AGENTS OF <user>
Meta Commands:
\\?, \\h, \\help Show this help
\\q, \\quit, \\exit Quit the CLI
"""
print(help_text)
def main():
import sys
cli = AdminCLI()
if len(sys.argv) == 1 or (len(sys.argv) > 1 and sys.argv[1] == '-'):
print(r"""
____ ___ ______________ ___ __ _
/ __ \/ | / ____/ ____/ /___ _ __ / | ____/ /___ ___ (_)___
/ /_/ / /| |/ / __/ /_ / / __ \ | /| / / / /| |/ __ / __ `__ \/ / __ \
/ _, _/ ___ / /_/ / __/ / / /_/ / |/ |/ / / ___ / /_/ / / / / / / / / / /
/_/ |_/_/ |_\____/_/ /_/\____/|__/|__/ /_/ |_\__,_/_/ /_/ /_/_/_/ /_/
""")
if cli.verify_admin(sys.argv):
cli.run_interactive()
else:
if cli.verify_admin(sys.argv):
cli.run_interactive()
# cli.run_single_command(sys.argv[1:])
if __name__ == '__main__':
main()

47
admin/admin_server.py Normal file
View File

@ -0,0 +1,47 @@
import os
import signal
import logging
import time
import threading
import traceback
from werkzeug.serving import run_simple
from flask import Flask
from routes import admin_bp
from api.utils.log_utils import init_root_logger
from api.constants import SERVICE_CONF
from api import settings
from config import load_configurations, SERVICE_CONFIGS
stop_event = threading.Event()
if __name__ == '__main__':
init_root_logger("admin_service")
logging.info(r"""
____ ___ ______________ ___ __ _
/ __ \/ | / ____/ ____/ /___ _ __ / | ____/ /___ ___ (_)___
/ /_/ / /| |/ / __/ /_ / / __ \ | /| / / / /| |/ __ / __ `__ \/ / __ \
/ _, _/ ___ / /_/ / __/ / / /_/ / |/ |/ / / ___ / /_/ / / / / / / / / / /
/_/ |_/_/ |_\____/_/ /_/\____/|__/|__/ /_/ |_\__,_/_/ /_/ /_/_/_/ /_/
""")
app = Flask(__name__)
app.register_blueprint(admin_bp)
settings.init_settings()
SERVICE_CONFIGS.configs = load_configurations(SERVICE_CONF)
try:
logging.info("RAGFlow Admin service start...")
run_simple(
hostname="0.0.0.0",
port=9381,
application=app,
threaded=True,
use_reloader=True,
use_debugger=True,
)
except Exception:
traceback.print_exc()
stop_event.set()
time.sleep(1)
os.kill(os.getpid(), signal.SIGKILL)

57
admin/auth.py Normal file
View File

@ -0,0 +1,57 @@
import logging
import uuid
from functools import wraps
from flask import request, jsonify
from exceptions import AdminException
from api.db.init_data import encode_to_base64
from api.db.services import UserService
def check_admin(username: str, password: str):
users = UserService.query(email=username)
if not users:
logging.info(f"Username: {username} is not registered!")
user_info = {
"id": uuid.uuid1().hex,
"password": encode_to_base64("admin"),
"nickname": "admin",
"is_superuser": True,
"email": "admin@ragflow.io",
"creator": "system",
"status": "1",
}
if not UserService.save(**user_info):
raise AdminException("Can't init admin.", 500)
user = UserService.query_user(username, password)
if user:
return True
else:
return False
def login_verify(f):
@wraps(f)
def decorated(*args, **kwargs):
auth = request.authorization
if not auth or 'username' not in auth.parameters or 'password' not in auth.parameters:
return jsonify({
"code": 401,
"message": "Authentication required",
"data": None
}), 200
username = auth.parameters['username']
password = auth.parameters['password']
# TODO: to check the username and password from DB
if check_admin(username, password) is False:
return jsonify({
"code": 403,
"message": "Access denied",
"data": None
}), 200
return f(*args, **kwargs)
return decorated

280
admin/config.py Normal file
View File

@ -0,0 +1,280 @@
import logging
import threading
from enum import Enum
from pydantic import BaseModel
from typing import Any
from api.utils.configs import read_config
from urllib.parse import urlparse
class ServiceConfigs:
def __init__(self):
self.configs = []
self.lock = threading.Lock()
SERVICE_CONFIGS = ServiceConfigs
class ServiceType(Enum):
METADATA = "metadata"
RETRIEVAL = "retrieval"
MESSAGE_QUEUE = "message_queue"
RAGFLOW_SERVER = "ragflow_server"
TASK_EXECUTOR = "task_executor"
FILE_STORE = "file_store"
class BaseConfig(BaseModel):
id: int
name: str
host: str
port: int
service_type: str
def to_dict(self) -> dict[str, Any]:
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port, 'service_type': self.service_type}
class MetaConfig(BaseConfig):
meta_type: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['meta_type'] = self.meta_type
result['extra'] = extra_dict
return result
class MySQLConfig(MetaConfig):
username: str
password: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['username'] = self.username
extra_dict['password'] = self.password
result['extra'] = extra_dict
return result
class PostgresConfig(MetaConfig):
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
return result
class RetrievalConfig(BaseConfig):
retrieval_type: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['retrieval_type'] = self.retrieval_type
result['extra'] = extra_dict
return result
class InfinityConfig(RetrievalConfig):
db_name: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['db_name'] = self.db_name
result['extra'] = extra_dict
return result
class ElasticsearchConfig(RetrievalConfig):
username: str
password: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['username'] = self.username
extra_dict['password'] = self.password
result['extra'] = extra_dict
return result
class MessageQueueConfig(BaseConfig):
mq_type: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['mq_type'] = self.mq_type
result['extra'] = extra_dict
return result
class RedisConfig(MessageQueueConfig):
database: int
password: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['database'] = self.database
extra_dict['password'] = self.password
result['extra'] = extra_dict
return result
class RabbitMQConfig(MessageQueueConfig):
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
return result
class RAGFlowServerConfig(BaseConfig):
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
return result
class TaskExecutorConfig(BaseConfig):
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
return result
class FileStoreConfig(BaseConfig):
store_type: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['store_type'] = self.store_type
result['extra'] = extra_dict
return result
class MinioConfig(FileStoreConfig):
user: str
password: str
def to_dict(self) -> dict[str, Any]:
result = super().to_dict()
if 'extra' not in result:
result['extra'] = dict()
extra_dict = result['extra'].copy()
extra_dict['user'] = self.user
extra_dict['password'] = self.password
result['extra'] = extra_dict
return result
def load_configurations(config_path: str) -> list[BaseConfig]:
raw_configs = read_config(config_path)
configurations = []
ragflow_count = 0
id_count = 0
for k, v in raw_configs.items():
match (k):
case "ragflow":
name: str = f'ragflow_{ragflow_count}'
host: str = v['host']
http_port: int = v['http_port']
config = RAGFlowServerConfig(id=id_count, name=name, host=host, port=http_port, service_type="ragflow_server")
configurations.append(config)
id_count += 1
case "es":
name: str = 'elasticsearch'
url = v['hosts']
parsed = urlparse(url)
host: str = parsed.hostname
port: int = parsed.port
username: str = v.get('username')
password: str = v.get('password')
config = ElasticsearchConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval",
retrieval_type="elasticsearch",
username=username, password=password)
configurations.append(config)
id_count += 1
case "infinity":
name: str = 'infinity'
url = v['uri']
parts = url.split(':', 1)
host = parts[0]
port = int(parts[1])
database: str = v.get('db_name', 'default_db')
config = InfinityConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval", retrieval_type="infinity",
db_name=database)
configurations.append(config)
id_count += 1
case "minio":
name: str = 'minio'
url = v['host']
parts = url.split(':', 1)
host = parts[0]
port = int(parts[1])
user = v.get('user')
password = v.get('password')
config = MinioConfig(id=id_count, name=name, host=host, port=port, user=user, password=password, service_type="file_store",
store_type="minio")
configurations.append(config)
id_count += 1
case "redis":
name: str = 'redis'
url = v['host']
parts = url.split(':', 1)
host = parts[0]
port = int(parts[1])
password = v.get('password')
db: int = v.get('db')
config = RedisConfig(id=id_count, name=name, host=host, port=port, password=password, database=db,
service_type="message_queue", mq_type="redis")
configurations.append(config)
id_count += 1
case "mysql":
name: str = 'mysql'
host: str = v.get('host')
port: int = v.get('port')
username = v.get('user')
password = v.get('password')
config = MySQLConfig(id=id_count, name=name, host=host, port=port, username=username, password=password,
service_type="meta_data", meta_type="mysql")
configurations.append(config)
id_count += 1
case "admin":
pass
case _:
logging.warning(f"Unknown configuration key: {k}")
continue
return configurations

17
admin/exceptions.py Normal file
View File

@ -0,0 +1,17 @@
class AdminException(Exception):
def __init__(self, message, code=400):
super().__init__(message)
self.code = code
self.message = message
class UserNotFoundError(AdminException):
def __init__(self, username):
super().__init__(f"User '{username}' not found", 404)
class UserAlreadyExistsError(AdminException):
def __init__(self, username):
super().__init__(f"User '{username}' already exists", 409)
class CannotDeleteAdminError(AdminException):
def __init__(self):
super().__init__("Cannot delete admin account", 403)

15
admin/responses.py Normal file
View File

@ -0,0 +1,15 @@
from flask import jsonify
def success_response(data=None, message="Success", code = 0):
return jsonify({
"code": code,
"message": message,
"data": data
}), 200
def error_response(message="Error", code=-1, data=None):
return jsonify({
"code": code,
"message": message,
"data": data
}), 400

190
admin/routes.py Normal file
View File

@ -0,0 +1,190 @@
from flask import Blueprint, request
from auth import login_verify
from responses import success_response, error_response
from services import UserMgr, ServiceMgr, UserServiceMgr
from exceptions import AdminException
admin_bp = Blueprint('admin', __name__, url_prefix='/api/v1/admin')
@admin_bp.route('/auth', methods=['GET'])
@login_verify
def auth_admin():
try:
return success_response(None, "Admin is authorized", 0)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users', methods=['GET'])
@login_verify
def list_users():
try:
users = UserMgr.get_all_users()
return success_response(users, "Get all users", 0)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users', methods=['POST'])
@login_verify
def create_user():
try:
data = request.get_json()
if not data or 'username' not in data or 'password' not in data:
return error_response("Username and password are required", 400)
username = data['username']
password = data['password']
role = data.get('role', 'user')
res = UserMgr.create_user(username, password, role)
if res["success"]:
user_info = res["user_info"]
user_info.pop("password") # do not return password
return success_response(user_info, "User created successfully")
else:
return error_response("create user failed")
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e))
@admin_bp.route('/users/<username>', methods=['DELETE'])
@login_verify
def delete_user(username):
try:
res = UserMgr.delete_user(username)
if res["success"]:
return success_response(None, res["message"])
else:
return error_response(res["message"])
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/password', methods=['PUT'])
@login_verify
def change_password(username):
try:
data = request.get_json()
if not data or 'new_password' not in data:
return error_response("New password is required", 400)
new_password = data['new_password']
msg = UserMgr.update_user_password(username, new_password)
return success_response(None, msg)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/activate', methods=['PUT'])
@login_verify
def alter_user_activate_status(username):
try:
data = request.get_json()
if not data or 'activate_status' not in data:
return error_response("Activation status is required", 400)
activate_status = data['activate_status']
msg = UserMgr.update_user_activate_status(username, activate_status)
return success_response(None, msg)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>', methods=['GET'])
@login_verify
def get_user_details(username):
try:
user_details = UserMgr.get_user_details(username)
return success_response(user_details)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/datasets', methods=['GET'])
@login_verify
def get_user_datasets(username):
try:
datasets_list = UserServiceMgr.get_user_datasets(username)
return success_response(datasets_list)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/users/<username>/agents', methods=['GET'])
@login_verify
def get_user_agents(username):
try:
agents_list = UserServiceMgr.get_user_agents(username)
return success_response(agents_list)
except AdminException as e:
return error_response(e.message, e.code)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services', methods=['GET'])
@login_verify
def get_services():
try:
services = ServiceMgr.get_all_services()
return success_response(services, "Get all services", 0)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/service_types/<service_type>', methods=['GET'])
@login_verify
def get_services_by_type(service_type_str):
try:
services = ServiceMgr.get_services_by_type(service_type_str)
return success_response(services)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services/<service_id>', methods=['GET'])
@login_verify
def get_service(service_id):
try:
services = ServiceMgr.get_service_details(service_id)
return success_response(services)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services/<service_id>', methods=['DELETE'])
@login_verify
def shutdown_service(service_id):
try:
services = ServiceMgr.shutdown_service(service_id)
return success_response(services)
except Exception as e:
return error_response(str(e), 500)
@admin_bp.route('/services/<service_id>', methods=['PUT'])
@login_verify
def restart_service(service_id):
try:
services = ServiceMgr.restart_service(service_id)
return success_response(services)
except Exception as e:
return error_response(str(e), 500)

175
admin/services.py Normal file
View File

@ -0,0 +1,175 @@
import re
from werkzeug.security import check_password_hash
from api.db import ActiveEnum
from api.db.services import UserService
from api.db.joint_services.user_account_service import create_new_user, delete_user_data
from api.db.services.canvas_service import UserCanvasService
from api.db.services.user_service import TenantService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.crypt import decrypt
from exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
from config import SERVICE_CONFIGS
class UserMgr:
@staticmethod
def get_all_users():
users = UserService.get_all_users()
result = []
for user in users:
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date, 'is_active': user.is_active})
return result
@staticmethod
def get_user_details(username):
# use email to query
users = UserService.query_user_by_email(username)
result = []
for user in users:
result.append({
'email': user.email,
'language': user.language,
'last_login_time': user.last_login_time,
'is_authenticated': user.is_authenticated,
'is_active': user.is_active,
'is_anonymous': user.is_anonymous,
'login_channel': user.login_channel,
'status': user.status,
'is_superuser': user.is_superuser,
'create_date': user.create_date,
'update_date': user.update_date
})
return result
@staticmethod
def create_user(username, password, role="user") -> dict:
# Validate the email address
if not re.match(r"^[\w\._-]+@([\w_-]+\.)+[\w-]{2,}$", username):
raise AdminException(f"Invalid email address: {username}!")
# Check if the email address is already used
if UserService.query(email=username):
raise UserAlreadyExistsError(username)
# Construct user info data
user_info_dict = {
"email": username,
"nickname": "", # ask user to edit it manually in settings.
"password": decrypt(password),
"login_channel": "password",
"is_superuser": role == "admin",
}
return create_new_user(user_info_dict)
@staticmethod
def delete_user(username):
# use email to delete
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
if len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
usr = user_list[0]
return delete_user_data(usr.id)
@staticmethod
def update_user_password(username, new_password) -> str:
# use email to find user. check exist and unique.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# check new_password different from old.
usr = user_list[0]
psw = decrypt(new_password)
if check_password_hash(usr.password, psw):
return "Same password, no need to update!"
# update password
UserService.update_user_password(usr.id, psw)
return "Password updated successfully!"
@staticmethod
def update_user_activate_status(username, activate_status: str):
# use email to find user. check exist and unique.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# check activate status different from new
usr = user_list[0]
# format activate_status before handle
_activate_status = activate_status.lower()
target_status = {
'on': ActiveEnum.ACTIVE.value,
'off': ActiveEnum.INACTIVE.value,
}.get(_activate_status)
if not target_status:
raise AdminException(f"Invalid activate_status: {activate_status}")
if target_status == usr.is_active:
return f"User activate status is already {_activate_status}!"
# update is_active
UserService.update_user(usr.id, {"is_active": target_status})
return f"Turn {_activate_status} user activate status successfully!"
class UserServiceMgr:
@staticmethod
def get_user_datasets(username):
# use email to find user.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# find tenants
usr = user_list[0]
tenants = TenantService.get_joined_tenants_by_user_id(usr.id)
tenant_ids = [m["tenant_id"] for m in tenants]
# filter permitted kb and owned kb
return KnowledgebaseService.get_all_kb_by_tenant_ids(tenant_ids, usr.id)
@staticmethod
def get_user_agents(username):
# use email to find user.
user_list = UserService.query_user_by_email(username)
if not user_list:
raise UserNotFoundError(username)
elif len(user_list) > 1:
raise AdminException(f"Exist more than 1 user: {username}!")
# find tenants
usr = user_list[0]
tenants = TenantService.get_joined_tenants_by_user_id(usr.id)
tenant_ids = [m["tenant_id"] for m in tenants]
# filter permitted agents and owned agents
res = UserCanvasService.get_all_agents_by_tenant_ids(tenant_ids, usr.id)
return [{
'title': r['title'],
'permission': r['permission'],
'canvas_type': r['canvas_type'],
'canvas_category': r['canvas_category']
} for r in res]
class ServiceMgr:
@staticmethod
def get_all_services():
result = []
configs = SERVICE_CONFIGS.configs
for config in configs:
result.append(config.to_dict())
return result
@staticmethod
def get_services_by_type(service_type_str: str):
raise AdminException("get_services_by_type: not implemented")
@staticmethod
def get_service_details(service_id: int):
raise AdminException("get_service_details: not implemented")
@staticmethod
def shutdown_service(service_id: int):
raise AdminException("shutdown_service: not implemented")
@staticmethod
def restart_service(service_id: int):
raise AdminException("restart_service: not implemented")

