Compare commits

...

321 Commits

Author SHA1 Message Date
94181a990b Refa: knowledge_graph chunk method is deprecated (#7220)
### What problem does this PR solve?

The knowledge_graph chunk method is deprecated and should no longer be
used. #7184.

### Type of change

- [x] Refactoring
2025-04-23 13:01:46 +08:00
03672df691 Docs: update for v0.18.0 (#7223)
### What problem does this PR solve?

update for v0.18.0

### Type of change

- [x] Documentation Update
2025-04-23 12:02:50 +08:00
e9669e7fb1 Updated v0.18.0 release notes (#7221)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-04-23 11:12:14 +08:00
9a1ac8020d v0.18.0 release notes (#7185)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2025-04-23 10:41:58 +08:00
b44bbd11b8 Feat: Upload document #3221 (#7209)
### What problem does this PR solve?

Feat: Upload document #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-23 10:39:09 +08:00
1e91318445 Added a RAPTOR guide (#7211)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-04-22 20:56:30 +08:00
f35ff65c36 [BREAKING CHANGE] GET to POST: enhance kb list capability (#7205)
### What problem does this PR solve?

Enhance capability of `list_kbs`.

Breaking change: change method from `GET` to `POST`.

### Type of change

- [x] Refactoring
- [x] Enhancement with breaking change
2025-04-22 17:54:12 +08:00
ba0e363d5a Feat: Show the owner of this knowledge base on the list card. #3221 (#7204)
### What problem does this PR solve?

Feat: Show the owner of this knowledge base on the list card. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 16:46:13 +08:00
dde8c26feb Feat: Even if the knowledge base has slices, the chunk method can be changed #7115 (#7201)
### What problem does this PR solve?

Feat: Even if the knowledge base has slices, the chunk method can be
changed #7115

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 16:04:49 +08:00
64dd187498 Fix: Knowledge Graph Extraction Conflict Between Dataset-Level and File-Specific Configurations #7198 (#7199)
### What problem does this PR solve?

Fix: Knowledge Graph Extraction Conflict Between Dataset-Level and
File-Specific Configurations #7198

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-22 16:00:55 +08:00
67dee2d74e Fix: fix retrieval tesing wrong pagination (#7174)
### What problem does this PR solve?

Fix retrieval testing wrong pagination. #7171 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-22 15:16:04 +08:00
bcac195a0c Put the knowledge base list related hooks into use-knowledge-request.ts #3221 (#7197)
### What problem does this PR solve?

Put the knowledge base list related hooks into use-knowledge-request.ts
#3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 15:01:35 +08:00
8fca8faa7d Feat: Move langfuse configuration to api page #6155 (#7196)
### What problem does this PR solve?

Feat: Move langfuse configuration to api page #6155

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 14:08:20 +08:00
1cc17eb611 Feat: Filter the knowledge base list using owner #3221 (#7191)
### What problem does this PR solve?

Feat: Filter the knowledge base list using owner #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 13:44:41 +08:00
c8194f5fd0 refactor: Update Redis configuration to use StatefulSet instead of deployment with pvc (#7187)
### What problem does this PR solve?

This PR changes Redis to be a statefulset. In some situation when we
Redis pod gets rescheduled to another Node, it gets stuck in pending
state due to the PVC attached to another Kubernetes node.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [X] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-22 12:53:30 +08:00
f2c9ffc056 Fix: KG search issue. (#7186)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-22 12:10:30 +08:00
10432a1be7 Refa: Optimize pptx shape extraction to reduce content loss (#6703)
### What problem does this PR solve?

When parsing pptx files, some shapes do not contain the `shape_type`
attribute, which causes the original code to throw an exception during
extraction, leading to failure in content extraction. This optimization
introduces handling logic for such anomalous shapes, providing a safer
and more robust processing mechanism.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [x] Performance Improvement
- [ ] Other (please describe):
2025-04-22 10:16:24 +08:00
e7f83b13ca Feat: Rename a dataset #3221 (#7162)
### What problem does this PR solve?

Feat: Rename a dataset #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 10:09:41 +08:00
ad220a0a3c Feat: add mcp self-host mode (#7157)
### What problem does this PR solve?

Add mcp self-host mode, a complement of #7084.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-22 10:04:21 +08:00
91c5a5c08f Docs: add mcp self-host mode (#7163)
### What problem does this PR solve?

Add mcp self-host mode documentation, a complement of #7141.

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-04-22 10:03:38 +08:00
8362ab405c Fix: don't modify S3 file name when not using prefix_path (#7152)
### What problem does this PR solve?

Hello, I encountered a problem when trying to use a S3 backend
(seaweedfs) for storage in RAGFlow: when calling
`STORAGE_IMPL.get("bucket", "key")`, the actual request sent to S3 is
`bucket/bucket/key`, causing a `NoSuchKey` error.

I compared the code in `s3_conn.py` to `minio_conn.py` and
`oss_conn.py`, then decided to remove the `else` branch in
`use_prefix_path` method, and it works. I didn't configure `prefix_path`
or `bucket` in `s3` section of the `service_conf.yaml`.

I think this is a bug, but not sure.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-21 11:55:50 +08:00
68b9dae6c0 Feat: mcp server (#7084)
### What problem does this PR solve?

Add MCP support with a client example.

Issue link: #4344

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-21 09:43:20 +08:00
9b956ac1a9 Docs: MCP server (#7141)
### What problem does this PR solve?

Documentation for MCP server

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-04-21 09:42:32 +08:00
d4dbdfb61d feat: Recover pending tasks while pod restart. (#7073)
### What problem does this PR solve?

If you deploy Ragflow using Kubernetes, the hostname will change during
a rolling update. This causes the consumer name of the task executor to
change, making it impossible to schedule tasks that were previously in a
pending state.
To address this, I introduced a recovery task that scans these pending
messages and re-publishes them, allowing the tasks to continue being
processed.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: liuzhenghua-jk <liuzhenghua-jk@360shuke.com>
2025-04-19 16:18:51 +08:00
487aed419e Fix: cite disfunction for G component. (#7117)
### What problem does this PR solve?

#7097

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-18 18:05:26 +08:00
8b8a2f2949 fix(nursery): Fix Closure Trap Issues in Trio Concurrent Tasks (#7106)
## Problem Description
Multiple files in the RAGFlow project contain closure trap issues when
using lambda functions with `trio.open_nursery()`. This problem causes
concurrent tasks created in loops to reference the same variable,
resulting in all tasks processing the same data (the data from the last
iteration) rather than each task processing its corresponding data from
the loop.

## Issue Details
When using a `lambda` to create a closure function and passing it to
`nursery.start_soon()` within a loop, the lambda function captures a
reference to the loop variable rather than its value. For example:

```python
# Problematic code
async with trio.open_nursery() as nursery:
    for d in docs:
        nursery.start_soon(lambda: doc_keyword_extraction(chat_mdl, d, topn))
```

In this pattern, when concurrent tasks begin execution, `d` has already
become the value after the loop ends (typically the last element),
causing all tasks to use the same data.

## Fix Solution
Changed the way concurrent tasks are created with `nursery.start_soon()`
by leveraging Trio's API design to directly pass the function and its
arguments separately:

```python
# Fixed code
async with trio.open_nursery() as nursery:
    for d in docs:
        nursery.start_soon(doc_keyword_extraction, chat_mdl, d, topn)
```

This way, each task uses the parameter values at the time of the
function call, rather than references captured through closures.

## Fixed Files
Fixed closure traps in the following files:

1. `rag/svr/task_executor.py`: 3 fixes, involving document keyword
extraction, question generation, and tag processing
2. `rag/raptor.py`: 1 fix, involving document summarization
3. `graphrag/utils.py`: 2 fixes, involving graph node and edge
processing
4. `graphrag/entity_resolution.py`: 2 fixes, involving entity resolution
and graph node merging
5. `graphrag/general/mind_map_extractor.py`: 2 fixes, involving document
processing
6. `graphrag/general/extractor.py`: 3 fixes, involving content
processing and graph node/edge merging
7. `graphrag/general/community_reports_extractor.py`: 1 fix, involving
community report extraction

## Potential Impact
This fix resolves a serious concurrency issue that could have caused:
- Data processing errors (processing duplicate data)
- Performance degradation (all tasks working on the same data)
- Inconsistent results (some data not being processed)

After the fix, all concurrent tasks should correctly process their
respective data, improving system correctness and reliability.
2025-04-18 18:00:20 +08:00
42e236f464 Feat: Rendering a search test list with real data #3221 (#7138)
### What problem does this PR solve?

Feat: Rendering a search test list with real data #3221
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-18 16:29:41 +08:00
1b4016317e fix bug chunking:expected string or bytes-like object (#7116)
… bytes-like object

### What problem does this PR solve?
fix bug #6990 internal server error ehile chunking:expected string or
bytes-like object
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: unknown <taoshi.ln@chinatelecom.cn>
2025-04-18 14:42:36 +08:00
b1798bafb0 Fix: handle sometimes graph index will miss explanation (#7127)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7053

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-18 14:24:36 +08:00
86f76df586 Feat: Retrieval test #3221 (#7121)
### What problem does this PR solve?

Feat: Retrieval test #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-17 19:03:55 +08:00
db82c15de4 Fix: wrong “available” property when list chunk (#7093)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/7083

Internal due to when returning from ES, fields changed to str, so the
bool conversion does not work as expected.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-17 17:17:35 +08:00
627fd002ae Update utils.py (#7091)
### What problem does this PR solve?

when there are multiple entities, the variable `v` may be a list, which
will lead to this error:
```
| File "/mnt/d/wrf/ragflow/ragflow/graphrag/utils.py", line 59, in replace_all
| result = result.replace(f"{{{k}}}", v)
| TypeError: replace() argument 2 must be str, not list
```
this pr assign this `v` to be a str

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-17 17:17:09 +08:00
9e7d052c8d Fix: knowledge graph resolution with infinity raise error tokenizing in specific situations (#7048)
### What problem does this PR solve?

When running graph resolution with infinity, if single quotation marks
appeared in the entities name that to be delete, an error tokenizing of
sqlglot might occur after calling infinity.

For example:
```
INFINITY delete table ragflow_xxx, filter knowledge_graph_kwd IN ('entity') AND entity_kwd IN ('86 IMAGES FROM PREVIOUS CONTESTS', 'ADAM OPTIMIZATION', 'BACKGROUND'ESTIMATION')
```
may raise error
```
Error tokenizing 'TS', 'ADAM OPTIMIZATION', 'BACKGROUND'ESTIMATION''
```
and make the document parsing failed。

Replace one single quotation mark with double single quotation marks can
let sqlglot tokenize the entity name correctly.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-17 16:15:21 +08:00
d9927f5185 Fix: Error in sending placeholder words in Chinese and Chinese-Traditional (#7094)
### What problem does this PR solve?

The assistant message placeholder is incorrect, I have finished
modifying both Chinese and traditional Chinese characters

### Type of change


- [x] Bug Fix
2025-04-17 15:52:03 +08:00
5d253e0a34 Fix: pymysql.err.InterfaceError: (0, '') during long time streaming chat responses (#6548) (#7057)
### Related Issue:
https://github.com/infiniflow/ragflow/issues/6548

### Related PR:
https://github.com/infiniflow/ragflow/pull/6861


### Environment:
Commit version:
[[48730e0](48730e00a8)]

### Bug Description:
Unexpected `pymysql.err.InterfaceError: (0, '') `when using Peewee +
PyMySQL + PooledMySQLDatabase after a long-running `chat streamly`
operation.