View File

@ -16,6 +16,7 @@
import base64
import json
import logging
import re
import time
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
@ -26,11 +27,10 @@ from agent.component import component_class
from agent.component.base import ComponentBase
from api.db.services.file_service import FileService
from api.utils import get_uuid, hash_str2int
from rag.prompts.prompts import chunks_format
from rag.prompts.generator import chunks_format
from rag.utils.redis_conn import REDIS_CONN
class Canvas:
class Graph:
"""
dsl = {
"components": {
@ -73,39 +73,9 @@ class Canvas:
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.path = []
self.history = []
self.components = {}
self.error = ""
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
self.dsl = json.loads(dsl) if dsl else {
"components": {
"begin": {
"obj": {
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": [],
"upstream": [],
"parent_id": ""
}
},
"history": [],
"path": [],
"retrieval": [],
"globals": {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
}
self.dsl = json.loads(dsl)
self._tenant_id = tenant_id
self.task_id = task_id if task_id else get_uuid()
self.load()
@ -116,8 +86,6 @@ class Canvas:
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
@ -130,18 +98,10 @@ class Canvas:
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
self.path = self.dsl["path"]
self.history = self.dsl["history"]
self.globals = self.dsl["globals"]
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self):
self.dsl["path"] = self.path
self.dsl["history"] = self.history
self.dsl["globals"] = self.globals
self.dsl["task_id"] = self.task_id
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
dsl = {
"components": {}
}
@ -160,14 +120,89 @@ class Canvas:
dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False)
def reset(self, mem=False):
def reset(self):
self.path = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
raise NotImplementedError()
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def get_tenant_id(self):
return self._tenant_id
def get_variable_value(self, exp: str) -> Any:
exp = exp.strip("{").strip("}").strip(" ").strip("{").strip("}")
if exp.find("@") < 0:
return self.globals[exp]
cpn_id, var_nm = exp.split("@")
cpn = self.get_component(cpn_id)
if not cpn:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
class Canvas(Graph):
def __init__(self, dsl: str, tenant_id=None, task_id=None):
self.globals = {
"sys.query": "",
"sys.user_id": tenant_id,
"sys.conversation_turns": 0,
"sys.files": []
}
super().__init__(dsl, tenant_id, task_id)
def load(self):
super().load()
self.history = self.dsl["history"]
if "globals" in self.dsl:
self.globals = self.dsl["globals"]
else:
self.globals = {
"sys.query": "",
"sys.user_id": "",
"sys.conversation_turns": 0,
"sys.files": []
}
self.retrieval = self.dsl["retrieval"]
self.memory = self.dsl.get("memory", [])
def __str__(self):
self.dsl["history"] = self.history
self.dsl["retrieval"] = self.retrieval
self.dsl["memory"] = self.memory
return super().__str__()
def reset(self, mem=False):
super().reset()
if not mem:
self.history = []
self.retrieval = []
self.memory = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
for k in self.globals.keys():
if isinstance(self.globals[k], str):
@ -183,22 +218,13 @@ class Canvas:
else:
self.globals[k] = None
try:
REDIS_CONN.delete(f"{self.task_id}-logs")
except Exception as e:
logging.exception(e)
def get_component_name(self, cid):
for n in self.dsl.get("graph", {}).get("nodes", []):
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
st = time.perf_counter()
self.message_id = get_uuid()
created_at = int(time.time())
self.add_user_input(kwargs.get("query"))
for k, cpn in self.components.items():
self.components[k]["obj"].reset(True)
for k in kwargs.keys():
if k in ["query", "user_id", "files"] and kwargs[k]:
@ -285,9 +311,11 @@ class Canvas:
yield decorate("message", {"content": m})
_m += m
cpn_obj.set_output("content", _m)
cite = re.search(r"\[ID:[ 0-9]+\]", _m)
else:
yield decorate("message", {"content": cpn_obj.output("content")})
yield decorate("message_end", {"reference": self.get_reference()})
cite = re.search(r"\[ID:[ 0-9]+\]", cpn_obj.output("content"))
yield decorate("message_end", {"reference": self.get_reference() if cite else None})
while partials:
_cpn_obj = self.get_component_obj(partials[0])
@ -377,18 +405,6 @@ class Canvas:
})
self.history.append(("assistant", self.get_component_obj(self.path[-1]).output()))
def get_component(self, cpn_id) -> Union[None, dict[str, Any]]:
return self.components.get(cpn_id)
def get_component_obj(self, cpn_id) -> ComponentBase:
return self.components.get(cpn_id)["obj"]
def get_component_type(self, cpn_id) -> str:
return self.components.get(cpn_id)["obj"].component_name
def get_component_input_form(self, cpn_id) -> dict:
return self.components.get(cpn_id)["obj"].get_input_form()
def is_reff(self, exp: str) -> bool:
exp = exp.strip("{").strip("}")
if exp.find("@") < 0:
@ -400,24 +416,11 @@ class Canvas:
return False
return True
def get_variable_value(self, exp: str) -> Any:
exp = exp.strip("{").strip("}").strip(" ").strip("{").strip("}")
if exp.find("@") < 0:
return self.globals[exp]
cpn_id, var_nm = exp.split("@")
cpn = self.get_component(cpn_id)
if not cpn:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
def get_tenant_id(self):
return self._tenant_id
def get_history(self, window_size):
convs = []
if window_size <= 0:
return convs
for role, obj in self.history[window_size * -1:]:
for role, obj in self.history[window_size * -2:]:
if isinstance(obj, dict):
convs.append({"role": role, "content": obj.get("content", "")})
else:
@ -427,39 +430,12 @@ class Canvas:
def add_user_input(self, question):
self.history.append(("user", question))
def _find_loop(self, max_loops=6):
path = self.path[-1][::-1]
if len(path) < 2:
return False
for i in range(len(path)):
if path[i].lower().find("answer") == 0 or path[i].lower().find("iterationitem") == 0:
path = path[:i]
break
if len(path) < 2:
return False
for loc in range(2, len(path) // 2):
pat = ",".join(path[0:loc])
path_str = ",".join(path)
if len(pat) >= len(path_str):
return False
loop = max_loops
while path_str.find(pat) == 0 and loop >= 0:
loop -= 1
if len(pat)+1 >= len(path_str):
return False
path_str = path_str[len(pat)+1:]
if loop < 0:
pat = " => ".join([p.split(":")[0] for p in path[0:loc]])
return pat + " => " + pat
return False
def get_prologue(self):
return self.components["begin"]["obj"]._param.prologue
def get_mode(self):
return self.components["begin"]["obj"]._param.mode
def set_global_param(self, **kwargs):
self.globals.update(kwargs)
@ -508,13 +484,14 @@ class Canvas:
except Exception as e:
logging.exception(e)
def add_refernce(self, chunks: list[object], doc_infos: list[object]):
def add_reference(self, chunks: list[object], doc_infos: list[object]):
if not self.retrieval:
self.retrieval = [{"chunks": {}, "doc_aggs": {}}]
r = self.retrieval[-1]
for ck in chunks_format({"chunks": chunks}):
cid = hash_str2int(ck["id"], 100)
cid = hash_str2int(ck["id"], 500)
# cid = uuid.uuid5(uuid.NAMESPACE_DNS, ck["id"])
if cid not in r:
r["chunks"][cid] = ck

View File

@ -50,8 +50,9 @@ del _package_path, _import_submodules, _extract_classes_from_module
def component_class(class_name):
m = importlib.import_module("agent.component")
for mdl in ["agent.component", "agent.tools", "rag.flow"]:
try:
return getattr(m, class_name)
return getattr(importlib.import_module(mdl), class_name)
except Exception:
return getattr(importlib.import_module("agent.tools"), class_name)
pass
assert False, f"Can't import {class_name}"

View File

@ -28,9 +28,8 @@ from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.mcp_server_service import MCPServerService
from api.utils.api_utils import timeout
from rag.prompts import message_fit_in
from rag.prompts.prompts import next_step, COMPLETE_TASK, analyze_task, \
citation_prompt, reflect, rank_memories, kb_prompt, citation_plus, full_question
from rag.prompts.generator import next_step, COMPLETE_TASK, analyze_task, \
citation_prompt, reflect, rank_memories, kb_prompt, citation_plus, full_question, message_fit_in
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, mcp_tool_metadata_to_openai_tool
from agent.component.llm import LLMParam, LLM
@ -138,7 +137,7 @@ class Agent(LLM, ToolBase):
res.update(cpn.get_input_form())
return res
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 20*60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 20*60)))
def _invoke(self, **kwargs):
if kwargs.get("user_prompt"):
usr_pmt = ""
@ -155,18 +154,18 @@ class Agent(LLM, ToolBase):
if not self.tools:
return LLM._invoke(self, **kwargs)
prompt, msg = self._prepare_prompt_variables()
prompt, msg, user_defined_prompt = self._prepare_prompt_variables()
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg))
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg, user_defined_prompt))
return
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
use_tools = []
ans = ""
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools):
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
ans += delta_ans
if ans.find("**ERROR**") >= 0:
@ -182,11 +181,11 @@ class Agent(LLM, ToolBase):
self.set_output("use_tools", use_tools)
return ans
def stream_output_with_tools(self, prompt, msg):
def stream_output_with_tools(self, prompt, msg, user_defined_prompt={}):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer_without_toolcall = ""
use_tools = []
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools):
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
if delta_ans.find("**ERROR**") >= 0:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
@ -209,7 +208,7 @@ class Agent(LLM, ToolBase):
]):
yield delta_ans
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools):
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools, user_defined_prompt={}):
token_count = 0
tool_metas = self.tool_meta
hist = deepcopy(history)
@ -230,7 +229,7 @@ class Agent(LLM, ToolBase):
# last_calling,
# last_calling != name
#]):
# self.toolcall_session.get_tool_obj(name).add2system_prompt(f"The chat history with other agents are as following: \n" + self.get_useful_memory(user_request, str(args["user_prompt"])))
# self.toolcall_session.get_tool_obj(name).add2system_prompt(f"The chat history with other agents are as following: \n" + self.get_useful_memory(user_request, str(args["user_prompt"]),user_defined_prompt))
last_calling = name
tool_response = self.toolcall_session.tool_call(name, args)
use_tools.append({
@ -239,7 +238,7 @@ class Agent(LLM, ToolBase):
"results": tool_response
})
# self.callback("add_memory", {}, "...")
#self.add_memory(hist[-2]["content"], hist[-1]["content"], name, args, str(tool_response))
#self.add_memory(hist[-2]["content"], hist[-1]["content"], name, args, str(tool_response), user_defined_prompt)
return name, tool_response
@ -279,10 +278,10 @@ class Agent(LLM, ToolBase):
hist.append({"role": "user", "content": content})
st = timer()
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas)
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas, user_defined_prompt)
self.callback("analyze_task", {}, task_desc, elapsed_time=timer()-st)
for _ in range(self._param.max_rounds + 1):
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc)
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc, user_defined_prompt)
# self.callback("next_step", {}, str(response)[:256]+"...")
token_count += tk
hist.append({"role": "assistant", "content": response})
@ -307,7 +306,7 @@ class Agent(LLM, ToolBase):
thr.append(executor.submit(use_tool, name, args))
st = timer()
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr])
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr], user_defined_prompt)
append_user_content(hist, reflection)
self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st)
@ -334,10 +333,10 @@ Respond immediately with your final comprehensive answer.
for txt, tkcnt in complete():
yield txt, tkcnt
def get_useful_memory(self, goal: str, sub_goal:str, topn=3) -> str:
def get_useful_memory(self, goal: str, sub_goal:str, topn=3, user_defined_prompt:dict={}) -> str:
# self.callback("get_useful_memory", {"topn": 3}, "...")
mems = self._canvas.get_memory()
rank = rank_memories(self.chat_mdl, goal, sub_goal, [summ for (user, assist, summ) in mems])
rank = rank_memories(self.chat_mdl, goal, sub_goal, [summ for (user, assist, summ) in mems], user_defined_prompt)
try:
rank = json_repair.loads(re.sub(r"```.*", "", rank))[:topn]
mems = [mems[r] for r in rank]

View File

@ -16,7 +16,7 @@
import re
import time
from abc import ABC, abstractmethod
from abc import ABC
import builtins
import json
import os
@ -36,7 +36,7 @@ _IS_RAW_CONF = "_is_raw_conf"
class ComponentParamBase(ABC):
def __init__(self):
self.message_history_window_size = 22
self.message_history_window_size = 13
self.inputs = {}
self.outputs = {}
self.description = ""
@ -244,7 +244,7 @@ class ComponentParamBase(ABC):
if not value_legal:
raise ValueError(
"Plase check runtime conf, {} = {} does not match user-parameter restriction".format(
"Please check runtime conf, {} = {} does not match user-parameter restriction".format(
variable, value
)
)
@ -410,8 +410,8 @@ class ComponentBase(ABC):
)
def __init__(self, canvas, id, param: ComponentParamBase):
from agent.canvas import Canvas # Local import to avoid cyclic dependency
assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas"
from agent.canvas import Graph # Local import to avoid cyclic dependency
assert isinstance(canvas, Graph), "canvas must be an instance of Canvas"
self._canvas = canvas
self._id = id
self._param = param
@ -431,7 +431,7 @@ class ComponentBase(ABC):
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
raise NotImplementedError()
@ -448,9 +448,11 @@ class ComponentBase(ABC):
def error(self):
return self._param.outputs.get("_ERROR", {}).get("value")
def reset(self):
def reset(self, only_output=False):
for k in self._param.outputs.keys():
self._param.outputs[k]["value"] = None
if only_output:
return
for k in self._param.inputs.keys():
self._param.inputs[k]["value"] = None
self._param.debug_inputs = {}
@ -526,6 +528,10 @@ class ComponentBase(ABC):
cpn_nms = self._canvas.get_component(self._id)['upstream']
return cpn_nms
def get_downstream(self) -> List[str]:
cpn_nms = self._canvas.get_component(self._id)['downstream']
return cpn_nms
@staticmethod
def string_format(content: str, kv: dict[str, str]) -> str:
for n, v in kv.items():
@ -554,6 +560,5 @@ class ComponentBase(ABC):
def set_exception_default_value(self):
self.set_output("result", self.get_exception_default_value())
@abstractmethod
def thoughts(self) -> str:
...
raise NotImplementedError()

View File

@ -28,7 +28,7 @@ from rag.llm.chat_model import ERROR_PREFIX
class CategorizeParam(LLMParam):
"""
Define the Categorize component parameters.
Define the categorize component parameters.
"""
def __init__(self):
super().__init__()
@ -96,7 +96,7 @@ Here's description of each category:
class Categorize(LLM, ABC):
component_name = "Categorize"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
msg = self._canvas.get_history(self._param.message_history_window_size)
if not msg:

View File

@ -53,7 +53,7 @@ class InvokeParam(ComponentParamBase):
class Invoke(ComponentBase, ABC):
component_name = "Invoke"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3)))
def _invoke(self, **kwargs):
args = {}
for para in self._param.variables:

View File

@ -17,19 +17,16 @@ import json
import logging
import os
import re
from typing import Any, Generator
import json_repair
from copy import deepcopy
from typing import Any, Generator
import json_repair
from functools import partial
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
from rag.prompts import message_fit_in, citation_prompt
from rag.prompts.prompts import tool_call_summary
from rag.prompts.generator import tool_call_summary, message_fit_in, citation_prompt
class LLMParam(ComponentParamBase):
@ -85,8 +82,8 @@ class LLMParam(ComponentParamBase):
class LLM(ComponentBase):
component_name = "LLM"
def __init__(self, canvas, id, param: ComponentParamBase):
super().__init__(canvas, id, param)
def __init__(self, canvas, component_id, param: ComponentParamBase):
super().__init__(canvas, component_id, param)
self.chat_mdl = LLMBundle(self._canvas.get_tenant_id(), TenantLLMService.llm_id2llm_type(self._param.llm_id),
self._param.llm_id, max_retries=self._param.max_retries,
retry_interval=self._param.delay_after_error
@ -104,6 +101,8 @@ class LLM(ComponentBase):
def get_input_elements(self) -> dict[str, Any]:
res = self.get_input_elements_from_text(self._param.sys_prompt)
if isinstance(self._param.prompts, str):
self._param.prompts = [{"role": "user", "content": self._param.prompts}]
for prompt in self._param.prompts:
d = self.get_input_elements_from_text(prompt["content"])
res.update(d)
@ -115,6 +114,17 @@ class LLM(ComponentBase):
def add2system_prompt(self, txt):
self._param.sys_prompt += txt
def _sys_prompt_and_msg(self, msg, args):
if isinstance(self._param.prompts, str):
self._param.prompts = [{"role": "user", "content": self._param.prompts}]
for p in self._param.prompts:
if msg and msg[-1]["role"] == p["role"]:
continue
p = deepcopy(p)
p["content"] = self.string_format(p["content"], args)
msg.append(p)
return msg, self.string_format(self._param.sys_prompt, args)
def _prepare_prompt_variables(self):
if self._param.visual_files_var:
self.imgs = self._canvas.get_variable_value(self._param.visual_files_var)
@ -130,7 +140,6 @@ class LLM(ComponentBase):
args = {}
vars = self.get_input_elements() if not self._param.debug_inputs else self._param.debug_inputs
prompt = self._param.sys_prompt
for k, o in vars.items():
args[k] = o["value"]
if not isinstance(args[k], str):
@ -140,15 +149,22 @@ class LLM(ComponentBase):
args[k] = str(args[k])
self.set_input_value(k, args[k])
msg = self._canvas.get_history(self._param.message_history_window_size)[:-1]
msg.extend(deepcopy(self._param.prompts))
prompt = self.string_format(prompt, args)
for m in msg:
m["content"] = self.string_format(m["content"], args)
msg, sys_prompt = self._sys_prompt_and_msg(self._canvas.get_history(self._param.message_history_window_size)[:-1], args)
user_defined_prompt, sys_prompt = self._extract_prompts(sys_prompt)
if self._param.cite and self._canvas.get_reference()["chunks"]:
prompt += citation_prompt()
sys_prompt += citation_prompt(user_defined_prompt)
return prompt, msg
return sys_prompt, msg, user_defined_prompt
def _extract_prompts(self, sys_prompt):
pts = {}
for tag in ["TASK_ANALYSIS", "PLAN_GENERATION", "REFLECTION", "CONTEXT_SUMMARY", "CONTEXT_RANKING", "CITATION_GUIDELINES"]:
r = re.search(rf"<{tag}>(.*?)</{tag}>", sys_prompt, flags=re.DOTALL|re.IGNORECASE)
if not r:
continue
pts[tag.lower()] = r.group(1)
sys_prompt = re.sub(rf"<{tag}>(.*?)</{tag}>", "", sys_prompt, flags=re.DOTALL|re.IGNORECASE)
return pts, sys_prompt
def _generate(self, msg:list[dict], **kwargs) -> str:
if not self.imgs:
@ -189,15 +205,15 @@ class LLM(ComponentBase):
for txt in self.chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf(), images=self.imgs, **kwargs):
yield delta(txt)
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
def clean_formated_answer(ans: str) -> str:
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r"^.*```json", "", ans, flags=re.DOTALL)
return re.sub(r"```\n*$", "", ans, flags=re.DOTALL)
prompt, msg = self._prepare_prompt_variables()
error = ""
prompt, msg, _ = self._prepare_prompt_variables()
error: str = ""
if self._param.output_structure:
prompt += "\nThe output MUST follow this JSON format:\n"+json.dumps(self._param.output_structure, ensure_ascii=False, indent=2)
@ -260,11 +276,11 @@ class LLM(ComponentBase):
answer += ans
self.set_output("content", answer)
def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str):
summ = tool_call_summary(self.chat_mdl, func_name, params, results)
def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str, user_defined_prompt:dict={}):
summ = tool_call_summary(self.chat_mdl, func_name, params, results, user_defined_prompt)
logging.info(f"[MEMORY]: {summ}")
self._canvas.add_memory(user, assist, summ)
def thoughts(self) -> str:
_, msg = self._prepare_prompt_variables()
_, msg,_ = self._prepare_prompt_variables()
return "⌛Give me a moment—starting from: \n\n" + re.sub(r"(User's query:|[\\]+)", '', msg[-1]['content'], flags=re.DOTALL) + "\n\nIll figure out our best next move."

View File

@ -49,7 +49,7 @@ class MessageParam(ComponentParamBase):
class Message(ComponentBase):
component_name = "Message"
def get_kwargs(self, script:str, kwargs:dict = {}, delimeter:str=None) -> tuple[str, dict[str, str | list | Any]]:
def get_kwargs(self, script:str, kwargs:dict = {}, delimiter:str=None) -> tuple[str, dict[str, str | list | Any]]:
for k,v in self.get_input_elements_from_text(script).items():
if k in kwargs:
continue
@ -60,8 +60,8 @@ class Message(ComponentBase):
if isinstance(v, partial):
for t in v():
ans += t
elif isinstance(v, list) and delimeter:
ans = delimeter.join([str(vv) for vv in v])
elif isinstance(v, list) and delimiter:
ans = delimiter.join([str(vv) for vv in v])
elif not isinstance(v, str):
try:
ans = json.dumps(v, ensure_ascii=False)
@ -127,7 +127,7 @@ class Message(ComponentBase):
]
return any([re.search(p, content) for p in patt])
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
rand_cnt = random.choice(self._param.content)
if self._param.stream and not self._is_jinjia2(rand_cnt):

View File

@ -56,7 +56,7 @@ class StringTransform(Message, ABC):
"type": "line"
} for k, o in self.get_input_elements_from_text(self._param.script).items()}
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
if self._param.method == "split":
self._split(kwargs.get("line"))
@ -90,7 +90,7 @@ class StringTransform(Message, ABC):
for k,v in kwargs.items():
if not v:
v = ""
script = re.sub(k, v, script)
script = re.sub(k, lambda match: v, script)
self.set_output("result", script)

View File

@ -61,7 +61,7 @@ class SwitchParam(ComponentParamBase):
class Switch(ComponentBase, ABC):
component_name = "Switch"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 3)))
def _invoke(self, **kwargs):
for cond in self._param.conditions:
res = []

View File

@ -1,7 +1,11 @@
{
"id": 19,
"title": "Choose Your Knowledge Base Agent",
"description": "Select your desired knowledge base from the dropdown menu. The Agent will only retrieve from the selected knowledge base and use this content to generate responses.",
"title": {
"en": "Choose Your Knowledge Base Agent",
"zh": "选择知识库智能体"},
"description": {
"en": "Select your desired knowledge base from the dropdown menu. The Agent will only retrieve from the selected knowledge base and use this content to generate responses.",
"zh": "从下拉菜单中选择知识库,智能体将仅根据所选知识库内容生成回答。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 18,
"title": "Choose Your Knowledge Base Workflow",
"description": "Select your desired knowledge base from the dropdown menu. The retrieval assistant will only use data from your selected knowledge base to generate responses.",
"title": {
"en": "Choose Your Knowledge Base Workflow",
"zh": "选择知识库工作流"},
"description": {
"en": "Select your desired knowledge base from the dropdown menu. The retrieval assistant will only use data from your selected knowledge base to generate responses.",
"zh": "从下拉菜单中选择知识库,工作流将仅根据所选知识库内容生成回答。"},
"canvas_type": "Other",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 11,
"title": "Customer Review Analysis",
"description": "Automatically classify customer reviews using LLM (Large Language Model) and route them via email to the relevant departments.",
"title": {
"en": "Customer Review Analysis",
"zh": "客户评价分析"},
"description": {
"en": "Automatically classify customer reviews using LLM (Large Language Model) and route them via email to the relevant departments.",
"zh": "大模型将自动分类客户评价,并通过电子邮件将结果发送到相关部门。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 2,
"title": "Multi-Agent Customer Support",
"description": "This is a multi-agent system for intelligent customer service processing based on user intent classification. It uses the lead-agent to identify the type of user needs, assign tasks to sub-agents for processing.",
"title": {
"en": "Multi-Agent Customer Support",
"zh": "多智能体客服"},
"description": {
"en": "This is a multi-agent system for intelligent customer service processing based on user intent classification. It uses the lead-agent to identify the type of user needs, assign tasks to sub-agents for processing.",
"zh": "多智能体系统,用于智能客服场景。基于用户意图分类,使用主智能体识别用户需求类型,并将任务分配给子智能体进行处理。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 10,
"title": "Customer Support",
"description": "This is an intelligent customer service processing system workflow based on user intent classification. It uses LLM to identify user demand types and transfers them to the corresponding professional agent for processing.",
"title": {
"en":"Customer Support",
"zh": "客户支持"},
"description": {
"en": "This is an intelligent customer service processing system workflow based on user intent classification. It uses LLM to identify user demand types and transfers them to the corresponding professional agent for processing.",
"zh": "工作流系统,用于智能客服场景。基于用户意图分类。使用大模型识别用户需求类型,并将需求转移给相应的智能体进行处理。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 15,
"title": "CV Analysis and Candidate Evaluation",
"description": "This is a workflow that helps companies evaluate resumes, HR uploads a job description first, then submits multiple resumes via the chat window for evaluation.",
"title": {
"en": "CV Analysis and Candidate Evaluation",
"zh": "简历分析和候选人评估"},
"description": {
"en": "This is a workflow that helps companies evaluate resumes, HR uploads a job description first, then submits multiple resumes via the chat window for evaluation.",
"zh": "帮助公司评估简历的工作流。HR首先上传职位描述通过聊天窗口提交多份简历进行评估。"},
"canvas_type": "Other",
"dsl": {
"components": {

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{
"id": 1,
"title": "Deep Research",
"description": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"title": {
"en": "Deep Research",
"zh": "深度研究"},
"description": {
"en": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"zh": "专为销售、市场、政策或咨询领域的专业人士设计,多智能体的深度研究会结合多源信息进行结构化、多步骤地回答问题,并附带有清晰的引用。"},
"canvas_type": "Recommended",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 6,
"title": "Deep Research",
"description": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"title": {
"en": "Deep Research",
"zh": "深度研究"},
"description": {
"en": "For professionals in sales, marketing, policy, or consulting, the Multi-Agent Deep Research Agent conducts structured, multi-step investigations across diverse sources and delivers consulting-style reports with clear citations.",
"zh": "专为销售、市场、政策或咨询领域的专业人士设计,多智能体的深度研究会结合多源信息进行结构化、多步骤地回答问题,并附带有清晰的引用。"},
"canvas_type": "Agent",
"dsl": {
"components": {

File diff suppressed because one or more lines are too long

View File

@ -1,7 +1,11 @@
{
"id": 8,
"title": "Generate SEO Blog",
"description": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This is a multi-agent version of the SEO blog generation workflow. It simulates a small team of AI “writers”, where each agent plays a specialized role — just like a real editorial team.",
"zh": "多智能体架构可根据简单的用户输入自动生成完整的SEO博客文章。模拟小型“作家”团队其中每个智能体扮演一个专业角色——就像真正的编辑团队。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 13,
"title": "ImageLingo",
"description": "ImageLingo lets you snap any photo containing text—menus, signs, or documents—and instantly recognize and translate it into your language of choice using advanced AI-powered translation technology.",
"title": {
"en": "ImageLingo",
"zh": "图片解析"},
"description": {
"en": "ImageLingo lets you snap any photo containing text—menus, signs, or documents—and instantly recognize and translate it into your language of choice using advanced AI-powered translation technology.",
"zh": "多模态大模型允许您拍摄任何包含文本的照片——菜单、标志或文档——立即识别并转换成您选择的语言。"},
"canvas_type": "Consumer App",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 20,
"title": "Report Agent Using Knowledge Base",
"description": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Agent",
"dsl": {
"components": {

View File

@ -0,0 +1,331 @@
{
"id": 21,
"title": {
"en": "Report Agent Using Knowledge Base",
"zh": "知识库检索智能体"},
"description": {
"en": "A report generation assistant using local knowledge base, with advanced capabilities in task planning, reasoning, and reflective analysis. Recommended for academic research paper Q&A",
"zh": "一个使用本地知识库的报告生成助手,具备高级能力,包括任务规划、推理和反思性分析。推荐用于学术研究论文问答。"},
"canvas_type": "Recommended",
"dsl": {
"components": {
"Agent:NewPumasLick": {
"downstream": [
"Message:OrangeYearsShine"
],
"obj": {
"component_name": "Agent",
"params": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
}
},
"upstream": [
"begin"
]
},
"Message:OrangeYearsShine": {
"downstream": [],
"obj": {
"component_name": "Message",
"params": {
"content": [
"{Agent:NewPumasLick@content}"
]
}
},
"upstream": [
"Agent:NewPumasLick"
]
},
"begin": {
"downstream": [
"Agent:NewPumasLick"
],
"obj": {
"component_name": "Begin",
"params": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
}
},
"upstream": []
}
},
"globals": {
"sys.conversation_turns": 0,
"sys.files": [],
"sys.query": "",
"sys.user_id": ""
},
"graph": {
"edges": [
{
"data": {
"isHovered": false
},
"id": "xy-edge__beginstart-Agent:NewPumasLickend",
"source": "begin",
"sourceHandle": "start",
"target": "Agent:NewPumasLick",
"targetHandle": "end"
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLickstart-Message:OrangeYearsShineend",
"markerEnd": "logo",
"source": "Agent:NewPumasLick",
"sourceHandle": "start",
"style": {
"stroke": "rgba(91, 93, 106, 1)",
"strokeWidth": 1
},
"target": "Message:OrangeYearsShine",
"targetHandle": "end",
"type": "buttonEdge",
"zIndex": 1001
},
{
"data": {
"isHovered": false
},
"id": "xy-edge__Agent:NewPumasLicktool-Tool:AllBirdsNailend",
"selected": false,
"source": "Agent:NewPumasLick",
"sourceHandle": "tool",
"target": "Tool:AllBirdsNail",
"targetHandle": "end"
}
],
"nodes": [
{
"data": {
"form": {
"enablePrologue": true,
"inputs": {},
"mode": "conversational",
"prologue": "\u4f60\u597d\uff01 \u6211\u662f\u4f60\u7684\u52a9\u7406\uff0c\u6709\u4ec0\u4e48\u53ef\u4ee5\u5e2e\u5230\u4f60\u7684\u5417\uff1f"
},
"label": "Begin",
"name": "begin"
},
"dragging": false,
"id": "begin",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": -9.569875358221438,
"y": 205.84018385864917
},
"selected": false,
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
},
{
"data": {
"form": {
"content": [
"{Agent:NewPumasLick@content}"
]
},
"label": "Message",
"name": "Response"
},
"dragging": false,
"id": "Message:OrangeYearsShine",
"measured": {
"height": 56,
"width": 200
},
"position": {
"x": 734.4061285881053,
"y": 199.9706031723009
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "messageNode"
},
{
"data": {
"form": {
"delay_after_error": 1,
"description": "",
"exception_comment": "",
"exception_default_value": "",
"exception_goto": [],
"exception_method": null,
"frequencyPenaltyEnabled": false,
"frequency_penalty": 0.5,
"llm_id": "qwen3-235b-a22b-instruct-2507@Tongyi-Qianwen",
"maxTokensEnabled": true,
"max_retries": 3,
"max_rounds": 3,
"max_tokens": 128000,
"mcp": [],
"message_history_window_size": 12,
"outputs": {
"content": {
"type": "string",
"value": ""
}
},
"parameter": "Precise",
"presencePenaltyEnabled": false,
"presence_penalty": 0.5,
"prompts": [
{
"content": "# User Query\n {sys.query}",
"role": "user"
}
],
"sys_prompt": "## Role & Task\nYou are a **\u201cKnowledge Base Retrieval Q\\&A Agent\u201d** whose goal is to break down the user\u2019s question into retrievable subtasks, and then produce a multi-source-verified, structured, and actionable research report using the internal knowledge base.\n## Execution Framework (Detailed Steps & Key Points)\n1. **Assessment & Decomposition**\n * Actions:\n * Automatically extract: main topic, subtopics, entities (people/organizations/products/technologies), time window, geographic/business scope.\n * Output as a list: N facts/data points that must be collected (*N* ranges from 5\u201320 depending on question complexity).\n2. **Query Type Determination (Rule-Based)**\n * Example rules:\n * If the question involves a single issue but requests \u201cmethod comparison/multiple explanations\u201d \u2192 use **depth-first**.\n * If the question can naturally be split into \u22653 independent sub-questions \u2192 use **breadth-first**.\n * If the question can be answered by a single fact/specification/definition \u2192 use **simple query**.\n3. **Research Plan Formulation**\n * Depth-first: define 3\u20135 perspectives (methodology/stakeholders/time dimension/technical route, etc.), assign search keywords, target document types, and output format for each perspective.\n * Breadth-first: list subtasks, prioritize them, and assign search terms.\n * Simple query: directly provide the search sentence and required fields.\n4. **Retrieval Execution**\n * After retrieval: perform coverage check (does it contain the key facts?) and quality check (source diversity, authority, latest update time).\n * If standards are not met, automatically loop: rewrite queries (synonyms/cross-domain terms) and retry \u22643 times, or flag as requiring external search.\n5. **Integration & Reasoning**\n * Build the answer using a **fact\u2013evidence\u2013reasoning** chain. For each conclusion, attach 1\u20132 strongest pieces of evidence.\n---\n## Quality Gate Checklist (Verify at Each Stage)\n* **Stage 1 (Decomposition)**:\n * [ ] Key concepts and expected outputs identified\n * [ ] Required facts/data points listed\n* **Stage 2 (Retrieval)**:\n * [ ] Meets quality standards (see above)\n * [ ] If not met: execute query iteration\n* **Stage 3 (Generation)**:\n * [ ] Each conclusion has at least one direct evidence source\n * [ ] State assumptions/uncertainties\n * [ ] Provide next-step suggestions or experiment/retrieval plans\n * [ ] Final length and depth match user expectations (comply with word count/format if specified)\n---\n## Core Principles\n1. **Strict reliance on the knowledge base**: answers must be **fully bounded** by the content retrieved from the knowledge base.\n2. **No fabrication**: do not generate, infer, or create information that is not explicitly present in the knowledge base.\n3. **Accuracy first**: prefer incompleteness over inaccurate content.\n4. **Output format**:\n * Hierarchically clear modular structure\n * Logical grouping according to the MECE principle\n * Professionally presented formatting\n * Step-by-step cognitive guidance\n * Reasonable use of headings and dividers for clarity\n * *Italicize* key parameters\n * **Bold** critical information\n5. **LaTeX formula requirements**:\n * Inline formulas: start and end with `$`\n * Block formulas: start and end with `$$`, each `$$` on its own line\n * Block formula content must comply with LaTeX math syntax\n * Verify formula correctness\n---\n## Additional Notes (Interaction & Failure Strategy)\n* If the knowledge base does not cover critical facts: explicitly inform the user (with sample wording)\n* For time-sensitive issues: enforce time filtering in the search request, and indicate the latest retrieval date in the answer.\n* Language requirement: answer in the user\u2019s preferred language\n",
"temperature": "0.1",
"temperatureEnabled": true,
"tools": [
{
"component_name": "Retrieval",
"name": "Retrieval",
"params": {
"cross_languages": [],
"description": "",
"empty_response": "",
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
"type": "string",
"value": ""
}
},
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
"top_n": 8,
"use_kg": false
}
}
],
"topPEnabled": false,
"top_p": 0.75,
"user_prompt": "",
"visual_files_var": ""
},
"label": "Agent",
"name": "Knowledge Base Agent"
},
"dragging": false,
"id": "Agent:NewPumasLick",
"measured": {
"height": 84,
"width": 200
},
"position": {
"x": 347.00048227952215,
"y": 186.49109364794631
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "agentNode"
},
{
"data": {
"form": {
"description": "This is an agent for a specific task.",
"user_prompt": "This is the order you need to send to the agent."
},
"label": "Tool",
"name": "flow.tool_10"
},
"dragging": false,
"id": "Tool:AllBirdsNail",
"measured": {
"height": 48,
"width": 200
},
"position": {
"x": 220.24819746977118,
"y": 403.31576836482583
},
"selected": false,
"sourcePosition": "right",
"targetPosition": "left",
"type": "toolNode"
}
]
},
"history": [],
"memory": [],
"messages": [],
"path": [],
"retrieval": []
},
"avatar": ""
}

View File

@ -1,7 +1,11 @@
{
"id": 12,
"title": "Generate SEO Blog",
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Marketing",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 4,
"title": "Generate SEO Blog",
"description": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"title": {
"en": "Generate SEO Blog",
"zh": "生成SEO博客"},
"description": {
"en": "This workflow automatically generates a complete SEO-optimized blog article based on a simple user input. You dont need any writing experience. Just provide a topic or short request — the system will handle the rest.",
"zh": "此工作流根据简单的用户输入自动生成完整的SEO博客文章。你无需任何写作经验只需提供一个主题或简短请求系统将处理其余部分。"},
"canvas_type": "Recommended",
"dsl": {
"components": {

View File

@ -1,7 +1,11 @@
{
"id": 17,
"title": "SQL Assistant",
"description": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"title": {
"en": "SQL Assistant",
"zh": "SQL助理"},
"description": {
"en": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarters top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
"zh": "用户能够将简单文本问题转化为完整的SQL查询并输出结果。只需输入您的问题例如“展示上个季度前十名按收入排序的产品”SQL助理就会生成精确的SQL语句对其运行您的数据库并几秒钟内返回结果。"},
"canvas_type": "Marketing",
"dsl": {
"components": {
@ -79,7 +83,7 @@
},
"password": "20010812Yy!",
"port": 3306,
"sql": "Agent:WickedGoatsDivide@content",
"sql": "{Agent:WickedGoatsDivide@content}",
"username": "13637682833@163.com"
}
},
@ -110,9 +114,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"ed31364c727211f0bdb2bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -120,7 +122,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -141,9 +143,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"0f968106727311f08357bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -151,7 +151,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -172,9 +172,7 @@
"params": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"4ad1f9d0727311f0827dbafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -182,7 +180,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -343,9 +341,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"ed31364c727211f0bdb2bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -353,7 +349,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -383,9 +379,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"0f968106727311f08357bafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -393,7 +387,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -423,9 +417,7 @@
"form": {
"cross_languages": [],
"empty_response": "",
"kb_ids": [
"4ad1f9d0727311f0827dbafe6e7908e6"
],
"kb_ids": [],
"keywords_similarity_weight": 0.7,
"outputs": {
"formalized_content": {
@ -433,7 +425,7 @@
"value": ""
}
},
"query": "sys.query",
"query": "{sys.query}",
"rerank_id": "",
"similarity_threshold": 0.2,
"top_k": 1024,
@ -535,7 +527,7 @@
},
"password": "20010812Yy!",
"port": 3306,
"sql": "Agent:WickedGoatsDivide@content",
"sql": "{Agent:WickedGoatsDivide@content}",
"username": "13637682833@163.com"
},
"label": "ExeSQL",

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,12 @@
{
"id": 9,
"title": "Technical Docs QA",
"description": "This is a document question-and-answer system based on a knowledge base. When a user asks a question, it retrieves relevant document content to provide accurate answers.",
"title": {
"en": "Technical Docs QA",
"zh": "技术文档问答"},
"description": {
"en": "This is a document question-and-answer system based on a knowledge base. When a user asks a question, it retrieves relevant document content to provide accurate answers.",
"zh": "基于知识库的文档问答系统,当用户提出问题时,会检索相关本地文档并提供准确回答。"},
"canvas_type": "Customer Support",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 14,
"title": "Trip Planner",
"description": "This smart trip planner utilizes LLM technology to automatically generate customized travel itineraries, with optional tool integration for enhanced reliability.",
"title": {
"en": "Trip Planner",
"zh": "旅行规划"},
"description": {
"en": "This smart trip planner utilizes LLM technology to automatically generate customized travel itineraries, with optional tool integration for enhanced reliability.",
"zh": "智能旅行规划将利用大模型自动生成定制化的旅行行程,附带可选工具集成,以增强可靠性。"},
"canvas_type": "Consumer App",
"dsl": {
"components": {