This is a common issue with Peewee + PyMySQL + connection pooling: you
end up using a connection that was silently closed by the server, but
Peewee doesn't realize it's dead.

**I found that the error only occurs during longer streaming outputs**
and is unrelated to the database connection context, so it's likely
because:

- The prolonged streaming response caused the database connection to
time out

- The original database connection might have been disconnected by the
server during the streaming process

### Why This Happens
This error happens even when using `@DB.connection_context() `after the
stream is done. After investigation, I found this is caused by MySQL
connection pools that appear to be open but are actually dead (expired
due to` wait_timeout`).

1. `@DB.connection_context()` (as a decorator or context manager) pulls
a connection from the pool.

2. If this connection was idle and expired on the MySQL server (e.g.,
due to `wait_timeout`), but not closed in Python, it will still be
considered “open” (`DB.is_closed() == False`).

3. The real error will occur only when I execute a SQL command (such as
.`get_or_none()`), and PyMySQL tries to send it to the server via a
broken socket.


### Changes Made:

1. I implemented manual connection checks before executing SQL:
```
    try:
        DB.execute_sql("SELECT 1")
    except Exception:
        print("Connection dead, reconnecting...")
        DB.close()
        DB.connect()
```
2. Delayed the token count update until after the streaming response is
completed to ensure the streaming output isn't interrupted by database
operations.
```
        total_tokens = 0 
        for txt in chat_streamly(system, history, gen_conf):
            if isinstance(txt, int):
                total_tokens = txt
......
                break
......
        if total_tokens > 0:
            if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
                logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
```
2025-04-16 19:15:35 +08:00
de5727f90a Fix: Files being parsed are not allowed to be deleted in batches #7065 (#7066)
### What problem does this PR solve?

Fix: Files being parsed are not allowed to be deleted in batches #7065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-16 16:46:24 +08:00
9c2dd70839 Miscellaneous editorial updates. (#7047)
### What problem does this PR solve?

#6910 

### Type of change

- [x] Documentation Update
2025-04-16 10:31:10 +08:00
e0e78112a2 Docs: Change DELETE to POST in Related Questions curl example (#7054)
### What problem does this PR solve?

docs(api): Fix request method in Related Questions example (DELETE→POST)

### Type of change

- [x] Documentation Update
2025-04-16 10:29:59 +08:00
48730e00a8 Docs: updates. (#7042)
### What problem does this PR solve?

#7019

### Type of change

- [x] Documentation Update
2025-04-15 17:45:52 +08:00
e5f9d148e7 Test: Added test cases for Delete Sessions With Chat Assistant HTTP API (#7025)
### What problem does this PR solve?

cover [Delete chat assistant's
sessions](https://ragflow.io/docs/dev/http_api_reference#delete-chat-assistants-sessions)
endpoints

### Type of change

- [x] Add test cases
2025-04-15 14:54:26 +08:00
f6b280e372 Fix: when remove document do not delete the file in storage if the source is not knowledge base (#7005)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/6905

When deleting a document will check before removing it from storage

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-15 12:11:41 +08:00
5af2d57086 Refa. (#7022)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-04-15 10:20:33 +08:00
7a34159737 Fix: add fallback for bad citation output (#7014)
### What problem does this PR solve?

Add fallback for bad citation output. #6948

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-15 09:33:53 +08:00
b1fa5a0754 Fix Helm Ingress template (#7018)
### What problem does this PR solve?

Fix Helm Ingress template; Trying to access a global variable within a
loop
Fix #6191

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-15 09:19:37 +08:00
018ff4dd0a Refa: update llms (#7007)
### What problem does this PR solve?

Update LLM models

### Type of change

- [x] Refactoring
2025-04-15 09:19:07 +08:00
ed352710ec Feat: Remove the rotation state of the button that parses the document #7008 (#7009)
### What problem does this PR solve?

Feat: Remove the rotation state of the button that parses the document
#7008
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-14 18:50:11 +08:00
0a0c1edce3 Docs: readme updating. (#7002)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-04-14 14:45:37 +08:00
18eb76f6b8 Fix: The selected state of the TreeView node cannot be seen on Mac #7000 (#7001)
### What problem does this PR solve?

Fix: The selected state of the TreeView node cannot be seen on Mac #7000

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-14 14:23:26 +08:00
ed5f81b02e Fix: abnormal cell mergeing. (#6991)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-14 11:00:11 +08:00
23c5ce48d1 Fix update_progress issue (#6992)
### What problem does this PR solve?

Fix update_progress issue introduced by #6975 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-14 10:23:13 +08:00
de766ba628 Fix: Fix api page translation issue. #3221 (#6993)
### What problem does this PR solve?

Fix: Fix api page translation issue. #3221

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-14 10:23:00 +08:00
5aae73c230 Make error messages during PPT processing clearer. (#6980)
### What problem does this PR solve?

Sometimes a slide may trigger a Proxy error (ArgumentException:
Parameter is not valid) due to issues in the original file, and this
error message can be confusing for users.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [x] Other (please describe):
2025-04-14 10:10:20 +08:00
b578451e6a docs: update Docker build commands to specify platform as linux/amd64 (#6977)
### What problem does this PR solve?

Considering the ragflow_deps image is only available for `linux/amd64`
platform, if we try to run the docker build commands in ,macOS for
instance, without the platform flag, we get an error due to the
different platform. Specifying the platform in the docker build command
fixes this issue.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [X] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-14 10:07:39 +08:00
53c653b099 fix RAGFlowPdfParser AttributeError: 'PdfReader' object has no attribute 'close' err (#6859)
i use PdfParser in local(refer to this case:
https://github.com/infiniflow/ragflow/blob/main/rag/app/paper.py) like
this:
```
import re
import openpyxl

from ragflow.api.db import ParserType
from ragflow.rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, \
    title_frequency, \
    tokenize_chunks
from ragflow.rag.utils import num_tokens_from_string
from ragflow.deepdoc.parser import PdfParser, ExcelParser, DocxParser,PlainParser


def logger(prog=None, msg=""):
    print(msg)


class Pdf(PdfParser):
    def __init__(self):
        self.model_speciess = ParserType.MANUAL.value
        super().__init__()

    def __call__(self, filename, binary=None, from_page=0,
                 to_page=100000, zoomin=3, callback=None):
        from timeit import default_timer as timer
        start = timer()
        callback(msg="OCR is running...")

        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback
        )
        callback(msg="OCR finished.")
        print("OCR:", timer() - start)
   
        self._layouts_rec(zoomin)
        callback(0.65, "Layout analysis finished.")
        print("layouts:", timer() - start)

        self._table_transformer_job(zoomin)
        callback(0.67, "Table analysis finished.")


        self._text_merge()
        tbls = self._extract_table_figure(True, zoomin, True, True)
        self._concat_downward()  
        self._filter_forpages()   
        callback(0.68, "Text merging finished")

        # clean mess
        for b in self.boxes:
            b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())

        return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
                for i, b in enumerate(self.boxes)], tbls


```

show err like this:
```
  File "xxxxx/third_party/ragflow/deepdoc/parser/pdf_parser.py", line 1039, in __images__
    self.pdf.close()
AttributeError: 'PdfReader' object has no attribute 'close'
```

i found ragflow source code use
`pdfplumber.open`(https://github.com/infiniflow/ragflow/blob/main/deepdoc/parser/pdf_parser.py#L1007C28-L1007C43)

and replace` self.pdf `with ` pdf2_read` (from pypdf import PdfReader as
pdf2_read)in line 1024
(https://github.com/infiniflow/ragflow/blob/main/deepdoc/parser/pdf_parser.py#L1024)
```
self.pdf = pdf2_read
```


---
and I found that `pdfplumber` can be used in this way:
```
file_path="xxx.pdf"
res = pdfplumber.open(file_path)
res.close()
```

but `pypdf.PdfReader` source code do not has `close` func, source code
use like this

```
 with open(stream, "rb") as fh:
         stream = BytesIO(fh.read())
          self._stream_opened = True
```
> https://github.com/py-pdf/pypdf/blob/main/pypdf/_reader.py#L156

so I moved the `self.pdf.close` function call and fixed this problem
hoping to help the project😊
2025-04-14 09:40:13 +08:00
b70abe52b2 Fix: Ensure lock is released in update_progress using context manager (#6975)
ragflow: v0.17 also encountered this problem. #1453 The task table shows
that the actual task has been completed. Since the process_msg of the
task is not synchronized to the document table, there is no progress
update on the page.
This may be caused by the lock not being released when the exception
occurs.

ragflow:v0.17同样碰到这个问题, 看task表实际任务已经完成,由于没有把task的process_msg同步给document表,
所以在页面看没有进度更新。
可能是这里异常时没有释放锁导致的。

```/api/ragflow_server.py
def update_progress():
    lock_value = str(uuid.uuid4())
    redis_lock = RedisDistributedLock("update_progress", lock_value=lock_value, timeout=60)
    logging.info(f"update_progress lock_value: {lock_value}")
    while not stop_event.is_set():
        try:
            if redis_lock.acquire():
                DocumentService.update_progress()
                redis_lock.release()
            stop_event.wait(6)
        except Exception:
            logging.exception("update_progress exception")
++       if redis_lock.acquired:
++               redis_lock.release()
```
2025-04-11 20:46:19 +08:00
98670c3755 Fix: KB update_time changed whenever system relaunched (#6959)
### What problem does this PR solve?

Fix KB update_time changed whenever system relaunched. #6953 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-11 20:10:49 +08:00
9b789c2ae9 Test: Added test cases for Update Session With Chat Assistant HTTP API (#6968)
### What problem does this PR solve?

cover [Update chat assistant's
sessions](https://ragflow.io/docs/dev/http_api_reference#update-chat-assistants-session)
endpoints

### Type of change

- [x] Update test cases
2025-04-11 20:10:24 +08:00
ffb9f01bea Test: Update test cases for PR 6906 ISSUE 6875 (#6971)
### What problem does this PR solve?

PR #6906 ISSUE #6875

### Type of change

- [ ] Update test cases
2025-04-11 20:09:44 +08:00
ed7244f5f5 Fix: Delete unused pages (#6973)
### What problem does this PR solve?

Fix: Delete unused pages

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-11 20:06:58 +08:00
e54c0e39b5 fix bug [ERROR][Exception]: 8 vs. 9 (#6955)
### What problem does this PR solve?

Sometimes, the **s** in **chunks (s, a)** is an empty string. This
causes the condition **if s and len(a) > 0** in the line **chunks = [(s,
a) for s, a in chunks if s and len(a) > 0]** to fail, which changes the
length of the new chunks. As a result, the final assertion **assert
len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end,
n_clusters)** fails and raises a confusing error like 7 vs. 8

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-11 17:01:49 +08:00
056ea68e52 Fix: In the dark night theme, the message input box is not displayed correctly. #6950 (#6951)
### What problem does this PR solve?

Fix: In the dark night theme, the message input box is not displayed
correctly. #6950

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-11 12:37:16 +08:00
d9266ed65a Fix: incorrect total chunks count in retrieval function after similarity filtering (#6741) (#6932)
### Related Issue:
https://github.com/infiniflow/ragflow/issues/6741

### Environment:
Using nightly version
Commit version:
[[6051abb](6051abb4a3)]

### Bug Description:
The retrieval function in rag/nlp/search.py returns the original total
chunks number
even after chunks are filtered by similarity_threshold. This creates
inconsistency
between the actual returned chunks and the reported total.