View File

@ -1,8 +1,12 @@
{
"id": 16,
"title": "WebSearch Assistant",
"description": "A chat assistant template that integrates information extracted from a knowledge base and web searches to respond to queries. Let's start by setting up your knowledge base in 'Retrieval'!",
"title": {
"en": "WebSearch Assistant",
"zh": "网页搜索助手"},
"description": {
"en": "A chat assistant template that integrates information extracted from a knowledge base and web searches to respond to queries. Let's start by setting up your knowledge base in 'Retrieval'!",
"zh": "集成了从知识库和网络搜索中提取的信息回答用户问题。让我们从设置您的知识库开始检索!"},
"canvas_type": "Other",
"dsl": {
"components": {

View File

@ -61,7 +61,7 @@ class ArXivParam(ToolParamBase):
class ArXiv(ToolBase, ABC):
component_name = "ArXiv"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")

View File

@ -22,7 +22,7 @@ from typing import TypedDict, List, Any
from agent.component.base import ComponentParamBase, ComponentBase
from api.utils import hash_str2int
from rag.llm.chat_model import ToolCallSession
from rag.prompts.prompts import kb_prompt
from rag.prompts.generator import kb_prompt
from rag.utils.mcp_tool_call_conn import MCPToolCallSession
from timeit import default_timer as timer
@ -166,7 +166,7 @@ class ToolBase(ComponentBase):
"count": 1,
"url": url
})
self._canvas.add_refernce(chunks, aggs)
self._canvas.add_reference(chunks, aggs)
self.set_output("formalized_content", "\n".join(kb_prompt({"chunks": chunks, "doc_aggs": aggs}, 200000, True)))
def thoughts(self) -> str:

View File

@ -129,7 +129,7 @@ module.exports = { main };
class CodeExec(ToolBase, ABC):
component_name = "CodeExec"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
lang = kwargs.get("lang", self._param.lang)
script = kwargs.get("script", self._param.script)
@ -156,7 +156,7 @@ class CodeExec(ToolBase, ABC):
self.set_output("_ERROR", "construct code request error: " + str(e))
try:
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=10)
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
if resp.status_code != 200:
resp.raise_for_status()

View File

@ -16,9 +16,8 @@
from abc import ABC
import asyncio
from crawl4ai import AsyncWebCrawler
from agent.tools.base import ToolParamBase, ToolBase
from api.utils.web_utils import is_valid_url
class CrawlerParam(ToolParamBase):
@ -39,6 +38,7 @@ class Crawler(ToolBase, ABC):
component_name = "Crawler"
def _run(self, history, **kwargs):
from api.utils.web_utils import is_valid_url
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not is_valid_url(ans):
@ -64,5 +64,5 @@ class Crawler(ToolBase, ABC):
elif self._param.extract_type == 'markdown':
return result.markdown
elif self._param.extract_type == 'content':
result.extracted_content
return result.extracted_content
return result.markdown

View File

@ -43,7 +43,7 @@ class DeepLParam(ComponentParamBase):
class DeepL(ComponentBase, ABC):
component_name = "GitHub"
component_name = "DeepL"
def _run(self, history, **kwargs):
ans = self.get_input()

View File

@ -73,7 +73,7 @@ class DuckDuckGoParam(ToolParamBase):
class DuckDuckGo(ToolBase, ABC):
component_name = "DuckDuckGo"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")

View File

@ -99,7 +99,7 @@ class EmailParam(ToolParamBase):
class Email(ToolBase, ABC):
component_name = "Email"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
def _invoke(self, **kwargs):
if not kwargs.get("to_email"):
self.set_output("success", False)

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
import re
from abc import ABC
@ -52,7 +53,7 @@ class ExeSQLParam(ToolParamBase):
self.max_records = 1024
def check(self):
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgresql', 'mariadb', 'mssql'])
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2'])
self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username")
self.check_empty(self.host, "IP Address")
@ -77,7 +78,7 @@ class ExeSQLParam(ToolParamBase):
class ExeSQL(ToolBase, ABC):
component_name = "ExeSQL"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
def _invoke(self, **kwargs):
def convert_decimals(obj):
@ -93,12 +94,24 @@ class ExeSQL(ToolBase, ABC):
sql = kwargs.get("sql")
if not sql:
raise Exception("SQL for `ExeSQL` MUST not be empty.")
sqls = sql.split(";")
vars = self.get_input_elements_from_text(sql)
args = {}
for k, o in vars.items():
args[k] = o["value"]
if not isinstance(args[k], str):
try:
args[k] = json.dumps(args[k], ensure_ascii=False)
except Exception:
args[k] = str(args[k])
self.set_input_value(k, args[k])
sql = self.string_format(sql, args)
sqls = sql.split(";")
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'postgresql':
elif self._param.db_type == 'postgres':
db = psycopg2.connect(dbname=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'mssql':
@ -110,6 +123,55 @@ class ExeSQL(ToolBase, ABC):
r'PWD=' + self._param.password
)
db = pyodbc.connect(conn_str)
elif self._param.db_type == 'IBM DB2':
import ibm_db
conn_str = (
f"DATABASE={self._param.database};"
f"HOSTNAME={self._param.host};"
f"PORT={self._param.port};"
f"PROTOCOL=TCPIP;"
f"UID={self._param.username};"
f"PWD={self._param.password};"
)
try:
conn = ibm_db.connect(conn_str, "", "")
except Exception as e:
raise Exception("Database Connection Failed! \n" + str(e))
sql_res = []
formalized_content = []
for single_sql in sqls:
single_sql = single_sql.replace("```", "").strip()
if not single_sql:
continue
single_sql = re.sub(r"\[ID:[0-9]+\]", "", single_sql)
stmt = ibm_db.exec_immediate(conn, single_sql)
rows = []
row = ibm_db.fetch_assoc(stmt)
while row and len(rows) < self._param.max_records:
rows.append(row)
row = ibm_db.fetch_assoc(stmt)
if not rows:
sql_res.append({"content": "No record in the database!"})
continue
df = pd.DataFrame(rows)
for col in df.columns:
if pd.api.types.is_datetime64_any_dtype(df[col]):
df[col] = df[col].dt.strftime("%Y-%m-%d")
df = df.where(pd.notnull(df), None)
sql_res.append(convert_decimals(df.to_dict(orient="records")))
formalized_content.append(df.to_markdown(index=False, floatfmt=".6f"))
ibm_db.close(conn)
self.set_output("json", sql_res)
self.set_output("formalized_content", "\n\n".join(formalized_content))
return self.output("formalized_content")
try:
cursor = db.cursor()
except Exception as e:
@ -137,6 +199,8 @@ class ExeSQL(ToolBase, ABC):
if pd.api.types.is_datetime64_any_dtype(single_res[col]):
single_res[col] = single_res[col].dt.strftime('%Y-%m-%d')
single_res = single_res.where(pd.notnull(single_res), None)
sql_res.append(convert_decimals(single_res.to_dict(orient='records')))
formalized_content.append(single_res.to_markdown(index=False, floatfmt=".6f"))

View File

@ -57,7 +57,7 @@ class GitHubParam(ToolParamBase):
class GitHub(ToolBase, ABC):
component_name = "GitHub"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")

View File

@ -116,7 +116,7 @@ class GoogleParam(ToolParamBase):
class Google(ToolBase, ABC):
component_name = "Google"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("q"):
self.set_output("formalized_content", "")

View File

@ -63,7 +63,7 @@ class GoogleScholarParam(ToolParamBase):
class GoogleScholar(ToolBase, ABC):
component_name = "GoogleScholar"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")

View File

@ -69,7 +69,7 @@ In addition to MEDLINE, PubMed provides access to:
class PubMed(ToolBase, ABC):
component_name = "PubMed"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")

View File

@ -23,8 +23,7 @@ from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import timeout
from rag.app.tag import label_question
from rag.prompts import kb_prompt
from rag.prompts.prompts import cross_languages
from rag.prompts.generator import cross_languages, kb_prompt
class RetrievalParam(ToolParamBase):
@ -75,7 +74,7 @@ class RetrievalParam(ToolParamBase):
class Retrieval(ToolBase, ABC):
component_name = "Retrieval"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", self._param.empty_response)
@ -163,9 +162,16 @@ class Retrieval(ToolBase, ABC):
self.set_output("formalized_content", self._param.empty_response)
return
self._canvas.add_refernce(kbinfos["chunks"], kbinfos["doc_aggs"])
# Format the chunks for JSON output (similar to how other tools do it)
json_output = kbinfos["chunks"].copy()
self._canvas.add_reference(kbinfos["chunks"], kbinfos["doc_aggs"])
form_cnt = "\n".join(kb_prompt(kbinfos, 200000, True))
# Set both formalized content and JSON output
self.set_output("formalized_content", form_cnt)
self.set_output("json", json_output)
return form_cnt
def thoughts(self) -> str:

151
agent/tools/searxng.py Normal file
View File

@ -0,0 +1,151 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
import time
from abc import ABC
import requests
from agent.tools.base import ToolMeta, ToolParamBase, ToolBase
from api.utils.api_utils import timeout
class SearXNGParam(ToolParamBase):
"""
Define the SearXNG component parameters.
"""
def __init__(self):
self.meta: ToolMeta = {
"name": "searxng_search",
"description": "SearXNG is a privacy-focused metasearch engine that aggregates results from multiple search engines without tracking users. It provides comprehensive web search capabilities.",
"parameters": {
"query": {
"type": "string",
"description": "The search keywords to execute with SearXNG. The keywords should be the most important words/terms(includes synonyms) from the original request.",
"default": "{sys.query}",
"required": True
},
"searxng_url": {
"type": "string",
"description": "The base URL of your SearXNG instance (e.g., http://localhost:4000). This is required to connect to your SearXNG server.",
"required": False,
"default": ""
}
}
}
super().__init__()
self.top_n = 10
self.searxng_url = ""
def check(self):
# Keep validation lenient so opening try-run panel won't fail without URL.
# Coerce top_n to int if it comes as string from UI.
try:
if isinstance(self.top_n, str):
self.top_n = int(self.top_n.strip())
except Exception:
pass
self.check_positive_integer(self.top_n, "Top N")
def get_input_form(self) -> dict[str, dict]:
return {
"query": {
"name": "Query",
"type": "line"
},
"searxng_url": {
"name": "SearXNG URL",
"type": "line",
"placeholder": "http://localhost:4000"
}
}
class SearXNG(ToolBase, ABC):
component_name = "SearXNG"
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
# Gracefully handle try-run without inputs
query = kwargs.get("query")
if not query or not isinstance(query, str) or not query.strip():
self.set_output("formalized_content", "")
return ""
searxng_url = (kwargs.get("searxng_url") or getattr(self._param, "searxng_url", "") or "").strip()
# In try-run, if no URL configured, just return empty instead of raising
if not searxng_url:
self.set_output("formalized_content", "")
return ""
last_e = ""
for _ in range(self._param.max_retries+1):
try:
search_params = {
'q': query,
'format': 'json',
'categories': 'general',
'language': 'auto',
'safesearch': 1,
'pageno': 1
}
response = requests.get(
f"{searxng_url}/search",
params=search_params,
timeout=10
)
response.raise_for_status()
data = response.json()
if not data or not isinstance(data, dict):
raise ValueError("Invalid response from SearXNG")
results = data.get("results", [])
if not isinstance(results, list):
raise ValueError("Invalid results format from SearXNG")
results = results[:self._param.top_n]
self._retrieve_chunks(results,
get_title=lambda r: r.get("title", ""),
get_url=lambda r: r.get("url", ""),
get_content=lambda r: r.get("content", ""))
self.set_output("json", results)
return self.output("formalized_content")
except requests.RequestException as e:
last_e = f"Network error: {e}"
logging.exception(f"SearXNG network error: {e}")
time.sleep(self._param.delay_after_error)
except Exception as e:
last_e = str(e)
logging.exception(f"SearXNG error: {e}")
time.sleep(self._param.delay_after_error)
if last_e:
self.set_output("_ERROR", last_e)
return f"SearXNG error: {last_e}"
assert False, self.output()
def thoughts(self) -> str:
return """
Keywords: {}
Searching with SearXNG for relevant results...
""".format(self.get_input().get("query", "-_-!"))

View File

@ -101,7 +101,7 @@ When searching:
class TavilySearch(ToolBase, ABC):
component_name = "TavilySearch"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")
@ -199,7 +199,7 @@ class TavilyExtractParam(ToolParamBase):
class TavilyExtract(ToolBase, ABC):
component_name = "TavilyExtract"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60)))
def _invoke(self, **kwargs):
self.tavily_client = TavilyClient(api_key=self._param.api_key)
last_e = None

View File

@ -68,7 +68,7 @@ fund selection platform: through AI technology, is committed to providing excell
class WenCai(ToolBase, ABC):
component_name = "WenCai"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("report", "")

View File

@ -64,7 +64,7 @@ class WikipediaParam(ToolParamBase):
class Wikipedia(ToolBase, ABC):
component_name = "Wikipedia"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
def _invoke(self, **kwargs):
if not kwargs.get("query"):
self.set_output("formalized_content", "")

View File

@ -72,7 +72,7 @@ class YahooFinanceParam(ToolParamBase):
class YahooFinance(ToolBase, ABC):
component_name = "YahooFinance"
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
@timeout(int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60)))
def _invoke(self, **kwargs):
if not kwargs.get("stock_code"):
self.set_output("report", "")

View File

@ -27,7 +27,8 @@ from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from api.db import StatusEnum
from api.db.db_models import close_connection
from api.db.services import UserService
from api.utils import CustomJSONEncoder, commands
from api.utils.json import CustomJSONEncoder
from api.utils import commands
from flask_mail import Mail
from flask_session import Session

View File

@ -39,7 +39,7 @@ from api.utils.api_utils import server_error_response, get_data_error_result, ge
from api.utils.file_utils import filename_type, thumbnail
from rag.app.tag import label_question
from rag.prompts import keyword_extraction
from rag.prompts.generator import keyword_extraction
from rag.utils.storage_factory import STORAGE_IMPL
from api.db.services.canvas_service import UserCanvasService

View File

@ -19,15 +19,19 @@ import re
import sys
from functools import partial
import flask
import trio
from flask import request, Response
from flask_login import login_required, current_user
from agent.component import LLM
from api.db import FileType
from api import settings
from api.db import CanvasCategory, FileType
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService, API4ConversationService
from api.db.services.document_service import DocumentService
from api.db.services.file_service import FileService
from api.db.services.pipeline_operation_log_service import PipelineOperationLogService
from api.db.services.task_service import queue_dataflow, CANVAS_DEBUG_DOC_ID, TaskService
from api.db.services.user_service import TenantService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
@ -35,25 +39,19 @@ from api.utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request, get_data_error_result
from agent.canvas import Canvas
from peewee import MySQLDatabase, PostgresqlDatabase
from api.db.db_models import APIToken
from api.db.db_models import APIToken, Task
import time
from api.utils.file_utils import filename_type, read_potential_broken_pdf
from rag.flow.pipeline import Pipeline
from rag.nlp import search
from rag.utils.redis_conn import REDIS_CONN
@manager.route('/templates', methods=['GET']) # noqa: F821
@login_required
def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.get_all()])
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in \
UserCanvasService.query(user_id=current_user.id)], key=lambda x: x["update_time"]*-1)
)
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.Agent)])
@manager.route('/rm', methods=['POST']) # noqa: F821
@ -77,9 +75,10 @@ def save():
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
cate = req.get("canvas_category", CanvasCategory.Agent)
if "id" not in req:
req["user_id"] = current_user.id
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()):
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=cate):
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
@ -91,7 +90,7 @@ def save():
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
# save version
UserCanvasVersionService.insert( user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.insert(user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req)
@ -101,7 +100,7 @@ def save():
def get(canvas_id):
if not UserCanvasService.accessible(canvas_id, current_user.id):
return get_data_error_result(message="canvas not found.")
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
e, c = UserCanvasService.get_by_canvas_id(canvas_id)
return get_json_result(data=c)
@ -148,6 +147,14 @@ def run():
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
if cvs.canvas_category == CanvasCategory.DataFlow:
task_id = get_uuid()
Pipeline(cvs.dsl, tenant_id=current_user.id, doc_id=CANVAS_DEBUG_DOC_ID, task_id=task_id, flow_id=req["id"])
ok, error_message = queue_dataflow(tenant_id=user_id, flow_id=req["id"], task_id=task_id, file=files[0], priority=0)
if not ok:
return get_data_error_result(message=error_message)
return get_json_result(data={"message_id": task_id})
try:
canvas = Canvas(cvs.dsl, current_user.id, req["id"])
except Exception as e:
@ -173,6 +180,44 @@ def run():
return resp
@manager.route('/rerun', methods=['POST']) # noqa: F821
@validate_request("id", "dsl", "component_id")
@login_required
def rerun():
req = request.json
doc = PipelineOperationLogService.get_documents_info(req["id"])
if not doc:
return get_data_error_result(message="Document not found.")
doc = doc[0]
if 0 < doc["progress"] < 1:
return get_data_error_result(message=f"`{doc['name']}` is processing...")
if settings.docStoreConn.indexExist(search.index_name(current_user.id), doc["kb_id"]):
settings.docStoreConn.delete({"doc_id": doc["id"]}, search.index_name(current_user.id), doc["kb_id"])
doc["progress_msg"] = ""
doc["chunk_num"] = 0
doc["token_num"] = 0
DocumentService.clear_chunk_num_when_rerun(doc["id"])
DocumentService.update_by_id(id, doc)
TaskService.filter_delete([Task.doc_id == id])
dsl = req["dsl"]
dsl["path"] = [req["component_id"]]
PipelineOperationLogService.update_by_id(req["id"], {"dsl": dsl})
queue_dataflow(tenant_id=current_user.id, flow_id=req["id"], task_id=get_uuid(), doc_id=doc["id"], priority=0, rerun=True)
return get_json_result(data=True)
@manager.route('/cancel/<task_id>', methods=['PUT']) # noqa: F821
@login_required
def cancel(task_id):
try:
REDIS_CONN.set(f"{task_id}-cancel", "x")
except Exception as e:
logging.exception(e)
return get_json_result(data=True)
@manager.route('/reset', methods=['POST']) # noqa: F821
@validate_request("id")
@login_required
@ -198,7 +243,7 @@ def reset():
@manager.route("/upload/<canvas_id>", methods=["POST"]) # noqa: F821
def upload(canvas_id):
e, cvs = UserCanvasService.get_by_tenant_id(canvas_id)
e, cvs = UserCanvasService.get_by_canvas_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
@ -332,7 +377,7 @@ def test_db_connect():
if req["db_type"] in ["mysql", "mariadb"]:
db = MySQLDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
password=req["password"])
elif req["db_type"] == 'postgresql':
elif req["db_type"] == 'postgres':
db = PostgresqlDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
password=req["password"])
elif req["db_type"] == 'mssql':
@ -348,6 +393,22 @@ def test_db_connect():
cursor = db.cursor()
cursor.execute("SELECT 1")
cursor.close()
elif req["db_type"] == 'IBM DB2':
import ibm_db
conn_str = (
f"DATABASE={req['database']};"
f"HOSTNAME={req['host']};"
f"PORT={req['port']};"
f"PROTOCOL=TCPIP;"
f"UID={req['username']};"
f"PWD={req['password']};"
)
logging.info(conn_str)
conn = ibm_db.connect(conn_str, "", "")
stmt = ibm_db.exec_immediate(conn, "SELECT 1 FROM sysibm.sysdummy1")
ibm_db.fetch_assoc(stmt)
ibm_db.close(conn)
return get_json_result(data="Database Connection Successful!")
else:
return server_error_response("Unsupported database type.")
if req["db_type"] != 'mssql':
@ -383,22 +444,32 @@ def getversion( version_id):
return get_json_result(data=f"Error getting history file: {e}")
@manager.route('/listteam', methods=['GET']) # noqa: F821
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def list_canvas():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
canvas_category = request.args.get("canvas_category")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
owner_ids = [id for id in request.args.get("owner_ids", "").strip().split(",") if id]
if not owner_ids:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants]
tenants.append(current_user.id)
canvas, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords)
tenants, current_user.id, page_number,
items_per_page, orderby, desc, keywords, canvas_category)
else:
tenants = owner_ids
canvas, total = UserCanvasService.get_by_tenant_ids(
tenants, current_user.id, 0,
0, orderby, desc, keywords, canvas_category)
return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route('/setting', methods=['POST']) # noqa: F821
@ -418,12 +489,10 @@ def setting():
return get_data_error_result(message="canvas not found.")
flow = flow.to_dict()
flow["title"] = req["title"]
if req["description"]:
flow["description"] = req["description"]
if req["permission"]:
flow["permission"] = req["permission"]
if req["avatar"]:
flow["avatar"] = req["avatar"]
for key in ["description", "permission", "avatar"]:
if value := req.get(key):
flow[key] = value
num= UserCanvasService.update_by_id(req["id"], flow)
return get_json_result(data=num)
@ -472,3 +541,24 @@ def sessions(canvas_id):
except Exception as e:
return server_error_response(e)
@manager.route('/prompts', methods=['GET']) # noqa: F821
@login_required
def prompts():
from rag.prompts.generator import ANALYZE_TASK_SYSTEM, ANALYZE_TASK_USER, NEXT_STEP, REFLECT, CITATION_PROMPT_TEMPLATE
return get_json_result(data={
"task_analysis": ANALYZE_TASK_SYSTEM +"\n\n"+ ANALYZE_TASK_USER,
"plan_generation": NEXT_STEP,
"reflection": REFLECT,
#"context_summary": SUMMARY4MEMORY,
#"context_ranking": RANK_MEMORY,
"citation_guidelines": CITATION_PROMPT_TEMPLATE
})
@manager.route('/download', methods=['GET']) # noqa: F821
def download():
id = request.args.get("id")
created_by = request.args.get("created_by")
blob = FileService.get_blob(created_by, id)
return flask.make_response(blob)

View File

@ -33,8 +33,7 @@ from api.utils.api_utils import get_data_error_result, get_json_result, server_e
from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question
from rag.nlp import rag_tokenizer, search
from rag.prompts import cross_languages, keyword_extraction
from rag.prompts.prompts import gen_meta_filter
from rag.prompts.generator import gen_meta_filter, cross_languages, keyword_extraction
from rag.settings import PAGERANK_FLD
from rag.utils import rmSpace
@ -93,6 +92,7 @@ def list_chunk():
def get():
chunk_id = request.args["chunk_id"]
try:
chunk = None
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(message="Tenant not found!")
@ -290,6 +290,10 @@ def retrieval_test():
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=settings.RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", [])
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))

View File

@ -15,7 +15,7 @@
#
import json
import re
import traceback
import logging
from copy import deepcopy
from flask import Response, request
from flask_login import current_user, login_required
@ -29,8 +29,8 @@ from api.db.services.search_service import SearchService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import chunks_format
from rag.prompts.template import load_prompt
from rag.prompts.generator import chunks_format
@manager.route("/set", methods=["POST"]) # noqa: F821
@ -226,7 +226,7 @@ def completion():
if not is_embedded:
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
traceback.print_exc()
logging.exception(e)
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
@ -400,6 +400,8 @@ def related_questions():
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, chat_id)
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
if "parameter" in gen_conf:
del gen_conf["parameter"]
prompt = load_prompt("related_question")
ans = chat_mdl.chat(
prompt,

View File

@ -66,7 +66,7 @@ def set_dialog():
if not is_create:
if not req.get("kb_ids", []) and not prompt_config.get("tavily_api_key") and "{knowledge}" in prompt_config['system']:
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base/Tavily used here.")
return get_data_error_result(message="Please remove `{knowledge}` in system prompt since no knowledge base / Tavily used here.")
for p in prompt_config["parameters"]:
if p["optional"]:

View File

@ -32,7 +32,7 @@ from api.db.services.document_service import DocumentService, doc_upload_and_par
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.task_service import TaskService, cancel_all_task_of, queue_tasks
from api.db.services.task_service import TaskService, cancel_all_task_of, queue_tasks, queue_dataflow
from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import (
@ -182,6 +182,7 @@ def create():
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": kb.parser_id,
"pipeline_id": kb.pipeline_id,
"parser_config": kb.parser_config,
"created_by": current_user.id,
"type": FileType.VIRTUAL,
@ -456,8 +457,7 @@ def run():
cancel_all_task_of(id)
else:
return get_data_error_result(message="Cannot cancel a task that is not in RUNNING status")
if str(req["run"]) == TaskStatus.RUNNING.value and str(doc.run) == TaskStatus.DONE.value:
if all([("delete" not in req or req["delete"]), str(req["run"]) == TaskStatus.RUNNING.value, str(doc.run) == TaskStatus.DONE.value]):
DocumentService.clear_chunk_num_when_rerun(doc.id)
DocumentService.update_by_id(id, info)
@ -480,6 +480,9 @@ def run():
kb_table_num_map[kb_id] = count
if kb_table_num_map[kb_id] <= 0:
KnowledgebaseService.delete_field_map(kb_id)
if doc.get("pipeline_id", ""):
queue_dataflow(tenant_id, flow_id=doc["pipeline_id"], task_id=get_uuid(), doc_id=id)
else:
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name, 0)
@ -547,31 +550,22 @@ def get(doc_id):
@manager.route("/change_parser", methods=["POST"]) # noqa: F821
@login_required
@validate_request("doc_id", "parser_id")
@validate_request("doc_id")
def change_parser():
req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(message="Document not found!")
if doc.parser_id.lower() == req["parser_id"].lower():
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
return get_json_result(data=True)
else:
return get_json_result(data=True)
if (doc.type == FileType.VISUAL and req["parser_id"] != "picture") or (re.search(r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation"):
return get_data_error_result(message="Not supported yet!")
def reset_doc():
nonlocal doc
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress": 0, "progress_msg": "", "run": TaskStatus.UNSTART.value})
if not e:
return get_data_error_result(message="Document not found!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, doc.process_duration * -1)
if not e:
@ -582,6 +576,26 @@ def change_parser():
if settings.docStoreConn.indexExist(search.index_name(tenant_id), doc.kb_id):
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
try:
if "pipeline_id" in req:
if doc.pipeline_id == req["pipeline_id"]:
return get_json_result(data=True)
DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"]})
reset_doc()
return get_json_result(data=True)
if doc.parser_id.lower() == req["parser_id"].lower():
if "parser_config" in req:
if req["parser_config"] == doc.parser_config:
return get_json_result(data=True)
else:
return get_json_result(data=True)
if (doc.type == FileType.VISUAL and req["parser_id"] != "picture") or (re.search(r"\.(ppt|pptx|pages)$", doc.name) and req["parser_id"] != "presentation"):
return get_data_error_result(message="Not supported yet!")
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
reset_doc()
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@ -683,7 +697,7 @@ def set_meta():
meta = json.loads(req["meta"])
if not isinstance(meta, dict):
return get_json_result(data=False, message="Only dictionary type supported.", code=settings.RetCode.ARGUMENT_ERROR)
for k,v in meta.items():
for k, v in meta.items():
if not isinstance(v, str) and not isinstance(v, int) and not isinstance(v, float):
return get_json_result(data=False, message=f"The type is not supported: {v}", code=settings.RetCode.ARGUMENT_ERROR)
except Exception as e:

View File

@ -246,6 +246,8 @@ def rm():
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")
if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
if file.source_type == FileSource.KNOWLEDGEBASE:
continue
@ -292,6 +294,8 @@ def rename():
e, file = FileService.get_by_id(req["file_id"])
if not e:
return get_data_error_result(message="File not found!")
if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
if file.type != FileType.FOLDER.value \
and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
file.name.lower()).suffix:
@ -328,6 +332,8 @@ def get(file_id):
e, file = FileService.get_by_id(file_id)
if not e:
return get_data_error_result(message="Document not found!")
if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
blob = STORAGE_IMPL.get(file.parent_id, file.location)
if not blob:
@ -367,6 +373,8 @@ def move():
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")
if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
fe, _ = FileService.get_by_id(parent_id)
if not fe:
return get_data_error_result(message="Parent Folder not found!")

View File

@ -14,18 +14,21 @@
# limitations under the License.
#
import json
import logging
from flask import request
from flask_login import login_required, current_user
from api.db.services import duplicate_name
from api.db.services.document_service import DocumentService
from api.db.services.document_service import DocumentService, queue_raptor_o_graphrag_tasks
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.pipeline_operation_log_service import PipelineOperationLogService
from api.db.services.task_service import TaskService, GRAPH_RAPTOR_FAKE_DOC_ID
from api.db.services.user_service import TenantService, UserTenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request, not_allowed_parameters
from api.utils.api_utils import get_error_data_result, server_error_response, get_data_error_result, validate_request, not_allowed_parameters
from api.utils import get_uuid
from api.db import StatusEnum, FileSource
from api.db import PipelineTaskType, StatusEnum, FileSource, VALID_FILE_TYPES, VALID_TASK_STATUS
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.db_models import File
from api.utils.api_utils import get_json_result
@ -35,7 +38,6 @@ from api.constants import DATASET_NAME_LIMIT
from rag.settings import PAGERANK_FLD
from rag.utils.storage_factory import STORAGE_IMPL
@manager.route('/create', methods=['post']) # noqa: F821
@login_required
@validate_request("name")
@ -61,10 +63,39 @@ def create():
req["name"] = dataset_name
req["tenant_id"] = current_user.id
req["created_by"] = current_user.id
if not req.get("parser_id"):
req["parser_id"] = "naive"
e, t = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Tenant not found.")
req["embd_id"] = t.embd_id
req["parser_config"] = {
"layout_recognize": "DeepDOC",
"chunk_token_num": 512,
"delimiter": "\n",
"auto_keywords": 0,
"auto_questions": 0,
"html4excel": False,
"topn_tags": 3,
"raptor": {
"use_raptor": True,
"prompt": "Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize.",
"max_token": 256,
"threshold": 0.1,
"max_cluster": 64,
"random_seed": 0
},
"graphrag": {
"use_graphrag": True,
"entity_types": [
"organization",
"person",
"geo",
"event",
"category"
],
"method": "light"
}
}
if not KnowledgebaseService.save(**req):
return get_data_error_result()
return get_json_result(data={"kb_id": req["id"]})
@ -379,3 +410,368 @@ def get_meta():
code=settings.RetCode.AUTHENTICATION_ERROR
)
return get_json_result(data=DocumentService.get_meta_by_kbs(kb_ids))
@manager.route("/basic_info", methods=["GET"]) # noqa: F821
@login_required
def get_basic_info():
kb_id = request.args.get("kb_id", "")
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
basic_info = DocumentService.knowledgebase_basic_info(kb_id)
return get_json_result(data=basic_info)
@manager.route("/list_pipeline_logs", methods=["POST"]) # noqa: F821
@login_required
def list_pipeline_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
create_date_from = request.args.get("create_date_from", "")
create_date_to = request.args.get("create_date_to", "")
if create_date_to > create_date_from:
return get_data_error_result(message="Create data filter is abnormal.")
req = request.get_json()
operation_status = req.get("operation_status", [])
if operation_status:
invalid_status = {s for s in operation_status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(message=f"Invalid filter operation_status status conditions: {', '.join(invalid_status)}")
types = req.get("types", [])
if types:
invalid_types = {t for t in types if t not in VALID_FILE_TYPES}
if invalid_types:
return get_data_error_result(message=f"Invalid filter conditions: {', '.join(invalid_types)} type{'s' if len(invalid_types) > 1 else ''}")
suffix = req.get("suffix", [])
try:
logs, tol = PipelineOperationLogService.get_file_logs_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, keywords, operation_status, types, suffix, create_date_from, create_date_to)
return get_json_result(data={"total": tol, "logs": logs})
except Exception as e:
return server_error_response(e)
@manager.route("/list_pipeline_dataset_logs", methods=["POST"]) # noqa: F821
@login_required
def list_pipeline_dataset_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc", "true").lower() == "false":
desc = False
else:
desc = True
create_date_from = request.args.get("create_date_from", "")
create_date_to = request.args.get("create_date_to", "")
if create_date_to > create_date_from:
return get_data_error_result(message="Create data filter is abnormal.")
req = request.get_json()
operation_status = req.get("operation_status", [])
if operation_status:
invalid_status = {s for s in operation_status if s not in VALID_TASK_STATUS}
if invalid_status:
return get_data_error_result(message=f"Invalid filter operation_status status conditions: {', '.join(invalid_status)}")
try:
logs, tol = PipelineOperationLogService.get_dataset_logs_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, operation_status, create_date_from, create_date_to)
return get_json_result(data={"total": tol, "logs": logs})
except Exception as e:
return server_error_response(e)
@manager.route("/delete_pipeline_logs", methods=["POST"]) # noqa: F821
@login_required
def delete_pipeline_logs():
kb_id = request.args.get("kb_id")
if not kb_id:
return get_json_result(data=False, message='Lack of "KB ID"', code=settings.RetCode.ARGUMENT_ERROR)
req = request.get_json()
log_ids = req.get("log_ids", [])
PipelineOperationLogService.delete_by_ids(log_ids)
return get_json_result(data=True)
@manager.route("/pipeline_log_detail", methods=["GET"]) # noqa: F821
@login_required
def pipeline_log_detail():
log_id = request.args.get("log_id")
if not log_id:
return get_json_result(data=False, message='Lack of "Pipeline log ID"', code=settings.RetCode.ARGUMENT_ERROR)
ok, log = PipelineOperationLogService.get_by_id(log_id)
if not ok:
return get_data_error_result(message="Invalid pipeline log ID")
return get_json_result(data=log.to_dict())
@manager.route("/run_graphrag", methods=["POST"]) # noqa: F821
@login_required
def run_graphrag():
req = request.json
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.graphrag_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid GraphRAG task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A Graph Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(doc=sample_document, ty="graphrag", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"graphrag_task_id": task_id}):
logging.warning(f"Cannot save graphrag_task_id for kb {kb_id}")
return get_json_result(data={"graphrag_task_id": task_id})
@manager.route("/trace_graphrag", methods=["GET"]) # noqa: F821
@login_required
def trace_graphrag():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.graphrag_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="GraphRAG Task Not Found or Error Occurred")
return get_json_result(data=task.to_dict())
@manager.route("/run_raptor", methods=["POST"]) # noqa: F821
@login_required
def run_raptor():
req = request.json
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.raptor_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid RAPTOR task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A RAPTOR Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(doc=sample_document, ty="raptor", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"raptor_task_id": task_id}):
logging.warning(f"Cannot save raptor_task_id for kb {kb_id}")
return get_json_result(data={"raptor_task_id": task_id})
@manager.route("/trace_raptor", methods=["GET"]) # noqa: F821
@login_required
def trace_raptor():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.raptor_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="RAPTOR Task Not Found or Error Occurred")
return get_json_result(data=task.to_dict())
@manager.route("/run_mindmap", methods=["POST"]) # noqa: F821
@login_required
def run_mindmap():
req = request.json
kb_id = req.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.mindmap_task_id
if task_id:
ok, task = TaskService.get_by_id(task_id)
if not ok:
logging.warning(f"A valid Mindmap task id is expected for kb {kb_id}")
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A Mindmap Task is already running.")
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
items_per_page=0,
orderby="create_time",
desc=False,
keywords="",
run_status=[],
types=[],
suffix=[],
)
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(doc=sample_document, ty="mindmap", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
if not KnowledgebaseService.update_by_id(kb.id, {"mindmap_task_id": task_id}):
logging.warning(f"Cannot save mindmap_task_id for kb {kb_id}")
return get_json_result(data={"mindmap_task_id": task_id})
@manager.route("/trace_mindmap", methods=["GET"]) # noqa: F821
@login_required
def trace_mindmap():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.mindmap_task_id
if not task_id:
return get_json_result(data={})
ok, task = TaskService.get_by_id(task_id)
if not ok:
return get_error_data_result(message="Mindmap Task Not Found or Error Occurred")
return get_json_result(data=task.to_dict())
@manager.route("/unbind_task", methods=["DELETE"]) # noqa: F821
@login_required
def delete_kb_task():
kb_id = request.args.get("kb_id", "")
if not kb_id:
return get_error_data_result(message='Lack of "KB ID"')
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
return get_json_result(data=True)
pipeline_task_type = request.args.get("pipeline_task_type", "")
if not pipeline_task_type or pipeline_task_type not in [PipelineTaskType.GRAPH_RAG, PipelineTaskType.RAPTOR, PipelineTaskType.MINDMAP]:
return get_error_data_result(message="Invalid task type")
match pipeline_task_type:
case PipelineTaskType.GRAPH_RAG:
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
kb_task_id = "graphrag_task_id"
kb_task_finish_at = "graphrag_task_finish_at"
case PipelineTaskType.RAPTOR:
kb_task_id = "raptor_task_id"
kb_task_finish_at = "raptor_task_finish_at"
case PipelineTaskType.MINDMAP:
kb_task_id = "mindmap_task_id"
kb_task_finish_at = "mindmap_task_finish_at"
case _:
return get_error_data_result(message="Internal Error: Invalid task type")
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id: "", kb_task_finish_at: None})
if not ok:
return server_error_response(f"Internal error: cannot delete task {pipeline_task_type}")
return get_json_result(data=True)

View File

@ -243,7 +243,7 @@ def add_llm():
model_name=mdl_nm,
base_url=llm["api_base"]
)
arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
arr, tc = mdl.similarity("Hello~ RAGFlower!", ["Hi, there!", "Ohh, my friend!"])
if len(arr) == 0:
raise Exception("Not known.")
except KeyError:
@ -271,7 +271,7 @@ def add_llm():
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)
try:
for resp in mdl.tts("Hello~ Ragflower!"):
for resp in mdl.tts("Hello~ RAGFlower!"):
pass
except RuntimeError as e:
msg += f"\nFail to access model({factory}/{mdl_nm})." + str(e)