### Changes Made:
Added code to count how many search results actually meet or exceed the
configured similarity threshold
Positioned the calculation after the doc_ids conditional logic to ensure
special cases are handled correctly
Updated the ranks["total"] value to store this filtered count instead of
using the raw search result count
Using NumPy leverages optimized C-level batch operations to optimize
speed
2025-04-11 12:31:36 +08:00
6051abb4a3 Miscellaneous UI updates (#6947)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-04-10 20:09:46 +08:00
4b125f0ffe Feat: Add translation text to the prompt word of the generate operator to distinguish it from the prompt word of the knowledge base #6934 (#6935)
### What problem does this PR solve?

Feat: Add translation text to the prompt word of the generate operator
to distinguish it from the prompt word of the knowledge base #6934

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-10 19:24:04 +08:00
43cf321942 Added similarity scores in reference chunks (#6918)
- Returning 3 similarity scores to the chat completion's `reference`
field. It gives the user more transparency and added flexibility to
display/rerank the reference when needed

Co-authored-by: Yingfeng <yingfeng.zhang@gmail.com>
2025-04-10 19:17:45 +08:00
9283e91aa0 Fix: remove deprecated permission field (#6912)
### What problem does this PR solve?

Fix: remove deprecated KB updating `permission` field. #6911 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-10 18:56:41 +08:00
dc59aba132 Test: Added test cases for List Sessions With Chat Assistant HTTP API (#6938)
### What problem does this PR solve?

cover [List chat assistant's
sessions](https://ragflow.io/docs/dev/http_api_reference#list-chat-assistants-sessions)
endpoints

### Type of change

- [x] Update test cases
2025-04-10 17:31:01 +08:00
8fb5edd927 Test: Update test cases for PR 6906 (#6929)
### What problem does this PR solve?

PR #6906

### Type of change

- [x] Update test cases
2025-04-10 12:28:56 +08:00
3bb1e012e6 Fix: assistant deleteion issue. (#6906)
### What problem does this PR solve?

#6875

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-09 20:29:40 +08:00
22758a2763 Test: Update test cases for PR 6888 ISSUE 6876 (#6907)
### What problem does this PR solve?

PR #6888 ISSUE #6876

### Type of change

- [x] Update test case
2025-04-09 20:29:29 +08:00
a008b38cf5 Fix: local variable referenced before assignment (#6909)
### What problem does this PR solve?

Fix: local variable referenced before assignment. #6803 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-09 20:29:12 +08:00
d0897312ac Added a guide on setting chat variables (#6904)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2025-04-09 19:32:25 +08:00
aa99c6b896 Fix delete duplicate assistant (#6888)
### What problem does this PR solve?

resolve this issue:https://github.com/infiniflow/ragflow/issues/6876

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-04-09 19:10:08 +08:00
ae107f31d9 Test: Added test cases for Create Session With Chat Assistant HTTP API (#6902)
### What problem does this PR solve?

cover [create session with chat
assistant](https://ragflow.io/docs/dev/http_api_reference#create-session-with-chat-assistant)
endpoints

### Type of change

- [x] add test cases
2025-04-09 17:21:48 +08:00
9d9f2dacd2 fix Conversation roles must alternate user/assistant/user/assistant/... bug (#6880)
### What problem does this PR solve?

The old logic filters out all assistant messages from messages, which,
in multi-turn conversations, results in only user messages being
retained. This leads to an error in locally deployed models:
Conversation roles must alternate user/assistant/user/assistant/...

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-09 17:21:27 +08:00
08bc5d3521 Feat: Install sonner library #3221 (#6898)
### What problem does this PR solve?

Feat: Install sonner library #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-09 17:21:01 +08:00
6e7fb75618 Fix: handle waiting tasks when upstream is switch/categorize/relevant and normal path fails (#6874)
### What problem does this PR solve?

Fix the issue where waiting tasks couldn't be processed when upstream
components were "switch", "categorize", or "relevant" and the normal
processing path couldn't continue.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-04-09 12:37:21 +08:00
c26c38ee12 Test: Added test cases for Delete Chat Assistants HTTP API (#6879)
### What problem does this PR solve?

cover [delete chat
assistants](https://ragflow.io/docs/dev/http_api_reference#delete-chat-assistants)
endpoints

### Type of change

- [x] add test cases
2025-04-08 18:53:02 +08:00
dc2c74b249 Feat: add primitive support for function calls (#6840)
### What problem does this PR solve?

This PR introduces ​**​primitive support for function calls​**​,
enabling the system to handle basic function call capabilities.
However, this feature is currently experimental and ​**​not yet enabled
for general use​**​, as it is only supported by a subset of models,
namely, Qwen and OpenAI models.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-08 16:09:03 +08:00
a20439bf81 fix: add exception handling for get_by_id method (#6861)
### What problem does this PR solve?

Fixes #6548 

Add exception handling to prevent exceptions from propagating back to
the web, which may lead to failure in displaying conversation content.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: cm <caiming@sict.ac.cn>
2025-04-08 16:06:57 +08:00
a1fb32908d Fix: Error message is incorrect when updating chat name #6850 (#6851)
### What problem does this PR solve?

#6850 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-07 17:13:17 +08:00
0b89458eb8 Test: Added test cases for Update Chat Assistant HTTP API (#6843)
### What problem does this PR solve?

cover [update chat
assistant](https://ragflow.io/docs/v0.17.2/http_api_reference#update-chat-assistant)
endpoints

### Type of change

- [x] add test cases
2025-04-07 15:04:23 +08:00
14a3efd756 Fix: docx image exceptions. (#6839)
### What problem does this PR solve?

Close #6784

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-07 12:33:34 +08:00
d64c6870bb Fix:When parsing documents with graph, an error occurred:[ERROR][Exception]: 'method' (#6836)
[When parsing documents with graph, an error
occurred:[ERROR][Exception]: 'method']
(https://github.com/infiniflow/ragflow/issues/6835)
### What problem does this PR solve?

Close #6786

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

Co-authored-by: cm <caiming@sict.ac.cn>
2025-04-07 12:29:25 +08:00
dc87c91f9d Update broken discord link (#6841)
### Type of change

- [x] Documentation Update
2025-04-07 12:18:43 +08:00
d4574ffb49 Fix: improve Dockerfile build for China (#6812)
### What problem does this PR solve?
This PR addresses the build and dependency issues faced by developers in
regions with poor connectivity to official Ubuntu repositories and
standard dependency sources. Currently, developers in these regions
experience slow or failed Docker builds and dependency downloads,
significantly impacting development efficiency.

### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

The changes include:
1. Modified Dockerfile to use alternative Ubuntu mirrors with better
connectivity in affected regions
2. Added a new script (download_deps_CN.py) that provides
region-specific alternative download links for dependencies
2025-04-07 11:58:46 +08:00
5a8c479ff3 Miscellaneous editorial updates (#6805)
### What problem does this PR solve?



### Type of change

- [x] Documentation Update
2025-04-07 09:33:55 +08:00
c6b26a3159 update some setting to README_zh.md (#6737)
### What problem does this PR solve?
#6731 #6722 
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Documentation Update

---------

Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
2025-04-03 22:12:49 +08:00
2a5ad74ac6 Test: Update test cases for #6800 (#6804)
### What problem does this PR solve?

update test case for PR #6800 issue #6539

### Type of change

- [x] update test cases
2025-04-03 21:22:41 +08:00
2caf15b24c Refa: trival. (#6802)
### What problem does this PR solve?


### Type of change


- [x] Refactoring
2025-04-03 19:01:24 +08:00
f49588756e Feat: Load the dialog page, prohibit calling the dialog/get interface #6798 (#6799)
### What problem does this PR solve?

Feat: Load the dialog page, prohibit calling the dialog/get interface
#6798

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-03 18:04:40 +08:00
57e760883e Fix: update chunk, empty question issue. (#6800)
### What problem does this PR solve?

fix issue #6539, refer to pr #6405

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-03 18:04:19 +08:00
b213e88cca Test: Added test cases for List Chat Assistants HTTP API (#6792)
### What problem does this PR solve?

cover [list chat
assistant](https://ragflow.io/docs/v0.17.2/http_api_reference#list-chat-assistants)
endpoints

### Type of change

- [x] add test cases
2025-04-03 17:22:23 +08:00
e8f46c9207 Fix: missing redis pvc storageclass in helm (#6788)
fix redis pvc in helm deployment

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-03 16:55:47 +08:00
cded812b97 Feat: add OpenAI compatible API for agent (#6329)
### What problem does this PR solve?
add openai agent
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-03 16:51:37 +08:00
2acb02366e Feat: Clarify the use of OpenAI-API-compatible #6782 (#6783)
### What problem does this PR solve?

Feat: Clarify the use of OpenAI-API-compatible #6782

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-03 11:38:21 +08:00
9ecc78feeb Refa: copywriting refinement. (#6779)
### What problem does this PR solve?

Close #6762

### Type of change

- [x] Refactoring
2025-04-03 11:38:02 +08:00
fdc410e743 Fix set_graph on non-existing edge (#6777)
### What problem does this PR solve?

Fix set_graph on non-existing edge

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-03 11:09:04 +08:00
5b5558300a Feat: add gemini-2.5-pro-exp-03-25 (#6774)
### What problem does this PR solve?

#6733

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-03 10:48:58 +08:00
b5918e7158 Docs: Fix for issue #6713 (#6775)
### What problem does this PR solve?

update fo issue #6713

### Type of change

- [x] Documentation Update
2025-04-03 10:19:58 +08:00
58f8026632 Test: Update test cases for PR #6643 (#6766)
### What problem does this PR solve?

Update test cases for PR #6643 issue #6607

### Type of change

- [x] update test cases
2025-04-03 10:10:40 +08:00
a73fbc61ff Fix: Handle the case of deleting empty blocks. Update the relevant message (#6643)
…gic to return the correct deletion message. Add handling for empty
arrays to ensure no errors occur during the deletion operation. Update
the test cases to verify the new logic.

### What problem does this PR solve?

fix this bug:https://github.com/infiniflow/ragflow/issues/6607

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-04-02 19:20:17 +08:00
0d1c5fdd2f Test: Added test cases for Create Chat Assistant HTTP API (#6763)
### What problem does this PR solve?

cover [create chat
assistant](https://ragflow.io/docs/v0.17.2/http_api_reference#create-chat-assistant)
endpoints

### Type of change

- [x] add test cases
2025-04-02 18:49:59 +08:00
6c77ef5a5e Docs(api): align default values in create chat assistant HTTP API dos with implementation (#6764)
### What problem does this PR solve?

align default values in create chat assistant HTTP API dos with
implementation.
llm.presence_penalty  0.2 -> 0.4
prompt.top_n  8->6


### Type of change

- [x] Documentation Update
2025-04-02 18:48:31 +08:00
e7a2a4b7ff Log llm response on exception (#6750)
### What problem does this PR solve?

Log llm response on exception

### Type of change

- [x] Refactoring
2025-04-02 17:10:57 +08:00
724a36fcdb Fix: Issue with Markdown Code Blocks Breaking Frontend Layout #5789 (#6758)
### What problem does this PR solve?

Fix: Issue with Markdown Code Blocks Breaking Frontend Layout #5789

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-02 16:28:55 +08:00
9ce6521582 Fix: Change the field name of the document ID from "documents" to "do… (#6753)
…cument_ids" to maintain consistency.

### What problem does this PR solve?

Close #6752

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-04-02 15:52:52 +08:00
160bf4ccb3 Fix: The file upload prompt indicates "No authorization." #6516 (#6756)
### What problem does this PR solve?

Fix: The file upload prompt indicates "No authorization." #6516

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-02 15:52:35 +08:00
aa25d09b0c Fix: Using the Enter key does not send a complete message #6754 (#6755)
### What problem does this PR solve?

Fix: Using the Enter key does not send a complete message #6754

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-02 15:02:16 +08:00
2471a6e115 Updated max_tokens descriptions (#6751)
### What problem does this PR solve?

#6721 

### Type of change


- [x] Documentation Update
2025-04-02 13:56:55 +08:00
fc02929946 Feat: Support deleting knowledge graph #6747 (#6748)
### What problem does this PR solve?

Feat: Support deleting knowledge graph #6747

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-02 11:20:37 +08:00
3ae1e9e3c4 Test: Skip test case for PR 6443 (#6724)
### What problem does this PR solve?

Skip test case for PR #6443

### Type of change

- [x] update test cases
2025-04-02 10:41:01 +08:00
117f18240d Feat: Add a notification logic to the team member invite feature #6610 (#6729)
### What problem does this PR solve?
Feat: Add a notification logic to the team member invite feature #6610

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-02 09:15:13 +08:00
31296ad70f Miscellaneous doc updates and refactored team management doc. (#6730)
### What problem does this PR solve?

#5576, #6672

### Type of change


- [x] Documentation and UI Update
2025-04-01 19:05:30 +08:00
132eae9d5b Feat: Interrupt streaming #6515 (#6723)
### What problem does this PR solve?

Feat: Interrupt streaming #6515
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-01 17:26:54 +08:00
ead5f7aba9 Fix infinite recursion in RagTokenizer when processing repetitive characters (#6109)
### What problem does this PR solve?
fix #6085 
RagTokenizer's dfs_() function falls into infinite recursion when
processing text with repetitive Chinese characters (e.g.,
"一一一一一十一十一十一..." or "一一一一一一十十十十十十十二十二十二..."), causing memory leaks.
### Type of change
Implemented three optimizations to the dfs_() function:
1.Added memoization with _memo dictionary to cache computed results
2.Added recursion depth limiting with _depth parameter (max 10 levels)
3.Implemented special handling for repetitive character sequences
- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-04-01 13:59:52 +08:00
58e6e7b668 Test: Refactor test fixtures and test cases (#6709)
### What problem does this PR solve?

 Refactor test fixtures and test cases

### Type of change

- [ ] Refactoring test cases
2025-04-01 13:39:07 +08:00
20b8ccd1e9 Hotfix ece5903 (#6705)
I'm really sorry, I found that in graphrag/general/extractor.py under
def __call__, the line change.removed_nodes.extend(nodes[1:]) causes an
AttributeError: 'set' object has no attribute 'extend'. Could you please
merge the branch e666528 again? I made some modifications.
2025-04-01 12:06:28 +08:00
d0dca16fee Feat: Allows users to search for models in the model selection drop-down box #3221 (#6708)
### What problem does this PR solve?

Feat: Allows users to search for models in the model selection drop-down
box #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-04-01 11:53:48 +08:00
fc21dd0a4a Feat: add qwq-plus-latest (#6702)
### What problem does this PR solve?

#6697

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-04-01 11:06:03 +08:00
61c0dfab70 Fix: Email error. (#6701)
### What problem does this PR solve?

#6695

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-04-01 10:37:04 +08:00
67330833af fix: correct [AttributeError: 'set' object has no attribute 'nodes' T… (#6699)
### Related Issue: 
https://github.com/infiniflow/ragflow/issues/6653 

### Environment:
Using nightly version [ece5903]

Elasticsearch database

Thanks for the review! My fault! I realize my initial testing wasn't
passed.

In graphrag/entity_resolution.py 
 `sub_connect_graph` is a set like` {'HELLO', 'Hi', 'How are you'}`, 
Neither accessing `.nodes` nor `.nodes()` will work, **it still causes
`AttributeError: 'set' object has no attribute 'nodes'`**

In graphrag/general/extractor.py  
The `list.extend() `method performs an in-place operation, directly
modifying the original list and returning ‘None’ rather than the
modified list.
Neither accessing
`sorted(set(node0_attrs[attr].extend(node1_attrs.get(attr, []))))` nor
`sorted(set(node0_attrs[attr].extend(node1_attrs[attr])))` will work,
**it still causes `TypeError: 'NoneType' object is not iterable`**
### Type of change

- [ ] Bug Fix AttributeError: graphrag/entity_resolution.py 
- [ ] Bug Fix TypeError: graphrag/general/extractor.py
2025-04-01 09:38:21 +08:00
ece59034f7 fix: Resolve KnowledgeGraph entity resolution errors (#6653) (#6691)
### Related Issue: #6653
### Environment:

Using nightly version

Elasticsearch database

### Bug Description:
When clicking the "Entity Resolution" button in KnowledgeGraph,
encountered the following errors:

graphrag/entity_resolution.py

```
list(sub_connect_graph.nodes) AttributeError
```

graphrag/general/extractor.py
```
node0_attrs[attr] = sorted(set(node0_attrs[attr].extend(node1_attrs[attr])))
TypeError: 'NoneType' object is not iterable
```
```
for attr in ["keywords", "source_id"]:  
 KeyError I think attribute "keywords" is in edges not nodes
```
graphrag/utils.py
```
settings.docStoreConn.delete()  # Sync function called as async
```
### Changes Made:

Fixed AttributeError in entity_resolution.py by properly handling graph
nodes

Fixed TypeError and KeyError in extractor.py by separate operations

Corrected async/sync mismatch in document deletion call
2025-03-31 22:31:35 +08:00
0a42e5777e Refa: docker/.env comment refinement. (#6689)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-03-31 18:26:20 +08:00
e2b66628f4 Feat: extend S3 storage compatibility and add knowledge base ID prefix (#6355)
### What problem does this PR solve?

- Added support for S3-compatible protocols.
- Enabled the use of knowledge base ID as a file prefix when storing
files in S3.
- Updated docker/README.md to include detailed S3 and OSS configuration
instructions.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-31 16:09:43 +08:00
46b5e32cd7 Feat: support vision llm for gpustack (#6636)
### What problem does this PR solve?
https://github.com/infiniflow/ragflow/issues/6138

This PR is going to support vision llm for gpustack, modify url path
from `/v1-openai` to `/v1`

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-31 15:33:52 +08:00
7d9dd1e5d3 Refa: remove default build-in rerank model. (#6682)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
- [x] Performance Improvement
2025-03-31 15:33:19 +08:00
1985ff7918 add type canvas (#6680)
add type canvas
### Type of change
- [x] Refactoring
2025-03-31 14:46:29 +08:00
60b9c027c8 Refa: add meta data to retrieval. (#6676)
### What problem does this PR solve?

#6619
### Type of change


- [x] Performance Improvement
2025-03-31 11:45:56 +08:00
2793c8e4fe Added a guide on setting page rank. (#6645)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update

---------

Co-authored-by: balibabu <cike8899@users.noreply.github.com>
2025-03-31 11:44:18 +08:00
805a8f1f47 Update broken discord (#6678)
### Type of change

- [x] Documentation Update
2025-03-31 11:29:34 +08:00
d4a3e9a7cc Fix table migration on non-exist-yet indexed columns. (#6666)
### What problem does this PR solve?

Fix #6334

Hello, I encountered the same problem in #6334. In the
`api/db/db_models.py`, it calls `obj.create_table()` unconditionally in
`init_database_tables`, before the `migrate_db()`. Specially for the
`permission` field of `user_canvas` table, it has `index=True`, which
causes `peewee` to issue a SQL trying to create the index when the field
does not exist (the `user_canvas` table already exists), so
`psycopg2.errors.UndefinedColumn: column "permission" does not exist`
occurred.

I've added a judgement in the code, to only call `create_table()` when
the table does not exist, delegate the migration process to
`migrate_db()`.

Then another problem occurs: the `migrate_db()` actually does nothing
because it failed on the first migration! The `playhouse` blindly issue
DDLs without things like `IF NOT EXISTS`, so it fails... even if the
exception is `pass`, the transaction is still rolled back. So I removed
the transaction in `migrate_db()` to make it work.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-31 11:27:20 +08:00
ad4e59edb2 Don't split and strip input in retrieval component. (#6662)
### What problem does this PR solve?

Actually fix #6241 

Hello, I ran into the same problem as #6241. When I'm testing my agent
flow in the web ui using `Run` button with a file input, the retrieval
component always gave an empty output.

In the code I found that:

`web/src/pages/flow/debug-content/index.tsx`:

```tsx
const onOk = useCallback(async () => {
    const values = await form.validateFields();
    const nextValues = Object.entries(values).map(([key, value]) => {
      const item = parameters[Number(key)];
      let nextValue = value;
      if (Array.isArray(value)) {
        nextValue = ``;

        value.forEach((x) => {
          nextValue +=
            x?.originFileObj instanceof File
              ? `${x.name}\n${x.response?.data}\n----\n`    // Here, the file content always ends in '\n'
              : `${x.url}\n${x.result}\n----\n`;
        });
      }
      return { ...item, value: nextValue };
    });

    ok(nextValues);
  }, [form, ok, parameters]);
```

while in the `agent/component/retrieval.py`:

```python
def _run(self, history, **kwargs):
        query = self.get_input()
        query = str(query["content"][0]) if "content" in query else ""
        lines = query.split('\n')                     # inputs are split to ['xxx','yyy','----','']
        query = lines[-1] if lines else ""      # Here we always get '', thus no result
        kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
        if not kbs:
            return Retrieval.be_output("")
```

so the code will never got correct result.

I'm not sure why the input needs such a split here, so I just removed
the splitting, and it works well on my side.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-31 11:26:49 +08:00
aca4cf4369 Test: Added test cases for Retrieval Chunks HTTP API (#6649)
### What problem does this PR solve?

cover [retrieval
chunk](https://ragflow.io/docs/v0.17.2/http_api_reference#retrieve-chunks)
endpoints

### Type of change

- [x]  add test cases
2025-03-31 10:05:35 +08:00
9aa047257a Fix agent completion requiring calling twice with parameters in begin component (#6659)
### What problem does this PR solve?

Fix #5418

Actually, the fix #4329 also works for agent flows with parameters, so
this PR just relaxes the `else` branch of that. With this PR, it works
fine on my side, may need more testing to make sure this does not break
something.

I guess the real problem may be deeply hidden in the code which relates
to conversation and canvas execution. After a few hours of debugging, I
see the only difference between with and without parameters in `begin`
component, is the `history` field of canvas data. When the `begin`
component contains some parameters, the debug log shows:

```
025-03-29 19:50:38,521 DEBUG    356590 {
            "component_name": "Begin",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [{"type": "fileUrls", "key": "fileUrls", "name": "files", "optional": true, "value": "问题.txt\n今天天气怎么样"}], "inputs": [], "debug_inputs": [], "prologue": "你好! 我是你的助理,有什么可以帮到你的吗?", "output": null},
            "output": null,
            "inputs": []
        }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false}
2025-03-29 19:50:38,523 DEBUG    356590 {
            "component_name": "Answer",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "post_answers": [], "output": null},
            "output": null,
            "inputs": []
        }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false}
```

Then it does not go further along the flow.