View File

@ -82,7 +82,7 @@ def create() -> Response:
server_name = req.get("name", "")
if not server_name or len(server_name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Invaild MCP name or length is {len(server_name)} which is large than 255.")
return get_data_error_result(message=f"Invalid MCP name or length is {len(server_name)} which is large than 255.")
e, _ = MCPServerService.get_by_name_and_tenant(name=server_name, tenant_id=current_user.id)
if e:
@ -90,7 +90,7 @@ def create() -> Response:
url = req.get("url", "")
if not url:
return get_data_error_result(message="Invaild url.")
return get_data_error_result(message="Invalid url.")
headers = safe_json_parse(req.get("headers", {}))
req["headers"] = headers
@ -141,10 +141,10 @@ def update() -> Response:
return get_data_error_result(message="Unsupported MCP server type.")
server_name = req.get("name", mcp_server.name)
if server_name and len(server_name.encode("utf-8")) > 255:
return get_data_error_result(message=f"Invaild MCP name or length is {len(server_name)} which is large than 255.")
return get_data_error_result(message=f"Invalid MCP name or length is {len(server_name)} which is large than 255.")
url = req.get("url", mcp_server.url)
if not url:
return get_data_error_result(message="Invaild url.")
return get_data_error_result(message="Invalid url.")
headers = safe_json_parse(req.get("headers", mcp_server.headers))
req["headers"] = headers
@ -218,7 +218,7 @@ def import_multiple() -> Response:
continue
if not server_name or len(server_name.encode("utf-8")) > 255:
results.append({"server": server_name, "success": False, "message": f"Invaild MCP name or length is {len(server_name)} which is large than 255."})
results.append({"server": server_name, "success": False, "message": f"Invalid MCP name or length is {len(server_name)} which is large than 255."})
continue
base_name = server_name
@ -409,7 +409,7 @@ def test_mcp() -> Response:
url = req.get("url", "")
if not url:
return get_data_error_result(message="Invaild MCP url.")
return get_data_error_result(message="Invalid MCP url.")
server_type = req.get("server_type", "")
if server_type not in VALID_MCP_SERVER_TYPES:

View File

@ -150,10 +150,10 @@ def update(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(message="You do not own the chat")
req = request.json
ids = req.get("dataset_ids")
ids = req.get("dataset_ids", [])
if "show_quotation" in req:
req["do_refer"] = req.pop("show_quotation")
if ids is not None:
if ids:
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:

View File

@ -24,6 +24,7 @@ from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import validate_request, build_error_result, apikey_required
from rag.app.tag import label_question
from api.db.services.dialog_service import meta_filter, convert_conditions
@manager.route('/dify/retrieval', methods=['POST']) # noqa: F821
@ -37,18 +38,23 @@ def retrieval(tenant_id):
retrieval_setting = req.get("retrieval_setting", {})
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
top = int(retrieval_setting.get("top_k", 1024))
metadata_condition = req.get("metadata_condition",{})
metas = DocumentService.get_meta_by_kbs([kb_id])
doc_ids = []
try:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return build_error_result(message="Knowledgebase not found!", code=settings.RetCode.NOT_FOUND)
if kb.tenant_id != tenant_id:
return build_error_result(message="Knowledgebase not found!", code=settings.RetCode.NOT_FOUND)
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
print(metadata_condition)
print("after",convert_conditions(metadata_condition))
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition)))
print("doc_ids",doc_ids)
if not doc_ids and metadata_condition is not None:
doc_ids = ['-999']
ranks = settings.retrievaler.retrieval(
question,
embd_mdl,
@ -59,6 +65,7 @@ def retrieval(tenant_id):
similarity_threshold=similarity_threshold,
vector_similarity_weight=0.3,
top=top,
doc_ids=doc_ids,
rank_feature=label_question(question, [kb])
)
@ -93,3 +100,5 @@ def retrieval(tenant_id):
)
logging.exception(e)
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)

View File

@ -35,11 +35,12 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.task_service import TaskService, queue_tasks
from api.db.services.dialog_service import meta_filter, convert_conditions
from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_error_data_result, get_parser_config, get_result, server_error_response, token_required
from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question
from rag.nlp import rag_tokenizer, search
from rag.prompts import cross_languages, keyword_extraction
from rag.prompts.generator import cross_languages, keyword_extraction
from rag.utils import rmSpace
from rag.utils.storage_factory import STORAGE_IMPL
@ -1350,6 +1351,9 @@ def retrieval_test(tenant_id):
highlight:
type: boolean
description: Whether to highlight matched content.
metadata_condition:
type: object
description: metadata filter condition.
- in: header
name: Authorization
type: string
@ -1413,6 +1417,10 @@ def retrieval_test(tenant_id):
for doc_id in doc_ids:
if doc_id not in doc_ids_list:
return get_error_data_result(f"The datasets don't own the document {doc_id}")
if not doc_ids:
metadata_condition = req.get("metadata_condition", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
doc_ids = meta_filter(metas, convert_conditions(metadata_condition))
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))

View File

@ -3,9 +3,11 @@ import re
import flask
from flask import request
from pathlib import Path
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import server_error_response, token_required
from api.utils import get_uuid
from api.db import FileType
@ -81,16 +83,16 @@ def upload(tenant_id):
return get_json_result(data=False, message="Can't find this folder!", code=404)
for file_obj in file_objs:
# 文件路径处理
# Handle file path
full_path = '/' + file_obj.filename
file_obj_names = full_path.split('/')
file_len = len(file_obj_names)
# 获取文件夹路径ID
# Get folder path ID
file_id_list = FileService.get_id_list_by_id(pf_id, file_obj_names, 1, [pf_id])
len_id_list = len(file_id_list)
# 创建文件夹结构
# Crete file folder
if file_len != len_id_list:
e, file = FileService.get_by_id(file_id_list[len_id_list - 1])
if not e:
@ -666,3 +668,71 @@ def move(tenant_id):
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/file/convert', methods=['POST']) # noqa: F821
@token_required
def convert(tenant_id):
req = request.json
kb_ids = req["kb_ids"]
file_ids = req["file_ids"]
file2documents = []
try:
files = FileService.get_by_ids(file_ids)
files_set = dict({file.id: file for file in files})
for file_id in file_ids:
file = files_set[file_id]
if not file:
return get_json_result(message="File not found!", code=404)
file_ids_list = [file_id]
if file.type == FileType.FOLDER.value:
file_ids_list = FileService.get_all_innermost_file_ids(file_id, [])
for id in file_ids_list:
informs = File2DocumentService.get_by_file_id(id)
# delete
for inform in informs:
doc_id = inform.document_id
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_json_result(message="Document not found!", code=404)
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_json_result(message="Tenant not found!", code=404)
if not DocumentService.remove_document(doc, tenant_id):
return get_json_result(
message="Database error (Document removal)!", code=404)
File2DocumentService.delete_by_file_id(id)
# insert
for kb_id in kb_ids:
e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e:
return get_json_result(
message="Can't find this knowledgebase!", code=404)
e, file = FileService.get_by_id(id)
if not e:
return get_json_result(
message="Can't find this file!", code=404)
doc = DocumentService.insert({
"id": get_uuid(),
"kb_id": kb.id,
"parser_id": FileService.get_parser(file.type, file.name, kb.parser_id),
"parser_config": kb.parser_config,
"created_by": tenant_id,
"type": file.type,
"name": file.name,
"suffix": Path(file.name).suffix.lstrip("."),
"location": file.location,
"size": file.size
})
file2document = File2DocumentService.insert({
"id": get_uuid(),
"file_id": id,
"document_id": doc.id,
})
file2documents.append(file2document.to_json())
return get_json_result(data=file2documents)
except Exception as e:
return server_error_response(e)

View File

@ -16,8 +16,10 @@
import json
import re
import time
import tiktoken
from flask import Response, jsonify, request
from agent.canvas import Canvas
from api import settings
from api.db import LLMType, StatusEnum
@ -27,7 +29,8 @@ from api.db.services.canvas_service import UserCanvasService, completionOpenAI
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap
from api.db.services.dialog_service import DialogService, ask, chat, gen_mindmap, meta_filter
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService
@ -35,9 +38,8 @@ from api.db.services.user_service import UserTenantService
from api.utils import get_uuid
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
from rag.app.tag import label_question
from rag.prompts import chunks_format
from rag.prompts.prompt_template import load_prompt
from rag.prompts.prompts import cross_languages, keyword_extraction
from rag.prompts.template import load_prompt
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@ -81,21 +83,13 @@ def create_agent_session(tenant_id, agent_id):
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
session_id=get_uuid()
session_id = get_uuid()
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
canvas.reset()
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": user_id,
"message": [],
"source": "agent",
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
cvs.dsl = json.loads(str(canvas))
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv)
conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv)
@ -419,7 +413,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
stream=True,
**req,
),
@ -437,7 +431,7 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
tenant_id,
agent_id,
question,
session_id=req.get("id", req.get("metadata", {}).get("id", "")),
session_id=req.pop("session_id", req.get("id", "")) or req.get("metadata", {}).get("id", ""),
stream=False,
**req,
)
@ -450,7 +444,6 @@ def agents_completion_openai_compatibility(tenant_id, agent_id):
def agent_completions(tenant_id, agent_id):
req = request.json
ans = {}
if req.get("stream", True):
def generate():
@ -461,7 +454,7 @@ def agent_completions(tenant_id, agent_id):
except Exception:
continue
if ans.get("event") != "message":
if ans.get("event") not in ["message", "message_end"]:
continue
yield answer
@ -475,12 +468,25 @@ def agent_completions(tenant_id, agent_id):
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
full_content = ""
reference = {}
final_ans = ""
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
try:
ans = json.loads(answer[5:]) # remove "data:"
ans = json.loads(answer[5:])
if ans["event"] == "message":
full_content += ans["data"]["content"]
if ans.get("data", {}).get("reference", None):
reference.update(ans["data"]["reference"])
final_ans = ans
except Exception as e:
return get_result(data=f"**ERROR**: {str(e)}")
return get_result(data=ans)
final_ans["data"]["content"] = full_content
final_ans["data"]["reference"] = reference
return get_result(data=final_ans)
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
@ -575,12 +581,12 @@ def list_agent_session(tenant_id, agent_id):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
# Add boundary and type checks to prevent KeyError
if (chunk_num < len(conv["reference"]) and
conv["reference"][chunk_num] is not None and
isinstance(conv["reference"][chunk_num], dict) and
"chunks" in conv["reference"][chunk_num]):
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks:
# Ensure chunk is a dictionary before calling get method
if not isinstance(chunk, dict):
continue
new_chunk = {
"id": chunk.get("chunk_id", chunk.get("id")),
"content": chunk.get("content_with_weight", chunk.get("content")),
@ -876,14 +882,7 @@ def begin_inputs(agent_id):
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
return get_result(
data={
"title": cvs.title,
"avatar": cvs.avatar,
"inputs": canvas.get_component_input_form("begin"),
"prologue": canvas.get_prologue()
}
)
return get_result(data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"), "prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
@ -909,7 +908,7 @@ def ask_about_embedded():
def stream():
nonlocal req, uid
try:
for ans in ask(req["question"], req["kb_ids"], uid, search_config):
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
@ -923,7 +922,7 @@ def ask_about_embedded():
return resp
@manager.route("/searchbots/retrieval_test", methods=['POST']) # noqa: F821
@manager.route("/searchbots/retrieval_test", methods=["POST"]) # noqa: F821
@validate_request("kb_id", "question")
def retrieval_test_embedded():
token = request.headers.get("Authorization").split()
@ -941,6 +940,9 @@ def retrieval_test_embedded():
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=settings.RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
@ -953,18 +955,30 @@ def retrieval_test_embedded():
if not tenant_id:
return get_error_data_result(message="permission denined.")
if req.get("search_id", ""):
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
meta_data_filter = search_config.get("meta_data_filter", {})
metas = DocumentService.get_meta_by_kbs(kb_ids)
if meta_data_filter.get("method") == "auto":
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
filters = gen_meta_filter(chat_mdl, metas, question)
doc_ids.extend(meta_filter(metas, filters))
if not doc_ids:
doc_ids = None
elif meta_data_filter.get("method") == "manual":
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"]))
if not doc_ids:
doc_ids = None
try:
tenants = UserTenantService.query(user_id=tenant_id)
for kb_id in kb_ids:
for tenant in tenants:
if KnowledgebaseService.query(
tenant_id=tenant.tenant_id, id=kb_id):
if KnowledgebaseService.query(tenant_id=tenant.tenant_id, id=kb_id):
tenant_ids.append(tenant.tenant_id)
break
else:
return get_json_result(
data=False, message='Only owner of knowledgebase authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
@ -984,17 +998,11 @@ def retrieval_test_embedded():
question += keyword_extraction(chat_mdl, question)
labels = label_question(question, [kb])
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"),
rank_feature=labels
ranks = settings.retrievaler.retrieval(
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
)
if use_kg:
ck = settings.kg_retrievaler.retrieval(question,
tenant_ids,
kb_ids,
embd_mdl,
LLMBundle(kb.tenant_id, LLMType.CHAT))
ck = settings.kg_retrievaler.retrieval(question, tenant_ids, kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck)
@ -1005,8 +1013,7 @@ def retrieval_test_embedded():
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
return get_json_result(data=False, message="No chunk found! Check the chunk status please!", code=settings.RetCode.DATA_ERROR)
return server_error_response(e)

View File

@ -43,7 +43,7 @@ def create():
return get_data_error_result(message=f"Search name length is {len(search_name)} which is large than 255.")
e, _ = TenantService.get_by_id(current_user.id)
if not e:
return get_data_error_result(message="Authorizationd identity.")
return get_data_error_result(message="Authorized identity.")
search_name = search_name.strip()
search_name = duplicate_name(SearchService.query, name=search_name, tenant_id=current_user.id, status=StatusEnum.VALID.value)
@ -78,7 +78,7 @@ def update():
tenant_id = req["tenant_id"]
e, _ = TenantService.get_by_id(tenant_id)
if not e:
return get_data_error_result(message="Authorizationd identity.")
return get_data_error_result(message="Authorized identity.")
search_id = req["search_id"]
if not SearchService.accessible4deletion(search_id, current_user.id):
@ -155,8 +155,9 @@ def list_search_app():
owner_ids = req.get("owner_ids", [])
try:
if not owner_ids:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants]
# tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
# tenants = [m["tenant_id"] for m in tenants]
tenants = []
search_apps, total = SearchService.get_by_tenant_ids(tenants, current_user.id, page_number, items_per_page, orderby, desc, keywords)
else:
tenants = owner_ids

View File

@ -36,6 +36,9 @@ from rag.utils.storage_factory import STORAGE_IMPL, STORAGE_IMPL_TYPE
from timeit import default_timer as timer
from rag.utils.redis_conn import REDIS_CONN
from flask import jsonify
from api.utils.health_utils import run_health_checks
@manager.route("/version", methods=["GET"]) # noqa: F821
@login_required
@ -169,6 +172,12 @@ def status():
return get_json_result(data=res)
@manager.route("/healthz", methods=["GET"]) # noqa: F821
def healthz():
result, all_ok = run_health_checks()
return jsonify(result), (200 if all_ok else 500)
@manager.route("/new_token", methods=["POST"]) # noqa: F821
@login_required
def new_token():

View File

@ -34,7 +34,6 @@ from api.db.services.user_service import TenantService, UserService, UserTenantS
from api.utils import (
current_timestamp,
datetime_format,
decrypt,
download_img,
get_format_time,
get_uuid,
@ -46,6 +45,7 @@ from api.utils.api_utils import (
server_error_response,
validate_request,
)
from api.utils.crypt import decrypt
@manager.route("/login", methods=["POST", "GET"]) # noqa: F821
@ -98,7 +98,14 @@ def login():
return get_json_result(data=False, code=settings.RetCode.SERVER_ERROR, message="Fail to crypt password")
user = UserService.query_user(email, password)
if user:
if user and hasattr(user, 'is_active') and user.is_active == "0":
return get_json_result(
data=False,
code=settings.RetCode.FORBIDDEN,
message="This account has been disabled, please contact the administrator!",
)
elif user:
response_data = user.to_json()
user.access_token = get_uuid()
login_user(user)
@ -227,6 +234,9 @@ def oauth_callback(channel):
# User exists, try to log in
user = users[0]
user.access_token = get_uuid()
if user and hasattr(user, 'is_active') and user.is_active == "0":
return redirect("/?error=user_inactive")
login_user(user)
user.save()
return redirect(f"/?auth={user.get_id()}")
@ -317,6 +327,8 @@ def github_callback():
# User has already registered, try to log in
user = users[0]
user.access_token = get_uuid()
if user and hasattr(user, 'is_active') and user.is_active == "0":
return redirect("/?error=user_inactive")
login_user(user)
user.save()
return redirect("/?auth=%s" % user.get_id())
@ -418,6 +430,8 @@ def feishu_callback():
# User has already registered, try to log in
user = users[0]
if user and hasattr(user, 'is_active') and user.is_active == "0":
return redirect("/?error=user_inactive")
user.access_token = get_uuid()
login_user(user)
user.save()

2
api/common/README.md Normal file
View File

@ -0,0 +1,2 @@
The python files in this directory are shared between service. They contain common utilities, models, and functions that can be used across various
services to ensure consistency and reduce code duplication.