When the `begin` component does not contain any parameter, the debug log
shows:

```
2025-03-29 19:41:13,518 DEBUG    353596 {
            "component_name": "Begin",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "prologue": "你好! 我是你的助理,有什么可以帮到你的吗?", "output": null},
            "output": null,
            "inputs": []
        }, history: [], kwargs: {"stream": false}
2025-03-29 19:41:13,520 DEBUG    353596 {
            "component_name": "Answer",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "post_answers": [], "output": null},
            "output": null,
            "inputs": []
        }, history: [], kwargs: {"stream": false}
2025-03-29 19:41:13,556 INFO     353596 127.0.0.1 - - [29/Mar/2025 19:41:13] "POST /api/v1/agents/fee6886a0c6f11f09b48eb8798e9aa9b/sessions?user_id=123 HTTP/1.1" 200 -
2025-03-29 19:41:21,115 DEBUG    353596 Canvas.prepare2run: Retrieval:LateGuestsNotice
2025-03-29 19:41:21,116 DEBUG    353596 {
            "component_name": "Retrieval",
            "params": {"output_var_name": "output", "message_history_window_size": 22, "query": [], "inputs": [], "debug_inputs": [], "similarity_threshold": 0.2, "keywords_similarity_weight": 0.3, "top_n": 8, "top_k": 1024, "kb_ids": ["9aca3c700c5911f0811caf35658b9385"], "rerank_id": "", "empty_response": "", "tavily_api_key": "", "use_kg": false, "output": null},
            "output": null,
            "inputs": []
        }, history: [["user", "请回答我上传文件中的问题。"]], kwargs: {"stream": false}
```

It correctly goes along the flow and generates correct answer.

You can see the difference: when the `begin` component has any
parameter, the `history` field is filled from the beginning, while it is
just `[]` if the `begin` component has no parameter.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-31 09:57:56 +08:00
65a8cd1772 Fix knowledge_graph_kwd on infinity. Close #6476 and #6624 (#6651)
### What problem does this PR solve?

Fix knowledge_graph_kwd on infinity. Close #6476 and #6624

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-28 22:05:40 +08:00
563a84beaf Docs: fix retrieval docs. (#6633)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-03-28 16:03:37 +08:00
d32a35d8fd Fix entity_types. Close #6287 and #6608 (#6632)
### What problem does this PR solve?

Fix entity_types. Close #6287 and #6608

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-28 15:00:24 +08:00
2632493c8b Consolidate entrypoint to support broader deployment scenarios (#6566)
### What problem does this PR solve?

This PR gives better control over how we distribute which service will
be loaded. With this approach, we can create containers to run only the
web server and others to run the task executor. It also introduces the
unique ID per task executor host, this will be important when scaling
task executors horizontally, considering unique task executor ids will
be required.

This new `entrypoint.sh` maintains the default behavior of starting the
web server and task executor in the same host.

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [X] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-28 12:39:34 +08:00
c61df5dd25 Dynamic Context Window Size for Ollama Chat (#6582)
# Dynamic Context Window Size for Ollama Chat

## Problem Statement
Previously, the Ollama chat implementation used a fixed context window
size of 32768 tokens. This caused two main issues:
1. Performance degradation due to unnecessarily large context windows
for small conversations
2. Potential business logic failures when using smaller fixed sizes
(e.g., 2048 tokens)

## Solution
Implemented a dynamic context window size calculation that:
1. Uses a base context size of 8192 tokens
2. Applies a 1.2x buffer ratio to the total token count
3. Adds multiples of 8192 tokens based on the buffered token count
4. Implements a smart context size update strategy

## Implementation Details

### Token Counting Logic
```python
def count_tokens(text):
    """Calculate token count for text"""
    # Simple calculation: 1 token per ASCII character
    # 2 tokens for non-ASCII characters (Chinese, Japanese, Korean, etc.)
    total = 0
    for char in text:
        if ord(char) < 128:  # ASCII characters
            total += 1
        else:  # Non-ASCII characters
            total += 2
    return total
```

### Dynamic Context Calculation
```python
def _calculate_dynamic_ctx(self, history):
    """Calculate dynamic context window size"""
    # Calculate total tokens for all messages
    total_tokens = 0
    for message in history:
        content = message.get("content", "")
        content_tokens = count_tokens(content)
        role_tokens = 4  # Role marker token overhead
        total_tokens += content_tokens + role_tokens

    # Apply 1.2x buffer ratio
    total_tokens_with_buffer = int(total_tokens * 1.2)
    
    # Calculate context size in multiples of 8192
    if total_tokens_with_buffer <= 8192:
        ctx_size = 8192
    else:
        ctx_multiplier = (total_tokens_with_buffer // 8192) + 1
        ctx_size = ctx_multiplier * 8192
    
    return ctx_size
```

### Integration in Chat Method
```python
def chat(self, system, history, gen_conf):
    if system:
        history.insert(0, {"role": "system", "content": system})
    if "max_tokens" in gen_conf:
        del gen_conf["max_tokens"]
    try:
        # Calculate new context size
        new_ctx_size = self._calculate_dynamic_ctx(history)
        
        # Prepare options with context size
        options = {
            "num_ctx": new_ctx_size
        }
        # Add other generation options
        if "temperature" in gen_conf:
            options["temperature"] = gen_conf["temperature"]
        if "max_tokens" in gen_conf:
            options["num_predict"] = gen_conf["max_tokens"]
        if "top_p" in gen_conf:
            options["top_p"] = gen_conf["top_p"]
        if "presence_penalty" in gen_conf:
            options["presence_penalty"] = gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf:
            options["frequency_penalty"] = gen_conf["frequency_penalty"]
            
        # Make API call with dynamic context size
        response = self.client.chat(
            model=self.model_name,
            messages=history,
            options=options,
            keep_alive=60
        )
        return response["message"]["content"].strip(), response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
    except Exception as e:
        return "**ERROR**: " + str(e), 0
```

## Benefits
1. **Improved Performance**: Uses appropriate context windows based on
conversation length
2. **Better Resource Utilization**: Context window size scales with
content
3. **Maintained Compatibility**: Works with existing business logic
4. **Predictable Scaling**: Context growth in 8192-token increments
5. **Smart Updates**: Context size updates are optimized to reduce
unnecessary model reloads

## Future Considerations
1. Fine-tune buffer ratio based on usage patterns
2. Add monitoring for context window utilization
3. Consider language-specific token counting optimizations
4. Implement adaptive threshold based on conversation patterns
5. Add metrics for context size update frequency

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-28 12:38:27 +08:00
1fbc4870f0 Fix: HTTP API delete_chunks issue. (#6621)
### What problem does this PR solve?

#6611

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-28 12:13:43 +08:00
f304492716 Fix: binlog_expire_logs_seconds (#6626)
This PR updates the MySQL container configuration by setting the
parameter --binlog_expire_logs_seconds to 604800 seconds (7 days). This
change ensures that MySQL automatically purges binary logs older than 7
days, helping to conserve disk space and maintain precise log
management.

### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-28 11:37:53 +08:00
f35c226ce7 Feat: Add RadioGroup component #3221 (#6622)
### What problem does this PR solve?

Feat: Add RadioGroup component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-28 10:20:49 +08:00
0b48a2e0d1 Fix: When Excel is a formula, the parsed result is a formula, but cannot be correctly parsed as a value type (#6613)
### What problem does this PR solve?

Fix: When Excel is a formula, the parsed result is a formula, but cannot
be correctly parsed as a value type

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: tangyu <1@1.com>
2025-03-28 09:33:49 +08:00
fd614a7aef Test: Added test cases for Delete Chunks HTTP API (#6612)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] add test cases
2025-03-28 09:33:23 +08:00
0758c04941 Refa: token similarity calculations. (#6614)
### What problem does this PR solve?

#6507

### Type of change

- [x] Performance Improvement
2025-03-28 09:33:08 +08:00
fe0396bbb9 Introduced delete_knowledge_graph (#6605)
### What problem does this PR solve?

Introduced delete_knowledge_graph

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] Documentation Update
2025-03-27 17:16:48 +08:00
974a467cf6 Fix: The rule of Categorize operator is adjusted. (#6599)
### What problem does this PR solve?

When I use the categorization operator, I find that if the keyword I
want to Categorize appears repeatedly in the input, then I cannot judge
the word that appears most frequently. Instead, I simply get the word
that matches and return all the ones that have made the following
changes to the categorize filter.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Refactoring
- [x] Performance Improvement
2025-03-27 17:02:21 +08:00
36b62e0fab EntityResolution batch. Close #6570 (#6602)
### What problem does this PR solve?

EntityResolution batch

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-27 16:40:36 +08:00
d2043ff9f2 Fix: LmStudioChat issue. (#6591)
### What problem does this PR solve?

#6577

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-27 14:59:15 +08:00
ecc9605a32 Fix: team doc deletion issue. (#6589)
### What problem does this PR solve?

#6557

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-27 13:26:38 +08:00
70dc56d26b Feat: Add logo-with-text-white.svg #3221 (#6588)
### What problem does this PR solve?

Feat: Add logo-with-text-white.svg #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-27 12:28:17 +08:00
82ccbd2cba fix:  Remove unnecessary minio initialization (#6544)
### What problem does this PR solve?

Prevent applications from failing to start due to calling non-existent
or incorrect Minio connection configurations when using file storage
outside of Minio

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-27 09:54:25 +08:00
c4998d0e09 Rename graphrag task lock (#6576)
### What problem does this PR solve?

Rename graphrag task lock

### Type of change

- [x] Refactoring
2025-03-26 23:48:47 +08:00
5eabfe3912 Update values.yaml image to infiniflow/infinity:v0.6.0-dev3 issue#5882 (#6568)
related issue #5882

### What problem does this PR solve?

update helm infinity image version from v0.5.0 
 image to infiniflow/infinity:v0.6.0-dev3 

to solve issue #5882

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-26 21:15:26 +08:00
df3890827d Refa: change LLM chat output from full to delta (incremental) (#6534)
### What problem does this PR solve?

Change LLM chat output from full to delta (incremental)

### Type of change

- [x] Refactoring
2025-03-26 19:33:14 +08:00
6599db1e99 Test: Update test cases for PR #6405 #6504 #6538 (#6565)
### What problem does this PR solve?

PR #6405 #6504 #6538

### Type of change

- [x] update test cases
2025-03-26 19:23:13 +08:00
b7d7ad536a AI search vs. chat (#6569)
### What problem does this PR solve?


### Type of change

- [x] Documentation Update
2025-03-26 18:46:34 +08:00
24d8ff7425 Fix:flow DB Assistant module translate to zh (#6562)
### What problem does this PR solve?

Fix:flow DB Assistant module translate to zh

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-26 17:32:05 +08:00
735d9dd949 Feat: add "tools" to llm_factories.json (#6552)
### What problem does this PR solve?



### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Chenzy <chenzy901@gmail.com>
2025-03-26 17:31:18 +08:00
cc5f4a5efa Fix: python_api_reference.md update dataset bug (#6527)
### What problem does this PR solve?

There is a small bug in the update dataset of this document. The return
type of rag_oobject.list_datasets is a list type, and the first item
should be taken as' ragflow_stdk.modules.dataset ' DataSet`, Adapt to
the update.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 17:30:09 +08:00
93c26ae1ef Test: Added test cases for Update Chunk HTTP API (#6556)
### What problem does this PR solve?

cover [update
chunk](https://ragflow.io/docs/v0.17.2/http_api_reference#update-chunk)
endpoints

### Type of change

- [x] add test cases
2025-03-26 16:47:47 +08:00
cc8029a732 Fix: uploading in chat box issue. (#6547)
### What problem does this PR solve?

#6228

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 15:37:48 +08:00
6bf26e2a81 Optimize graphrag again (#6513)
### What problem does this PR solve?

Removed set_entity and set_relation to avoid accessing doc engine during
graph computation.
Introduced GraphChange to avoid writing unchanged chunks.

### Type of change

- [x] Performance Improvement
2025-03-26 15:34:42 +08:00
7a677cb095 Fix: image_id is None. (#6538)
### What problem does this PR solve?

#6499

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 12:04:21 +08:00
12ad746ee6 Fix: Bedrock model invocation error. (#6533)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 11:27:12 +08:00
163e71d06f Fix: Hunyuan model adding error. (#6531)
### What problem does this PR solve?

#6523
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 10:33:33 +08:00
c8c91fd827 Fix: link to KB from filemanager. (#6530)
### What problem does this PR solve?



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 09:41:14 +08:00
d17970ebd0 0321 chunkmethods (#6520)
### What problem does this PR solve?

#6061 

### Type of change


- [x] Documentation Update
2025-03-26 09:03:18 +08:00
bf483fdf02 Fix: describe parameter error. (#6519)
### What problem does this PR solve?
#6228

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-26 09:02:48 +08:00
b2b7ed8927 Fix: abnormal chunk id (#6506)
### What problem does this PR solve?

#6500

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 19:03:29 +08:00
0a79dfd5cf Test: Added test cases for List Chunks HTTP API (#6514)
### What problem does this PR solve?

cover [list
chunks](https://ragflow.io/docs/v0.17.2/http_api_reference#list-chunks)
endpoints

### Type of change

- [x] update test cases
2025-03-25 17:28:58 +08:00
1d73baf3d8 Feat: improve '/mv' '/list' API performance (#6502)
### What problem does this PR solve?

1. for /mv API use get by ids to avoid O(n) DB IO

2. for /list remove one useless call
### Type of change

- [x] Performance Improvement
2025-03-25 16:30:25 +08:00
f3ae4a3bae Fix: img_id errror. (#6504)
### What problem does this PR solve?

#6499

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 15:57:03 +08:00
814a210f5d Fix: failed to acquire lock exception with retry mechanism for postgres and mysql (#6483)
Added the with_retry decorator in db_models.py to add a retry mechanism
for database operations. Applied the retry mechanism to the lock and
unlock methods of the PostgresDatabaseLock and MysqlDatabaseLock classes
to enhance the reliability of lock operations.

### What problem does this PR solve?
resolve failed to acquire lock exception with retry mechanism

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
2025-03-25 15:09:56 +08:00
60c3a253ad Fix: api-key issue for xinference. (#6490)
### What problem does this PR solve?

#2792

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 15:01:13 +08:00
384b6549a6 Fix: remove doc status checking while creating an assistant. (#6486)
### What problem does this PR solve?

#6461

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 11:13:22 +08:00
b2ec39c59d Fix: Resolve FlowSetting not reading Title from .ts files (#6469)
### What problem does this PR solve?

Fix: Resolve FlowSetting not reading Title from .ts files

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 11:07:29 +08:00
095fc84cf2 Fix: claude max tokens. (#6484)
### What problem does this PR solve?

#6458

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-25 10:41:55 +08:00
542cf16292 Feat: add project_id and project_name to Langfuse API (#6481)
### What problem does this PR solve?

Enhance Langfuse API: add project_id and project_name

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-25 10:36:34 +08:00
27989eb9a5 Test: Add list chunk checkpoint for the add chunk API (#6482)
### What problem does this PR solve?

Add list chunk checkpoint for the add chunk API

### Type of change

- [x] update test cases
2025-03-25 10:36:21 +08:00
05997e8215 Remove thinking block from keyword node's result (#6474)
### What problem does this PR solve?

For now, if you use thinking model (deepseek-r1:32b with ollama server
in my case) in "Keyword" node, result contains all <think> block and so
node return not only keywords

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-25 10:22:41 +08:00
5d9afce12d Feat: improve the performance for '/upload' API (#6479)
### What problem does this PR solve?
improve the logic to fetch parent folder, remove the useless DB IO logic

### Type of change

- [x] Performance Improvement
2025-03-25 10:22:19 +08:00
ee6a0bd9db Refa: enhancement: enhance the prompt of related_question API (#6463)
### What problem does this PR solve?

Enhance the prompt of `related_question` API.

### Type of change

- [x] Enhancement
- [x] Documentation Update
2025-03-25 10:00:10 +08:00
b6f3242c6c Test: Update test cases to reduce execution time (#6470)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] update test cases
2025-03-25 09:17:05 +08:00
390086c6ab Fix: split process bug in graphrag extract (#6423)
### What problem does this PR solve?

1. miss completion delimiter.
2. miss bracket process.
3. doc_ids return by update_graph is a set, and insert operation in
extract_community need a list.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 21:41:20 +08:00
a40c5aea83 Miscellaneous UI updates (#6471)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-24 19:36:47 +08:00
f691b4ddd2 Feat: Improve "/convert" API's performance (#6465)
### What problem does this PR solve?

for batch requests based on get_by_ids to fetch all files first replace
the O(n) IO logic.

### Type of change


- [x] Performance Improvement
2025-03-24 19:08:22 +08:00
3c57a9986c Feat: Add LangfuseCard component. #6155 (#6468)
### What problem does this PR solve?

Feat: Add LangfuseCard component. #6155

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 19:07:55 +08:00
5e0a77df2b Feat: add Langfuse APIs (#6460)
### What problem does this PR solve?

Add Langfuse APIs

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 18:25:43 +08:00
66e557b6c0 Fix: Langfuse update model has no fields attribute (#6453)
### What problem does this PR solve?

Langfuse update model has no fields attribute

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 15:37:14 +08:00
200b6f55c6 Fix: NameError: free variable 'langfuse_generation' referenced before assignment in enclosing scope (#6451)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Co-authored-by: lizheng@ssc-hn.com <lizheng@ssc-hn.com>
2025-03-24 15:14:36 +08:00
b77ce4e846 Feat: support api-key for Ollama. (#6448)
### What problem does this PR solve?

#6189

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 14:53:17 +08:00
85eb367ede Feat: add basic Langfuse support for LLM module (#6443)
### What problem does this PR solve?

#6155

Add basic Langfuse support for LLM module.

A trace example:

<img width="755" alt="image"
src="https://github.com/user-attachments/assets/25c1f852-5116-486c-a47f-6097187142ca"
/>


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 13:18:47 +08:00
0b63346a1a Test: Update test case for #6081 (#6446)
### What problem does this PR solve?

Update test case for #6081

### Type of change

- [x] Update test case
2025-03-24 13:18:12 +08:00
85eb3775d6 Refa: update Anthropic models. (#6445)
### What problem does this PR solve?

#6421

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 12:34:57 +08:00
e4c8d703b5 Test: Update test cases for PR #6194 #6259 #6376 (#6444)
### What problem does this PR solve?

PR #6194 #6259 #6376

### Type of change

- [x] Update test cases
2025-03-24 12:01:33 +08:00
60afb63d44 Feat: Add background-core-standard to tailwind.css #3221 (#6437)
### What problem does this PR solve?

Feat: Add background-core-standard to tailwind.css #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 10:51:46 +08:00
ee5aa51d43 Fix: point in tag issue. (#6436)
### What problem does this PR solve?

#6414

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 10:45:29 +08:00
a6aed0da46 Fix: rerank with YoudaoRerank issue. (#6396)
### What problem does this PR solve?

Fix rerank with YoudaoRerank issue,"'YoudaoRerank' object has no
attribute '_dynamic_batch_size'"


![17425412353825](https://github.com/user-attachments/assets/9ed304c7-317a-440e-acff-fe895fc20f07)


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-24 10:09:16 +08:00
d77380f024 Feat: support pic base bullet for PPT (#6406)
### What problem does this PR solve?

support pic base bullet for PPT

modify one mistake in document

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-24 09:31:31 +08:00
efc4796f01 Fix ratelimit errors during document parsing (#6413)
### What problem does this PR solve?

When using the online large model API knowledge base to extract
knowledge graphs, frequent Rate Limit Errors were triggered,
causing document parsing to fail. This commit fixes the issue by
optimizing API calls in the following way:
Added exponential backoff and jitter to the API call to reduce the
frequency of Rate Limit Errors.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-22 23:07:03 +08:00
d869e4d43f Fix: Preserve quotes while handling variable substitution withTemplate component. (#6410)
###Address Problem:
The original implementation used re.sub(r"(\\\"|\")", "", content) which
stripped all quotes from the processed content. While this worked for
simple Jinja2-rendered templates, it caused formatting issues when :
-Quotes were required in the final output (e.g., JSON, Python Code
strings)

###Solution:
    1. Selective JSON Serialization.
    2. Removed Global Quote Removal

### What problem does this PR solve?

This PR addresses an issue in template processing where all quotation
marks (" and \") were being removed from content, potentially corrupting
string formatting in rendered outputs. **In fact, extra quotes is
generated by json.dumps(v, ensure_ascii=False).**

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 19:44:03 +08:00
8eefc8b5fe Test: Added test cases for Add Chunk HTTP API (#6408)
### What problem does this PR solve?

cover [add
chunk](https://ragflow.io/docs/v0.17.2/http_api_reference#add-chunk)
endpoints

### Type of change

- [x] Add test cases
2025-03-21 19:16:30 +08:00
4091af4560 Fix: multiple top-level packages error in Python project (#6370)
### What problem does this PR solve?

This PR resolves the issue of multiple top-level packages being detected
in the Python project, which caused errors when using uv pip install.
The problem occurred because the project had multiple directories files
at the root level, leading to a flat-layout error.
To fix this, the pyproject.toml file was updated to explicitly list the
packages using the [tool.setuptools] section. This ensures that the
correct packages are included during installation, avoiding the
flat-layout error.
Type of change

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 18:44:49 +08:00
394d1a86f6 Fix: add chunk, empty question issue. (#6405)
### What problem does this PR solve?

#6404

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 18:44:12 +08:00
d88964f629 Feat: If the Transfer item is disabled, the item cannot be edited. #3221 (#6409)
### What problem does this PR solve?

Feat: If the Transfer item is disabled, the item cannot be edited. #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-21 18:42:52 +08:00
0e0ebaac5f Feat: Adds hierarchical title path tracking for tables in DOCX documents to improve context association (#6374)
### What problem does this PR solve?

Adds hierarchical title path tracking for tables in DOCX documents to
improve context association. Previously, extracted tables lacked
positional context within document structure.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-21 18:42:36 +08:00
8b7e53e643 Fix: miss calculate of token number. (#6401)
### What problem does this PR solve?

#6308

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 17:30:38 +08:00
979cdc3626 UI updates. (#6398)
### What problem does this PR solve?

Updated UI descriptions for delimiters and recommended chunk size

### Type of change

- [x] Documentation Update
2025-03-21 16:50:20 +08:00
a2a4bfe3e3 Fix: change ollama default num_ctx. (#6395)
### What problem does this PR solve?

#6163

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 16:22:03 +08:00
85480f6292 Fix: the error of Ollama embeddings interface returning "500 Internal Server Error" (#6350)
### What problem does this PR solve?