21
api/common/base64.py Normal file
View File

@ -0,0 +1,21 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import base64
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')

View File

@ -23,6 +23,11 @@ class StatusEnum(Enum):
INVALID = "0"
class ActiveEnum(Enum):
ACTIVE = "1"
INACTIVE = "0"
class UserTenantRole(StrEnum):
OWNER = 'owner'
ADMIN = 'admin'
@ -74,8 +79,10 @@ class TaskStatus(StrEnum):
DONE = "3"
FAIL = "4"
VALID_TASK_STATUS = {TaskStatus.UNSTART, TaskStatus.RUNNING, TaskStatus.CANCEL, TaskStatus.DONE, TaskStatus.FAIL}
class ParserType(StrEnum):
PRESENTATION = "presentation"
LAWS = "laws"
@ -105,10 +112,30 @@ class CanvasType(StrEnum):
DocBot = "docbot"
class CanvasCategory(StrEnum):
Agent = "agent_canvas"
DataFlow = "dataflow_canvas"
VALID_CANVAS_CATEGORIES = {CanvasCategory.Agent, CanvasCategory.DataFlow}
class MCPServerType(StrEnum):
SSE = "sse"
STREAMABLE_HTTP = "streamable-http"
VALID_MCP_SERVER_TYPES = {MCPServerType.SSE, MCPServerType.STREAMABLE_HTTP}
class PipelineTaskType(StrEnum):
PARSE = "Parse"
DOWNLOAD = "Download"
RAPTOR = "RAPTOR"
GRAPH_RAG = "GraphRAG"
MINDMAP = "Mindmap"
VALID_PIPELINE_TASK_TYPES = {PipelineTaskType.PARSE, PipelineTaskType.DOWNLOAD, PipelineTaskType.RAPTOR, PipelineTaskType.GRAPH_RAG, PipelineTaskType.MINDMAP}
KNOWLEDGEBASE_FOLDER_NAME=".knowledgebase"

View File

@ -26,12 +26,14 @@ from functools import wraps
from flask_login import UserMixin
from itsdangerous.url_safe import URLSafeTimedSerializer as Serializer
from peewee import BigIntegerField, BooleanField, CharField, CompositeKey, DateTimeField, Field, FloatField, IntegerField, Metadata, Model, TextField
from peewee import InterfaceError, OperationalError, BigIntegerField, BooleanField, CharField, CompositeKey, DateTimeField, Field, FloatField, IntegerField, Metadata, Model, TextField
from playhouse.migrate import MySQLMigrator, PostgresqlMigrator, migrate
from playhouse.pool import PooledMySQLDatabase, PooledPostgresqlDatabase
from api import settings, utils
from api.db import ParserType, SerializedType
from api.utils.json import json_dumps, json_loads
from api.utils.configs import deserialize_b64, serialize_b64
def singleton(cls, *args, **kw):
@ -70,12 +72,12 @@ class JSONField(LongTextField):
def db_value(self, value):
if value is None:
value = self.default_value
return utils.json_dumps(value)
return json_dumps(value)
def python_value(self, value):
if not value:
return self.default_value
return utils.json_loads(value, object_hook=self._object_hook, object_pairs_hook=self._object_pairs_hook)
return json_loads(value, object_hook=self._object_hook, object_pairs_hook=self._object_pairs_hook)
class ListField(JSONField):
@ -91,21 +93,21 @@ class SerializedField(LongTextField):
def db_value(self, value):
if self._serialized_type == SerializedType.PICKLE:
return utils.serialize_b64(value, to_str=True)
return serialize_b64(value, to_str=True)
elif self._serialized_type == SerializedType.JSON:
if value is None:
return None
return utils.json_dumps(value, with_type=True)
return json_dumps(value, with_type=True)
else:
raise ValueError(f"the serialized type {self._serialized_type} is not supported")
def python_value(self, value):
if self._serialized_type == SerializedType.PICKLE:
return utils.deserialize_b64(value)
return deserialize_b64(value)
elif self._serialized_type == SerializedType.JSON:
if value is None:
return {}
return utils.json_loads(value, object_hook=self._object_hook, object_pairs_hook=self._object_pairs_hook)
return json_loads(value, object_hook=self._object_hook, object_pairs_hook=self._object_pairs_hook)
else:
raise ValueError(f"the serialized type {self._serialized_type} is not supported")
@ -245,19 +247,26 @@ class JsonSerializedField(SerializedField):
class RetryingPooledMySQLDatabase(PooledMySQLDatabase):
def __init__(self, *args, **kwargs):
self.max_retries = kwargs.pop('max_retries', 5)
self.retry_delay = kwargs.pop('retry_delay', 1)
self.max_retries = kwargs.pop("max_retries", 5)
self.retry_delay = kwargs.pop("retry_delay", 1)
super().__init__(*args, **kwargs)
def execute_sql(self, sql, params=None, commit=True):
from peewee import OperationalError
for attempt in range(self.max_retries + 1):
try:
return super().execute_sql(sql, params, commit)
except OperationalError as e:
if e.args[0] in (2013, 2006) and attempt < self.max_retries:
except (OperationalError, InterfaceError) as e:
error_codes = [2013, 2006]
error_messages = ['', 'Lost connection']
should_retry = (
(hasattr(e, 'args') and e.args and e.args[0] in error_codes) or
(str(e) in error_messages) or
(hasattr(e, '__class__') and e.__class__.__name__ == 'InterfaceError')
)
if should_retry and attempt < self.max_retries:
logging.warning(
f"Lost connection (attempt {attempt+1}/{self.max_retries}): {e}"
f"Database connection issue (attempt {attempt+1}/{self.max_retries}): {e}"
)
self._handle_connection_loss()
time.sleep(self.retry_delay * (2 ** attempt))
@ -267,16 +276,34 @@ class RetryingPooledMySQLDatabase(PooledMySQLDatabase):
return None
def _handle_connection_loss(self):
self.close_all()
# self.close_all()
# self.connect()
try:
self.close()
except Exception:
pass
try:
self.connect()
except Exception as e:
logging.error(f"Failed to reconnect: {e}")
time.sleep(0.1)
self.connect()
def begin(self):
from peewee import OperationalError
for attempt in range(self.max_retries + 1):
try:
return super().begin()
except OperationalError as e:
if e.args[0] in (2013, 2006) and attempt < self.max_retries:
except (OperationalError, InterfaceError) as e:
error_codes = [2013, 2006]
error_messages = ['', 'Lost connection']
should_retry = (
(hasattr(e, 'args') and e.args and e.args[0] in error_codes) or
(str(e) in error_messages) or
(hasattr(e, '__class__') and e.__class__.__name__ == 'InterfaceError')
)
if should_retry and attempt < self.max_retries:
logging.warning(
f"Lost connection during transaction (attempt {attempt+1}/{self.max_retries})"
)
@ -301,7 +328,16 @@ class BaseDataBase:
def __init__(self):
database_config = settings.DATABASE.copy()
db_name = database_config.pop("name")
self.database_connection = PooledDatabase[settings.DATABASE_TYPE.upper()].value(db_name, **database_config)
pool_config = {
'max_retries': 5,
'retry_delay': 1,
}
database_config.update(pool_config)
self.database_connection = PooledDatabase[settings.DATABASE_TYPE.upper()].value(
db_name, **database_config
)
# self.database_connection = PooledDatabase[settings.DATABASE_TYPE.upper()].value(db_name, **database_config)
logging.info("init database on cluster mode successfully")
@ -648,8 +684,17 @@ class Knowledgebase(DataBaseModel):
vector_similarity_weight = FloatField(default=0.3, index=True)
parser_id = CharField(max_length=32, null=False, help_text="default parser ID", default=ParserType.NAIVE.value, index=True)
pipeline_id = CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)
parser_config = JSONField(null=False, default={"pages": [[1, 1000000]]})
pagerank = IntegerField(default=0, index=False)
graphrag_task_id = CharField(max_length=32, null=True, help_text="Graph RAG task ID", index=True)
graphrag_task_finish_at = DateTimeField(null=True)
raptor_task_id = CharField(max_length=32, null=True, help_text="RAPTOR task ID", index=True)
raptor_task_finish_at = DateTimeField(null=True)
mindmap_task_id = CharField(max_length=32, null=True, help_text="Mindmap task ID", index=True)
mindmap_task_finish_at = DateTimeField(null=True)
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted, 1: validate)", default="1", index=True)
def __str__(self):
@ -664,6 +709,7 @@ class Document(DataBaseModel):
thumbnail = TextField(null=True, help_text="thumbnail base64 string")
kb_id = CharField(max_length=256, null=False, index=True)
parser_id = CharField(max_length=32, null=False, help_text="default parser ID", index=True)
pipeline_id = CharField(max_length=32, null=True, help_text="pipleline ID", index=True)
parser_config = JSONField(null=False, default={"pages": [[1, 1000000]]})
source_type = CharField(max_length=128, null=False, default="local", help_text="where dose this document come from", index=True)
type = CharField(max_length=32, null=False, help_text="file extension", index=True)
@ -815,6 +861,7 @@ class UserCanvas(DataBaseModel):
permission = CharField(max_length=16, null=False, help_text="me|team", default="me", index=True)
description = TextField(null=True, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type", index=True)
canvas_category = CharField(max_length=32, null=False, default="agent_canvas", help_text="Canvas category: agent_canvas|dataflow_canvas", index=True)
dsl = JSONField(null=True, default={})
class Meta:
@ -824,10 +871,10 @@ class UserCanvas(DataBaseModel):
class CanvasTemplate(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
avatar = TextField(null=True, help_text="avatar base64 string")
title = CharField(max_length=255, null=True, help_text="Canvas title")
description = TextField(null=True, help_text="Canvas description")
title = JSONField(null=True, default=dict, help_text="Canvas title")
description = JSONField(null=True, default=dict, help_text="Canvas description")
canvas_type = CharField(max_length=32, null=True, help_text="Canvas type", index=True)
canvas_category = CharField(max_length=32, null=False, default="agent_canvas", help_text="Canvas category: agent_canvas|dataflow_canvas", index=True)
dsl = JSONField(null=True, default={})
class Meta:
@ -905,6 +952,32 @@ class Search(DataBaseModel):
db_table = "search"
class PipelineOperationLog(DataBaseModel):
id = CharField(max_length=32, primary_key=True)
document_id = CharField(max_length=32, index=True)
tenant_id = CharField(max_length=32, null=False, index=True)
kb_id = CharField(max_length=32, null=False, index=True)
pipeline_id = CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)
pipeline_title = CharField(max_length=32, null=True, help_text="Pipeline title", index=True)
parser_id = CharField(max_length=32, null=False, help_text="Parser ID", index=True)
document_name = CharField(max_length=255, null=False, help_text="File name")
document_suffix = CharField(max_length=255, null=False, help_text="File suffix")
document_type = CharField(max_length=255, null=False, help_text="Document type")
source_from = CharField(max_length=255, null=False, help_text="Source")
progress = FloatField(default=0, index=True)
progress_msg = TextField(null=True, help_text="process message", default="")
process_begin_at = DateTimeField(null=True, index=True)
process_duration = FloatField(default=0)
dsl = JSONField(null=True, default=dict)
task_type = CharField(max_length=32, null=False, default="")
operation_status = CharField(max_length=32, null=False, help_text="Operation status")
avatar = TextField(null=True, help_text="avatar base64 string")
status = CharField(max_length=1, null=True, help_text="is it validate(0: wasted, 1: validate)", default="1", index=True)
class Meta:
db_table = "pipeline_operation_log"
def migrate_db():
logging.disable(logging.ERROR)
migrator = DatabaseMigrator[settings.DATABASE_TYPE.upper()].value(DB)
@ -1021,4 +1094,52 @@ def migrate_db():
migrate(migrator.add_column("dialog", "meta_data_filter", JSONField(null=True, default={})))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "title", JSONField(null=True, default=dict, help_text="Canvas title")))
except Exception:
pass
try:
migrate(migrator.alter_column_type("canvas_template", "description", JSONField(null=True, default=dict, help_text="Canvas description")))
except Exception:
pass
try:
migrate(migrator.add_column("user_canvas", "canvas_category", CharField(max_length=32, null=False, default="agent_canvas", help_text="agent_canvas|dataflow_canvas", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("canvas_template", "canvas_category", CharField(max_length=32, null=False, default="agent_canvas", help_text="agent_canvas|dataflow_canvas", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "pipeline_id", CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("document", "pipeline_id", CharField(max_length=32, null=True, help_text="Pipeline ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "graphrag_task_id", CharField(max_length=32, null=True, help_text="Gragh RAG task ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "raptor_task_id", CharField(max_length=32, null=True, help_text="RAPTOR task ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "graphrag_task_finish_at", DateTimeField(null=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "raptor_task_finish_at", CharField(null=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "mindmap_task_id", CharField(max_length=32, null=True, help_text="Mindmap task ID", index=True)))
except Exception:
pass
try:
migrate(migrator.add_column("knowledgebase", "mindmap_task_finish_at", CharField(null=True)))
except Exception:
pass
logging.disable(logging.NOTSET)

View File

@ -14,7 +14,6 @@
# limitations under the License.
#
import logging
import base64
import json
import os
import time
@ -32,11 +31,7 @@ from api.db.services.llm_service import LLMService, LLMBundle, get_init_tenant_l
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
from api.utils.file_utils import get_project_base_directory
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')
from api.common.base64 import encode_to_base64
def init_superuser():
@ -144,8 +139,9 @@ def init_llm_factory():
except Exception:
pass
break
doc_count = DocumentService.get_all_kb_doc_count()
for kb_id in KnowledgebaseService.get_all_ids():
KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=DocumentService.get_kb_doc_count(kb_id))
KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=doc_count.get(kb_id, 0))

View File

@ -0,0 +1,327 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import uuid
from api import settings
from api.utils.api_utils import group_by
from api.db import FileType, UserTenantRole, ActiveEnum
from api.db.services.api_service import APITokenService, API4ConversationService
from api.db.services.canvas_service import UserCanvasService
from api.db.services.conversation_service import ConversationService
from api.db.services.dialog_service import DialogService
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.llm_service import get_init_tenant_llm
from api.db.services.file_service import FileService
from api.db.services.mcp_server_service import MCPServerService
from api.db.services.search_service import SearchService
from api.db.services.task_service import TaskService
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.db.services.user_service import TenantService, UserService, UserTenantService
from rag.utils.storage_factory import STORAGE_IMPL
from rag.nlp import search
def create_new_user(user_info: dict) -> dict:
"""
Add a new user, and create tenant, tenant llm, file folder for new user.
:param user_info: {
"email": <example@example.com>,
"nickname": <str, "name">,
"password": <decrypted password>,
"login_channel": <enum, "password">,
"is_superuser": <bool, role == "admin">,
}
:return: {
"success": <bool>,
"user_info": <dict>, # if true, return user_info
}
"""
# generate user_id and access_token for user
user_id = uuid.uuid1().hex
user_info['id'] = user_id
user_info['access_token'] = uuid.uuid1().hex
# construct tenant info
tenant = {
"id": user_id,
"name": user_info["nickname"] + "s Kingdom",
"llm_id": settings.CHAT_MDL,
"embd_id": settings.EMBEDDING_MDL,
"asr_id": settings.ASR_MDL,
"parser_ids": settings.PARSERS,
"img2txt_id": settings.IMAGE2TEXT_MDL,
"rerank_id": settings.RERANK_MDL,
}
usr_tenant = {
"tenant_id": user_id,
"user_id": user_id,
"invited_by": user_id,
"role": UserTenantRole.OWNER,
}
# construct file folder info
file_id = uuid.uuid1().hex
file = {
"id": file_id,
"parent_id": file_id,
"tenant_id": user_id,
"created_by": user_id,
"name": "/",
"type": FileType.FOLDER.value,
"size": 0,
"location": "",
}
try:
tenant_llm = get_init_tenant_llm(user_id)
if not UserService.save(**user_info):
return {"success": False}
TenantService.insert(**tenant)
UserTenantService.insert(**usr_tenant)
TenantLLMService.insert_many(tenant_llm)
FileService.insert(file)
return {
"success": True,
"user_info": user_info,
}
except Exception as create_error:
logging.exception(create_error)
# rollback
try:
TenantService.delete_by_id(user_id)
except Exception as e:
logging.exception(e)
try:
u = UserTenantService.query(tenant_id=user_id)
if u:
UserTenantService.delete_by_id(u[0].id)
except Exception as e:
logging.exception(e)
try:
TenantLLMService.delete_by_tenant_id(user_id)
except Exception as e:
logging.exception(e)
try:
FileService.delete_by_id(file["id"])
except Exception as e:
logging.exception(e)
# delete user row finally
try:
UserService.delete_by_id(user_id)
except Exception as e:
logging.exception(e)
# reraise
raise create_error
def delete_user_data(user_id: str) -> dict:
# use user_id to delete
usr = UserService.filter_by_id(user_id)
if not usr:
return {"success": False, "message": f"{user_id} can't be found."}
# check is inactive and not admin
if usr.is_active == ActiveEnum.ACTIVE.value:
return {"success": False, "message": f"{user_id} is active and can't be deleted."}
if usr.is_superuser:
return {"success": False, "message": "Can't delete the super user."}
# tenant info
tenants = UserTenantService.get_user_tenant_relation_by_user_id(usr.id)
owned_tenant = [t for t in tenants if t["role"] == UserTenantRole.OWNER.value]
done_msg = ''
try:
# step1. delete owned tenant info
if owned_tenant:
done_msg += "Start to delete owned tenant.\n"
tenant_id = owned_tenant[0]["tenant_id"]
kb_ids = KnowledgebaseService.get_kb_ids(usr.id)
# step1.1 delete knowledgebase related file and info
if kb_ids:
# step1.1.1 delete files in storage, remove bucket
for kb_id in kb_ids:
if STORAGE_IMPL.bucket_exists(kb_id):
STORAGE_IMPL.remove_bucket(kb_id)
done_msg += f"- Removed {len(kb_ids)} dataset's buckets.\n"
# step1.1.2 delete file and document info in db
doc_ids = DocumentService.get_all_doc_ids_by_kb_ids(kb_ids)
if doc_ids:
doc_delete_res = DocumentService.delete_by_ids([i["id"] for i in doc_ids])
done_msg += f"- Deleted {doc_delete_res} document records.\n"
task_delete_res = TaskService.delete_by_doc_ids([i["id"] for i in doc_ids])
done_msg += f"- Deleted {task_delete_res} task records.\n"
file_ids = FileService.get_all_file_ids_by_tenant_id(usr.id)
if file_ids:
file_delete_res = FileService.delete_by_ids([f["id"] for f in file_ids])
done_msg += f"- Deleted {file_delete_res} file records.\n"
if doc_ids or file_ids:
file2doc_delete_res = File2DocumentService.delete_by_document_ids_or_file_ids(
[i["id"] for i in doc_ids],
[f["id"] for f in file_ids]
)
done_msg += f"- Deleted {file2doc_delete_res} document-file relation records.\n"
# step1.1.3 delete chunk in es
r = settings.docStoreConn.delete({"kb_id": kb_ids},
search.index_name(tenant_id), kb_ids)
done_msg += f"- Deleted {r} chunk records.\n"
kb_delete_res = KnowledgebaseService.delete_by_ids(kb_ids)
done_msg += f"- Deleted {kb_delete_res} knowledgebase records.\n"
# step1.1.4 delete agents
agent_delete_res = delete_user_agents(usr.id)
done_msg += f"- Deleted {agent_delete_res['agents_deleted_count']} agent, {agent_delete_res['version_deleted_count']} versions records.\n"
# step1.1.5 delete dialogs
dialog_delete_res = delete_user_dialogs(usr.id)
done_msg += f"- Deleted {dialog_delete_res['dialogs_deleted_count']} dialogs, {dialog_delete_res['conversations_deleted_count']} conversations, {dialog_delete_res['api_token_deleted_count']} api tokens, {dialog_delete_res['api4conversation_deleted_count']} api4conversations.\n"
# step1.1.6 delete mcp server
mcp_delete_res = MCPServerService.delete_by_tenant_id(usr.id)
done_msg += f"- Deleted {mcp_delete_res} MCP server.\n"
# step1.1.7 delete search
search_delete_res = SearchService.delete_by_tenant_id(usr.id)
done_msg += f"- Deleted {search_delete_res} search records.\n"
# step1.2 delete tenant_llm and tenant_langfuse
llm_delete_res = TenantLLMService.delete_by_tenant_id(tenant_id)
done_msg += f"- Deleted {llm_delete_res} tenant-LLM records.\n"
langfuse_delete_res = TenantLangfuseService.delete_ty_tenant_id(tenant_id)
done_msg += f"- Deleted {langfuse_delete_res} langfuse records.\n"
# step1.3 delete own tenant
tenant_delete_res = TenantService.delete_by_id(tenant_id)
done_msg += f"- Deleted {tenant_delete_res} tenant.\n"
# step2 delete user-tenant relation
if tenants:
# step2.1 delete docs and files in joined team
joined_tenants = [t for t in tenants if t["role"] == UserTenantRole.NORMAL.value]
if joined_tenants:
done_msg += "Start to delete data in joined tenants.\n"
created_documents = DocumentService.get_all_docs_by_creator_id(usr.id)
if created_documents:
# step2.1.1 delete files
doc_file_info = File2DocumentService.get_by_document_ids([d['id'] for d in created_documents])
created_files = FileService.get_by_ids([f['file_id'] for f in doc_file_info])
if created_files:
# step2.1.1.1 delete file in storage
for f in created_files:
STORAGE_IMPL.rm(f.parent_id, f.location)
done_msg += f"- Deleted {len(created_files)} uploaded file.\n"
# step2.1.1.2 delete file record
file_delete_res = FileService.delete_by_ids([f.id for f in created_files])
done_msg += f"- Deleted {file_delete_res} file records.\n"
# step2.1.2 delete document-file relation record
file2doc_delete_res = File2DocumentService.delete_by_document_ids_or_file_ids(
[d['id'] for d in created_documents],
[f.id for f in created_files]
)
done_msg += f"- Deleted {file2doc_delete_res} document-file relation records.\n"
# step2.1.3 delete chunks
doc_groups = group_by(created_documents, "tenant_id")
kb_grouped_doc = {k: group_by(v, "kb_id") for k, v in doc_groups.items()}
# chunks in {'tenant_id': {'kb_id': [{'id': doc_id}]}} structure
chunk_delete_res = 0
kb_doc_info = {}
for _tenant_id, kb_doc in kb_grouped_doc.items():
for _kb_id, docs in kb_doc.items():
chunk_delete_res += settings.docStoreConn.delete(
{"doc_id": [d["id"] for d in docs]},
search.index_name(_tenant_id), _kb_id
)
# record doc info
if _kb_id in kb_doc_info.keys():
kb_doc_info[_kb_id]['doc_num'] += 1
kb_doc_info[_kb_id]['token_num'] += sum([d["token_num"] for d in docs])
kb_doc_info[_kb_id]['chunk_num'] += sum([d["chunk_num"] for d in docs])
else:
kb_doc_info[_kb_id] = {
'doc_num': 1,
'token_num': sum([d["token_num"] for d in docs]),
'chunk_num': sum([d["chunk_num"] for d in docs])
}
done_msg += f"- Deleted {chunk_delete_res} chunks.\n"
# step2.1.4 delete tasks
task_delete_res = TaskService.delete_by_doc_ids([d['id'] for d in created_documents])
done_msg += f"- Deleted {task_delete_res} tasks.\n"
# step2.1.5 delete document record
doc_delete_res = DocumentService.delete_by_ids([d['id'] for d in created_documents])
done_msg += f"- Deleted {doc_delete_res} documents.\n"
# step2.1.6 update knowledge base doc&chunk&token cnt
for kb_id, doc_num in kb_doc_info.items():
KnowledgebaseService.decrease_document_num_in_delete(kb_id, doc_num)
# step2.2 delete relation
user_tenant_delete_res = UserTenantService.delete_by_ids([t["id"] for t in tenants])
done_msg += f"- Deleted {user_tenant_delete_res} user-tenant records.\n"
# step3 finally delete user
user_delete_res = UserService.delete_by_id(usr.id)
done_msg += f"- Deleted {user_delete_res} user.\nDelete done!"
return {"success": True, "message": f"Successfully deleted user. Details:\n{done_msg}"}
except Exception as e:
logging.exception(e)
return {"success": False, "message": f"Error: {str(e)}. Already done:\n{done_msg}"}
def delete_user_agents(user_id: str) -> dict:
"""
use user_id to delete
:return: {
"agents_deleted_count": 1,
"version_deleted_count": 2
}
"""
agents_deleted_count, agents_version_deleted_count = 0, 0
user_agents = UserCanvasService.get_all_agents_by_tenant_ids([user_id], user_id)
if user_agents:
agents_version = UserCanvasVersionService.get_all_canvas_version_by_canvas_ids([a['id'] for a in user_agents])
agents_version_deleted_count = UserCanvasVersionService.delete_by_ids([v['id'] for v in agents_version])
agents_deleted_count = UserCanvasService.delete_by_ids([a['id'] for a in user_agents])
return {
"agents_deleted_count": agents_deleted_count,
"version_deleted_count": agents_version_deleted_count
}
def delete_user_dialogs(user_id: str) -> dict:
"""
use user_id to delete
:return: {
"dialogs_deleted_count": 1,
"conversations_deleted_count": 1,
"api_token_deleted_count": 2,
"api4conversation_deleted_count": 2
}
"""
dialog_deleted_count, conversations_deleted_count, api_token_deleted_count, api4conversation_deleted_count = 0, 0, 0, 0
user_dialogs = DialogService.get_all_dialogs_by_tenant_id(user_id)
if user_dialogs:
# delete conversation
conversations = ConversationService.get_all_conversation_by_dialog_ids([ud['id'] for ud in user_dialogs])
conversations_deleted_count = ConversationService.delete_by_ids([c['id'] for c in conversations])
# delete api token
api_token_deleted_count = APITokenService.delete_by_tenant_id(user_id)
# delete api for conversation
api4conversation_deleted_count = API4ConversationService.delete_by_dialog_ids([ud['id'] for ud in user_dialogs])
# delete dialog at last
dialog_deleted_count = DialogService.delete_by_ids([ud['id'] for ud in user_dialogs])
return {
"dialogs_deleted_count": dialog_deleted_count,
"conversations_deleted_count": conversations_deleted_count,
"api_token_deleted_count": api_token_deleted_count,
"api4conversation_deleted_count": api4conversation_deleted_count
}