Fix the error where the Ollama embeddings interface returns a “500
Internal Server Error” when using models such as xiaobu-embedding-v2 for
embedding.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 15:25:48 +08:00
f537b6ca00 Fix: flow list translate to zh (#6371)
### What problem does this PR solve?

Add the Chinese translation of 'noMoreData' on the flow list page

### Type of change

- [x] Refactoring
2025-03-21 14:54:12 +08:00
b5471978b0 Fix: add chunk api, empty content issue (#6390)
### What problem does this PR solve?

#6387

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 14:05:59 +08:00
efdfb39a33 Feat: Add Duplicate ID Check and Update Deletion Logic (#6376)
- Introduce the `check_duplicate_ids` function in `dataset.py` and
`doc.py` to check for and handle duplicate IDs.
- Update the deletion operation to ensure that when deleting datasets
and documents, error messages regarding duplicate IDs can be returned.
- Implement the `check_duplicate_ids` function in `api_utils.py` to
return unique IDs and error messages for duplicate IDs.


### What problem does this PR solve?

Close https://github.com/infiniflow/ragflow/issues/6234

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-21 14:05:17 +08:00
7cc5603a82 Fix broken discord invitation links (#6388)
### Type of change

- [x] Documentation Update
2025-03-21 13:38:34 +08:00
9ed004e90d Refa: control the simi for entity resolution. (#6386)
### What problem does this PR solve?

#6352

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 13:16:34 +08:00
d83911b632 Fix: huggingface rerank model issue. (#6385)
### What problem does this PR solve?

#6348

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 12:43:32 +08:00
bc58ecbfd7 Remove feature_request.md (#6383)
### What problem does this PR solve?


### Type of change


- [x] Refactoring
2025-03-21 12:03:38 +08:00
221eae2c59 Refa: refine template. (#6382)
### What problem does this PR solve?

### Type of change


- [x] Refactoring
2025-03-21 11:58:10 +08:00
37303e38ec Refa: refine template. (#6381)
### What problem does this PR solve?

### Type of change

- [x] Refactoring
2025-03-21 11:55:01 +08:00
b754bd523a Fix: let quot stay. (#6377)
### What problem does this PR solve?

#6337

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-21 11:47:42 +08:00
1bb990719e Feat: Add user registration toggle feature (#6327)
### What problem does this PR solve?

Feat: Add user registration toggle feature. Added a user registration
toggle REGISTER_ENABLED in the settings and .env config file. The user
creation interface now checks the state of this toggle to control the
enabling and disabling of the user registration feature.

the front-end implementation is done, the registration button does not
appear if registration is not allowed. I did the actual tests on my
local server and it worked smoothly.
### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: wenju.li <wenju.li@deepctr.cn>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-21 09:38:15 +08:00
7f80d7304d Fix: Optimized the get_by_id method to resolve the issue of missing exceptions and improve query performance (#6320)
Fix: Optimized the get_by_id method to resolve the issue of missing
exceptions and improve query performance

### What problem does this PR solve?

Optimized the get_by_id method to resolve the issue of missing
exceptions and improve query performance.
Optimization details:
1. The original method used a custom query method that required
concatenating SQL, which impacted performance.
2. The query method returned a list, which needed to be accessed by
index, posing a risk of index out-of-bounds errors.
3. The original method used except Exception to catch all errors, which
is not a best practice in Python programming and may lead to missing
exceptions. The get_or_none method accurately catches DoesNotExist
errors while allowing other errors to be raised normally.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] Performance Improvement
2025-03-20 23:23:48 +08:00
ca9c3e59fa Call register_scripts on connecting redis (#6361)
### What problem does this PR solve?

Call register_scripts on connecting redis

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 23:20:37 +08:00
674f94228b Chore: unify Ruff config and enable async checks (ASYNC, TRIO) (#6351)
### What problem does this PR solve?

Unify Ruff config and enable async checks (ASYNC, TRIO)

### Type of change

- [x] CI/CD or tooling improvement
2025-03-20 22:31:18 +08:00
ef7e96e486 Feat: Add the functionality to load environment variables from a .env file (#6331)
### Change Content

- A new function `load_env_file` has been added to load environment
variables from a .env file in the current script directory.
- If the .env file exists, the variables within it will be loaded; if it
does not exist, a warning message will be output.

I found this issue while testing this pr:
https://github.com/infiniflow/ragflow/pull/6327. The locally started
server did not read the REGISTER_ENABLED variables in the .env. The
result has always been the default True
### What problem does this PR solve?

Follow the tutorial in the README.md to start from source code. base's
container that is es、redis,etc will load .env. Therefore,
`launch_backend_service.sh` should also load .env to be consistent with
the configuration of the docker container when it was started

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-20 18:35:04 +08:00
dba0caa00b Fix update_progress (#6340)
### What problem does this PR solve?

Fix update_progress

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 17:01:28 +08:00
1d9ca172e3 Fix(api): correct document parsing progress check logic (#6318)
- Fix incorrect progress check condition that prevented re-parsing of
completed documents
- Allow parsing for documents with progress 0.0 (not started) or 1.0
(completed)
- Only block parsing for documents currently in progress (0.0 < progress
< 1.0)

Close #6312

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-20 16:00:17 +08:00
f0c4b28c6b Fix: type import (#6328)
### What problem does this PR solve?

fixed type import .

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 15:23:15 +08:00
6784e0dfee Fix: Resolved a bug where sibling components in Canvas were not restricted to fetching data from the upstream when parallel components were present. (#6315)
### What problem does this PR solve?

Fix: Resolved a bug where sibling components in Canvas were not
restricted to fetching data from the upstream when parallel components
were present.
Issue: When parallel components existed in Canvas, sibling components
incorrectly fetched data without being limited to the upstream scope,
causing data retrieval issues.
Solution: Adjusted the data fetching logic to ensure sibling components
only retrieve data from the upstream scope.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 15:06:18 +08:00
95497b4aab Fix: adapt to old configurations. (#6321)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 14:50:59 +08:00
5b04b7d972 Fix: rerank with vllm issue. (#6306)
### What problem does this PR solve?

#6301

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 11:52:42 +08:00
4eb3a8e1cc Test: Skip unstable 'stop parse documents' test cases (#6310)
### What problem does this PR solve?

 Skip unstable 'stop parse documents' test cases

### Type of change

- [x] update test cases
2025-03-20 11:35:19 +08:00
9611185eb4 Feat: add VLM-boosted DocX parser (#6307)
### What problem does this PR solve?

Add VLM-boosted DocX parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-20 11:24:44 +08:00
e4380843c4 Feat: add fallback for PDF figure parser (#6305)
### What problem does this PR solve?

Add fallback for PDF figure parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-20 10:48:38 +08:00
046f0bba74 Fix: optimize setting config initialization to resolve Minio initialization error (#6282)
### What problem does this PR solve?

Optimize setting configuration initialization to resolve Minio
initialization error caused by using a specific storage.

Reproduction Scenario:
Using Aliyun OSS as the backend storage with the STORAGE_IMPL
environment variable set to OSS.
The service_conf.yaml.template configuration file contains OSS-related
configurations, while other storage configurations are commented out.
When the service starts, it still attempts to initialize the Minio
storage. Since there is no Minio configuration in
service_conf.yaml.template, it results in an error due to the missing
configuration file.

Optimization Measures:
Automatically determine the required initialization configuration based
on the environment variable.
Do not initialize configurations for unused resources.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-20 10:45:40 +08:00
e0c436b616 UI updates (#6290)
### What problem does this PR solve?



### Type of change


- [x] Documentation Update
2025-03-20 10:26:16 +08:00
dbf2ee56c6 Test: Added test cases for Stop Parse Documents HTTP API (#6285)
### What problem does this PR solve?

cover [stop parse
documents](https://ragflow.io/docs/dev/http_api_reference#stop-parsing-documents)
endpoints

### Type of change

- [x] Add test cases
2025-03-20 09:42:50 +08:00
1d6760dd84 Feat: add VLM-boosted PDF parser (#6278)
### What problem does this PR solve?

Add VLM-boosted PDF parser if VLM is set.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-20 09:39:32 +08:00
344727f9ba Feat: add agent share team viewer (#6222)
### What problem does this PR solve?
Allow member view agent  
#  Canvas editor

![image](https://github.com/user-attachments/assets/042af36d-5fd1-43e2-acf7-05869220a1c1)
# List agent

![image](https://github.com/user-attachments/assets/8b9c7376-780b-47ff-8f5c-6c0e7358158d)
# Setting 

![image](https://github.com/user-attachments/assets/6cb7d12a-7a66-4dd7-9acc-5b53ff79a10a)
 
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-19 19:04:13 +08:00
d17ec26c56 Fix: In the Agent's workflow, the input content cannot be wrapped, and \n will not work, otherwise an error will be reported #6241 (#6284)
### What problem does this PR solve?

Fix: In the Agent's workflow, the input content cannot be wrapped, and
\n will not work, otherwise an error will be reported #6241

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 18:54:23 +08:00
lei
4236d81cfc Docs: Update accelerate_doc_indexing.mdx (#6268)
### What problem does this PR solve?
The word is written incorrectly

### Type of change

- [x] Documentation Update
2025-03-19 18:04:03 +08:00
bb869aca33 Fix get_unacked_iterator (#6280)
### What problem does this PR solve?

Fix get_unacked_iterator. Close #6132 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 17:46:58 +08:00
9cad60fa6d Fix: Add a basic example when the example of content_tagging is empty (#6276)
### What problem does this PR solve?

When using LLM for auto-tag, if there are no examples, the tag format
generated by LLM may be wrong. This will cause Elasticsearch insert
errors. Adding basic examples can avoid this problem.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 17:30:47 +08:00
42e89e4a92 Fix: swich follow interact issue. (#6279)
### What problem does this PR solve?

#6188

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 17:30:12 +08:00
8daec9a4c5 Feat: Alter TreeView component #3221 (#6272)
### What problem does this PR solve?

Feat: Alter TreeView component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-19 15:44:59 +08:00
53ac27c3ff Feat: support agent version history. (#6130)
### What problem does this PR solve?
Add history version save
- Allows users to view and download agent files by version revision
history

![image](https://github.com/user-attachments/assets/c300375d-8b97-4230-9fc4-83d148137132)

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-19 15:22:53 +08:00
e689532e6e Fix: long api key issue. (#6267)
### What problem does this PR solve?

#6248

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 13:30:40 +08:00
c2302abaf1 Fix: remove dup ids for APIs. (#6263)
### What problem does this PR solve?

#6234

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 13:10:59 +08:00
8157285a79 Fix: Nan response for retrieval component. (#6265)
### What problem does this PR solve?

#6247

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 13:10:45 +08:00
c6e1a2ca8a Feat: add TTS support for SILICONFLOW. (#6264)
### What problem does this PR solve?

#6244

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-19 12:52:12 +08:00
41e112294b Fix: let parsing continue. (#6259)
### What problem does this PR solve?

#6229

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 12:18:19 +08:00
49086964b8 Fix: type violations. (#6262)
### What problem does this PR solve?

#6238
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 12:12:34 +08:00
dd81c30976 Fix: tag_feas deletion error. (#6257)
### What problem does this PR solve?

#6218

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 11:25:11 +08:00
1d8daad223 Fix: read flow blank template strings from i18n file (#6240)
### What problem does this PR solve?