View File

@ -19,7 +19,7 @@ from pathlib import PurePath
from .user_service import UserService as UserService
def split_name_counter(filename: str) -> tuple[str, int | None]:
def _split_name_counter(filename: str) -> tuple[str, int | None]:
"""
Splits a filename into main part and counter (if present in parentheses).
@ -87,7 +87,7 @@ def duplicate_name(query_func, **kwargs) -> str:
stem = path.stem
suffix = path.suffix
main_part, counter = split_name_counter(stem)
main_part, counter = _split_name_counter(stem)
counter = counter + 1 if counter else 1
new_name = f"{main_part}({counter}){suffix}"

View File

@ -35,6 +35,11 @@ class APITokenService(CommonService):
cls.model.token == token
)
@classmethod
@DB.connection_context()
def delete_by_tenant_id(cls, tenant_id):
return cls.model.delete().where(cls.model.tenant_id == tenant_id).execute()
class API4ConversationService(CommonService):
model = API4Conversation
@ -100,3 +105,8 @@ class API4ConversationService(CommonService):
cls.model.create_date <= to_date,
cls.model.source == source
).group_by(cls.model.create_date.truncate("day")).dicts()
@classmethod
@DB.connection_context()
def delete_by_dialog_ids(cls, dialog_ids):
return cls.model.delete().where(cls.model.dialog_id.in_(dialog_ids)).execute()

View File

@ -18,7 +18,7 @@ import logging
import time
from uuid import uuid4
from agent.canvas import Canvas
from api.db import TenantPermission
from api.db import CanvasCategory, TenantPermission
from api.db.db_models import DB, CanvasTemplate, User, UserCanvas, API4Conversation
from api.db.services.api_service import API4ConversationService
from api.db.services.common_service import CommonService
@ -31,6 +31,12 @@ from peewee import fn
class CanvasTemplateService(CommonService):
model = CanvasTemplate
class DataFlowTemplateService(CommonService):
"""
Alias of CanvasTemplateService
"""
model = CanvasTemplate
class UserCanvasService(CommonService):
model = UserCanvas
@ -38,13 +44,14 @@ class UserCanvasService(CommonService):
@classmethod
@DB.connection_context()
def get_list(cls, tenant_id,
page_number, items_per_page, orderby, desc, id, title):
page_number, items_per_page, orderby, desc, id, title, canvas_category=CanvasCategory.Agent):
agents = cls.model.select()
if id:
agents = agents.where(cls.model.id == id)
if title:
agents = agents.where(cls.model.title == title)
agents = agents.where(cls.model.user_id == tenant_id)
agents = agents.where(cls.model.canvas_category == canvas_category)
if desc:
agents = agents.order_by(cls.model.getter_by(orderby).desc())
else:
@ -56,7 +63,38 @@ class UserCanvasService(CommonService):
@classmethod
@DB.connection_context()
def get_by_tenant_id(cls, pid):
def get_all_agents_by_tenant_ids(cls, tenant_ids, user_id):
# will get all permitted agents, be cautious
fields = [
cls.model.id,
cls.model.title,
cls.model.permission,
cls.model.canvas_type,
cls.model.canvas_category
]
# find team agents and owned agents
agents = cls.model.select(*fields).where(
(cls.model.user_id.in_(tenant_ids) & (cls.model.permission == TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id
)
)
# sort by create_time, asc
agents.order_by(cls.model.create_time.asc())
# maybe cause slow query by deep paginate, optimize later
offset, limit = 0, 50
res = []
while True:
ag_batch = agents.offset(offset).limit(limit)
_temp = list(ag_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
@classmethod
@DB.connection_context()
def get_by_canvas_id(cls, pid):
try:
fields = [
@ -71,6 +109,7 @@ class UserCanvasService(CommonService):
cls.model.create_time,
cls.model.create_date,
cls.model.update_date,
cls.model.canvas_category,
User.nickname,
User.avatar.alias('tenant_avatar'),
]
@ -87,7 +126,7 @@ class UserCanvasService(CommonService):
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page,
orderby, desc, keywords,
orderby, desc, keywords, canvas_category=None
):
fields = [
cls.model.id,
@ -96,28 +135,33 @@ class UserCanvasService(CommonService):
cls.model.dsl,
cls.model.description,
cls.model.permission,
cls.model.user_id.alias("tenant_id"),
User.nickname,
User.avatar.alias('tenant_avatar'),
cls.model.update_time
cls.model.update_time,
cls.model.canvas_category,
]
if keywords:
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id)),
(fn.LOWER(cls.model.title).contains(keywords.lower()))
cls.model.user_id.in_(joined_tenant_ids),
fn.LOWER(cls.model.title).contains(keywords.lower())
#(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id)),
#(fn.LOWER(cls.model.title).contains(keywords.lower()))
)
else:
agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id))
cls.model.user_id.in_(joined_tenant_ids)
#(((cls.model.user_id.in_(joined_tenant_ids)) & (cls.model.permission == TenantPermission.TEAM.value)) | (cls.model.user_id == user_id))
)
if canvas_category:
agents = agents.where(cls.model.canvas_category == canvas_category)
if desc:
agents = agents.order_by(cls.model.getter_by(orderby).desc())
else:
agents = agents.order_by(cls.model.getter_by(orderby).asc())
count = agents.count()
if page_number and items_per_page:
agents = agents.paginate(page_number, items_per_page)
return list(agents.dicts()), count
@ -125,7 +169,7 @@ class UserCanvasService(CommonService):
@DB.connection_context()
def accessible(cls, canvas_id, tenant_id):
from api.db.services.user_service import UserTenantService
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
e, c = UserCanvasService.get_by_canvas_id(canvas_id)
if not e:
return False
@ -134,6 +178,7 @@ class UserCanvasService(CommonService):
return False
return True
def completion(tenant_id, agent_id, session_id=None, **kwargs):
query = kwargs.get("query", "") or kwargs.get("question", "")
files = kwargs.get("files", [])
@ -163,7 +208,8 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
"user_id": user_id,
"message": [],
"source": "agent",
"dsl": cvs.dsl
"dsl": cvs.dsl,
"reference": []
}
API4ConversationService.save(**conv)
conv = API4Conversation(**conv)
@ -211,28 +257,33 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
except Exception as e:
logging.exception(f"Agent OpenAI-Compatible completionOpenAI parse answer failed: {e}")
continue
if ans.get("event") != "message":
if ans.get("event") not in ["message", "message_end"]:
continue
content_piece = ""
if ans["event"] == "message":
content_piece = ans["data"]["content"]
completion_tokens += len(tiktokenenc.encode(content_piece))
yield "data: " + json.dumps(
get_data_openai(
openai_data = get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,
content=content_piece,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
stream=True
),
ensure_ascii=False
) + "\n\n"
)
if ans.get("data", {}).get("reference", None):
openai_data["choices"][0]["delta"]["reference"] = ans["data"]["reference"]
yield "data: " + json.dumps(openai_data, ensure_ascii=False) + "\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logging.exception(e)
yield "data: " + json.dumps(
get_data_openai(
id=session_id or str(uuid4()),
@ -250,6 +301,7 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
else:
try:
all_content = ""
reference = {}
for ans in completion(
tenant_id=tenant_id,
agent_id=agent_id,
@ -260,13 +312,18 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
):
if isinstance(ans, str):
ans = json.loads(ans[5:])
if ans.get("event") != "message":
if ans.get("event") not in ["message", "message_end"]:
continue
if ans["event"] == "message":
all_content += ans["data"]["content"]
if ans.get("data", {}).get("reference", None):
reference.update(ans["data"]["reference"])
completion_tokens = len(tiktokenenc.encode(all_content))
yield get_data_openai(
openai_data = get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,
prompt_tokens=prompt_tokens,
@ -276,7 +333,12 @@ def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True
param=None
)
if reference:
openai_data["choices"][0]["message"]["reference"] = reference
yield openai_data
except Exception as e:
logging.exception(e)
yield get_data_openai(
id=session_id or str(uuid4()),
model=agent_id,

View File

@ -14,12 +14,24 @@
# limitations under the License.
#
from datetime import datetime
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import peewee
from peewee import InterfaceError, OperationalError
from api.db.db_models import DB
from api.utils import current_timestamp, datetime_format, get_uuid
def retry_db_operation(func):
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=1, max=5),
retry=retry_if_exception_type((InterfaceError, OperationalError)),
before_sleep=lambda retry_state: print(f"RETRY {retry_state.attempt_number} TIMES"),
reraise=True,
)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
class CommonService:
"""Base service class that provides common database operations.
@ -202,6 +214,7 @@ class CommonService:
@classmethod
@DB.connection_context()
@retry_db_operation
def update_by_id(cls, pid, data):
# Update a single record by ID
# Args:

View File

@ -23,7 +23,7 @@ from api.db.services.dialog_service import DialogService, chat
from api.utils import get_uuid
import json
from rag.prompts import chunks_format
from rag.prompts.generator import chunks_format
class ConversationService(CommonService):
@ -48,6 +48,21 @@ class ConversationService(CommonService):
return list(sessions.dicts())
@classmethod
@DB.connection_context()
def get_all_conversation_by_dialog_ids(cls, dialog_ids):
sessions = cls.model.select().where(cls.model.dialog_id.in_(dialog_ids))
sessions.order_by(cls.model.create_time.asc())
offset, limit = 0, 100
res = []
while True:
s_batch = sessions.offset(offset).limit(limit)
_temp = list(s_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
def structure_answer(conv, ans, message_id, session_id):
reference = ans["reference"]

View File

@ -21,11 +21,9 @@ from copy import deepcopy
from datetime import datetime
from functools import partial
from timeit import default_timer as timer
import trio
from langfuse import Langfuse
from peewee import fn
from agentic_reasoning import DeepResearcher
from api import settings
from api.db import LLMType, ParserType, StatusEnum
@ -41,8 +39,8 @@ from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in
from rag.prompts.prompts import gen_meta_filter, PROMPT_JINJA_ENV, ASK_SUMMARY
from rag.prompts.generator import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in, \
gen_meta_filter, PROMPT_JINJA_ENV, ASK_SUMMARY
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily
@ -161,6 +159,22 @@ class DialogService(CommonService):
return list(dialogs.dicts()), count
@classmethod
@DB.connection_context()
def get_all_dialogs_by_tenant_id(cls, tenant_id):
fields = [cls.model.id]
dialogs = cls.model.select(*fields).where(cls.model.tenant_id == tenant_id)
dialogs.order_by(cls.model.create_time.asc())
offset, limit = 0, 100
res = []
while True:
d_batch = dialogs.offset(offset).limit(limit)
_temp = list(d_batch.dicts())
if not _temp:
break
res.extend(_temp)
offset += limit
return res
def chat_solo(dialog, messages, stream=True):
if TenantLLMService.llm_id2llm_type(dialog.llm_id) == "image2text":
@ -178,7 +192,7 @@ def chat_solo(dialog, messages, stream=True):
delta_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans) :]
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
@ -255,11 +269,28 @@ def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
return answer, idx
def convert_conditions(metadata_condition):
if metadata_condition is None:
metadata_condition = {}
op_mapping = {
"is": "=",
"not is": ""
}
return [
{
"op": op_mapping.get(cond["comparison_operator"], cond["comparison_operator"]),
"key": cond["name"],
"value": cond["value"]
}
for cond in metadata_condition.get("conditions", [])
]
def meta_filter(metas: dict, filters: list[dict]):
doc_ids = []
doc_ids = set([])
def filter_out(v2docs, operator, value):
nonlocal doc_ids
ids = []
for input, docids in v2docs.items():
try:
input = float(input)
@ -284,16 +315,24 @@ def meta_filter(metas: dict, filters: list[dict]):
]:
try:
if all(conds):
doc_ids.extend(docids)
ids.extend(docids)
break
except Exception:
pass
return ids
for k, v2docs in metas.items():
for f in filters:
if k != f["key"]:
continue
filter_out(v2docs, f["op"], f["value"])
return doc_ids
ids = filter_out(v2docs, f["op"], f["value"])
if not doc_ids:
doc_ids = set(ids)
else:
doc_ids = doc_ids & set(ids)
if not doc_ids:
return []
return list(doc_ids)
def chat(dialog, messages, stream=True, **kwargs):
@ -342,7 +381,7 @@ def chat(dialog, messages, stream=True, **kwargs):
# try to use sql if field mapping is good to go
if field_map:
logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True), dialog.kb_ids)
if ans:
yield ans
return
@ -433,7 +472,8 @@ def chat(dialog, messages, stream=True, **kwargs):
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl, LLMBundle(dialog.tenant_id, LLMType.CHAT))
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
@ -444,7 +484,8 @@ def chat(dialog, messages, stream=True, **kwargs):
retrieval_ts = timer()
if not knowledges and prompt_config.get("empty_response"):
empty_res = prompt_config["empty_response"]
yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)}
yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions),
"audio_binary": tts(tts_mdl, empty_res)}
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
@ -542,7 +583,8 @@ def chat(dialog, messages, stream=True, **kwargs):
if langfuse_tracer:
langfuse_generation = langfuse_tracer.start_generation(
trace_context=trace_context, name="chat", model=llm_model_config["llm_name"], input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg}
trace_context=trace_context, name="chat", model=llm_model_config["llm_name"],
input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg}
)
if stream:
@ -552,12 +594,12 @@ def chat(dialog, messages, stream=True, **kwargs):
if thought:
ans = re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans) :]
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans) :]
delta_ans = answer[len(last_ans):]
if delta_ans:
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought + answer)
@ -570,7 +612,7 @@ def chat(dialog, messages, stream=True, **kwargs):
yield res
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True, kb_ids=None):
sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
user_prompt = """
Table name: {};
@ -607,6 +649,13 @@ Please write the SQL, only SQL, without any other explanations or text.
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
if kb_ids:
kb_filter = "(" + " OR ".join([f"kb_id = '{kb_id}'" for kb_id in kb_ids]) + ")"
if "where" not in sql.lower():
sql += f" WHERE {kb_filter}"
else:
sql += f" AND {kb_filter}"
logging.debug(f"{question} get SQL(refined): {sql}")
tried_times += 1
return settings.retrievaler.sql_retrieval(sql, format="json"), sql
@ -646,7 +695,9 @@ Please write the SQL, only SQL, without any other explanations or text.
# compose Markdown table
columns = (
"|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
"|" + "|".join(
[re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + (
"|Source|" if docid_idx and docid_idx else "|")
)
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + ("|------|" if docid_idx and docid_idx else "")
@ -723,7 +774,7 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
doc_ids = None
kbinfos = retriever.retrieval(
question = question,
question=question,
embd_mdl=embd_mdl,
tenant_ids=tenant_ids,
kb_ids=kb_ids,
@ -745,7 +796,8 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
def decorate_answer(answer):
nonlocal knowledges, kbinfos, sys_prompt
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl, tkweight=0.7, vtweight=0.3)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:

Some files were not shown because too many files have changed in this diff Show More