Blank and createFromNothing were not read from the i18n file when Agent
was created
创建Agent的时候 Blank 和 createFromNothing  没从i18n文件中读取

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-19 10:56:35 +08:00
f540559c41 Miscellaneous updates (#6245)
### What problem does this PR solve?


### Type of change


- [x] Documentation Update
2025-03-18 19:49:06 +08:00
d16033dd2c Fix: #5719 Added type check for parser_config (#6243)
### What problem does this PR solve?

Fix #5719 
Add data type validation for parser_config

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 18:40:06 +08:00
7eb417b24f Fix: Nan issue. (#6242)
### What problem does this PR solve?

#6065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 17:58:54 +08:00
9515ed401f Test: Added test cases for Parse Documents HTTP API (#6235)
### What problem does this PR solve?

cover [parse
documents](https://ragflow.io/docs/dev/http_api_reference#parse-documents)
endpoints

### Type of change

- [x] add test cases
2025-03-18 17:39:24 +08:00
f982771131 Fix: empty retrieval kb ids. (#6236)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 17:39:10 +08:00
a087d13ccb Feat: text file support position retaining. (#6231)
### What problem does this PR solve?

#5832

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-18 16:55:11 +08:00
6e5cbd0196 Feat: Alter TransferList props #3221 (#6226)
### What problem does this PR solve?

Feat: Alter TransferList props #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-18 16:07:49 +08:00
6e8d0e3177 Fix: rank feat issue. (#6225)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 16:07:29 +08:00
5cf610af40 Feat: add vision LLM PDF parser (#6173)
### What problem does this PR solve?

Add vision LLM PDF parser

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-18 14:52:20 +08:00
897fe85b5c Fix: add support for non-stream response with session.ask_without_stream (#6207)
Add support for non-stream response with session.ask_without_stream and
fix a typo mistake in python API doc
There are requirements for non-stream response, especially for commands
exection, e.g. text2SQL. The commands have to be completed before the
agent is triggered.

### What problem does this PR solve?

It's to fix the [Issue:
6206](https://github.com/infiniflow/ragflow/issues/6206)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):

---------

Co-authored-by: Howard WU <yuanhao.wu@ifudata.com>
Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-03-18 14:20:19 +08:00
57cbefa589 Feat: Add TreeView component #3221 (#6214)
### What problem does this PR solve?

Feat: Add TreeView component #3221

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-18 14:03:12 +08:00
09291db805 Fix: miss url path. (#6211)
### What problem does this PR solve?

#6210

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 14:02:57 +08:00
e9a6675c40 Fix: enable ollama api-key. (#6205)
### What problem does this PR solve?

#6189

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 13:37:34 +08:00
1333d3c02a Fix: float transfer exception. (#6197)
### What problem does this PR solve?

#6177

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 11:13:44 +08:00
222a2c8fa5 Docs: rm max token (#6202)
### What problem does this PR solve?

#6178

### Type of change

- [x] Documentation Update
2025-03-18 11:13:24 +08:00
5841aa8189 Docs: remove max tokens. (#6198)
### What problem does this PR solve?

#6178

### Type of change

- [x] Documentation Update
2025-03-18 11:05:06 +08:00
1b9f63f799 Fix: doc deletion failure with invalid docid. (#6194)
### What problem does this PR solve?

#6174

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 10:44:50 +08:00
1b130546f8 Fix: NaN data error. (#6192)
### What problem does this PR solve?

#6065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 10:23:29 +08:00
7e4d693054 Fix: in case response.choices[0].message.content is None. (#6190)
### What problem does this PR solve?

#6164

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-18 10:00:27 +08:00
b0b4b7ba33 Feat: Improve Recognizer.py performance (#6185)
### What problem does this PR solve?

For the create_inputs method based on np operation to replace for loop

### Type of change

- [x] Performance Improvement
2025-03-18 09:39:49 +08:00
d0eda83697 Fix: none item while concating df. (#6176)
### What problem does this PR solve?

#6065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-17 18:17:25 +08:00
503e5829bb Test: Added test cases for Delete Documents HTTP API (#6175)
### What problem does this PR solve?

cover [delete
documents](https://ragflow.io/docs/dev/http_api_reference#delete-documents)
endpoints

### Type of change

- [x] add test cases
2025-03-17 18:17:03 +08:00
79482ff672 Refa: Improve ppt_parser better handle list (#6162)
### What problem does this PR solve?
This pull request (PR) incorporates codes for parsing PPTX files, aiming
to more precisely depict text in list formats (hint list by .).

### Type of change

- [ ] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [x] Refactoring
- [ ] Performance Improvement
- [ ] Other (please describe):
2025-03-17 17:02:39 +08:00
3a99c2b5f4 Refa: PARALLEL_DEVICES is a static parameter. (#6168)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-03-17 16:49:54 +08:00
45fe02c8b3 Test: update test cases per pr #6144 (#6166)
### What problem does this PR solve?

fix check point per pr #6144 

### Type of change

- [x] update test case
2025-03-17 16:49:34 +08:00
2c3c4274be Fix: Correct parameter retrieval in thumbup api (#6114)
### What problem does this PR solve?

https://github.com/infiniflow/ragflow/issues/5546

up_down was using req.get("set") to retrieve the parameter, but
according to the frontend code, it should be req.get("thumbup").



![image](https://github.com/user-attachments/assets/7189c982-f80e-48c9-a0a3-40f8a5d9e47b)



1842ca0334/web/src/interfaces/request/chat.ts (L3)


1842ca0334/api/apps/conversation_app.py (L327)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: zhaozhicheng <zhicheng.zhao@fastonetech.com>
2025-03-17 16:02:53 +08:00
501c017a26 Test: Added test cases for List Documents HTTP API (#6158)
### What problem does this PR solve?

cover [list
documents](https://ragflow.io/docs/dev/http_api_reference#list-documents)
endpoints

### Type of change

- [x] add test cases
2025-03-17 15:36:57 +08:00
d36420a87a Test: fix expected value validation for list dataset endpoint (#6160)
### What problem does this PR solve?

fix function is_sort() usage error

### Type of change

- [ ] update test cases
2025-03-17 15:36:48 +08:00
5983803c8b Miscellaneous UI updates (#6094)
### What problem does this PR solve?

#6049 

### Type of change

- [x] Documentation Update
- [x] Other (please describe): UI updates
2025-03-17 14:17:34 +08:00
fabc5e9259 Refa: fix re-rank scope. (#6152)
### What problem does this PR solve?

#6140

### Type of change


- [x] Refactoring
2025-03-17 13:26:29 +08:00
5748d58c74 Refa: refine the error message. (#6151)
### What problem does this PR solve?

#6138

### Type of change

- [x] Refactoring
2025-03-17 13:07:22 +08:00
bfa8d342b3 Fix: retrieval debug mode issue. (#6150)
### What problem does this PR solve?

#6139

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-17 13:07:13 +08:00
37f3486483 Fix: validation of readonly fields. (#6144)
### What problem does this PR solve?

#6104

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-17 12:22:49 +08:00
3e19044dee Feat: add OCR's muti-gpus and parallel processing support (#5972)
### What problem does this PR solve?

Add OCR's muti-gpus and parallel processing support

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

@yuzhichang I've tried to resolve the comments in #5697. OCR jobs can
now be done on both CPU and GPU. ( By the way, I've encountered a
“Generate embedding error” issue #5954 that might be due to my outdated
GPUs? idk. ) Please review it and give me suggestions.

GPU:

![gpu_ocr](https://github.com/user-attachments/assets/0ee2ecfb-a665-4e50-8bc7-15941b9cd80e)

![smi](https://github.com/user-attachments/assets/a2312f8c-cf24-443d-bf89-bec50503546d)

CPU:

![cpu_ocr](https://github.com/user-attachments/assets/1ba6bb0b-94df-41ea-be79-790096da4bf1)
2025-03-17 11:58:40 +08:00
8495036ff9 Feat: Limit view with more knowledge when list knowledge so many (#6093)
### What problem does this PR solve?

Limit view with more knowledge when list knowledge so many.

### Type of change

- [x] Refactoring
2025-03-17 10:50:25 +08:00
7f701a5756 Test: update test cases per pr #6095 to fix issue #6039 (#6143)
### What problem does this PR solve?

update test case per pr #6095 to fix issue #6039

### Type of change

- [x] update test case
2025-03-17 10:49:40 +08:00
634e7a41c5 Doc: Update readme document (#6052)
### What problem does this PR solve?

Added GPU startup script in the readme document

### Type of change

- [x] Documentation Update
2025-03-17 09:51:13 +08:00
d1d651080a Test: Added test cases for Update Documents HTTP API (#6106)
### What problem does this PR solve?

cover [update documents
endpoints](https://ragflow.io/docs/dev/http_api_reference#update-document)

### Type of change

- [x] add test cases
2025-03-17 09:36:32 +08:00
0fa44c5dd3 Fix: update link of deploy_local_llm.mdx (#6110)
### What problem does this PR solve?

Links of [How to integrate with
Ollama](https://github.com/infiniflow/ragflow/blob/main/docs/guides/models/deploy_local_llm.mdx)
need to be update after #5555

```
https://github.com/infiniflow/ragflow/blob/main/docs/guides/deploy_local_llm.mdx
->
https://github.com/infiniflow/ragflow/blob/main/docs/guides/models/deploy_local_llm.mdx
```



### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: jingfelix <jingfelix@outlook.com>
2025-03-17 09:35:37 +08:00
89a69eed72 Introduced task priority (#6118)
### What problem does this PR solve?

Introduced task priority

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 23:43:46 +08:00
1842ca0334 Fix: Fixed the issue that events cannot be triggered after the shadcn-ui dialog is closed #3221. (#6108)
### What problem does this PR solve?

Fix: Fixed the issue that events cannot be triggered after the shadcn-ui
dialog is closed #3221.

Refer to [Combobox in a form in a dialog isn't working.
#1748](https://github.com/shadcn-ui/ui/issues/1748#issuecomment-2720130543)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 17:36:24 +08:00
e5a8b23684 Fix: empty tag field issue. (#6103)
### What problem does this PR solve?

#6102

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 17:35:57 +08:00
4fffee6695 Regards kb_id at ElasticSearch insert, update, delete. (#6105)
### What problem does this PR solve?

Regards kb_id at ElasticSearch insert, update, delete. Close #6066

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 17:34:02 +08:00
485bc7d7d6 Fix: limit the depth of DFS (#6101)
### What problem does this PR solve?

#6085

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 17:10:38 +08:00
b5ba8b783a Refa: enlarge http body size. (#6100)
### What problem does this PR solve?



### Type of change


- [x] Refactoring
2025-03-14 16:47:39 +08:00
d7774cf049 Fix: fix document concurrent upload issue (#6095)
### What problem does this PR solve?

Resolve document concurrent upload issue. #6039 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 16:31:44 +08:00
9d94acbedb Fix: Knowledge base page cannot upload folders #6062 (#6096)
### What problem does this PR solve?

Fix: Knowledge base page cannot upload folders #6062

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 16:17:10 +08:00
b77e844fc3 Fix: none parse_config updating. (#6092)
### What problem does this PR solve?

#6081

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 16:06:16 +08:00
a6ab2c71c3 Refa: enlarge default max request body size. (#6088)
### What problem does this PR solve?


### Type of change


- [x] Refactoring
2025-03-14 15:21:08 +08:00
5c8ad6702a Fix: check the file name length. (#6083)
### What problem does this PR solve?

#6060

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 15:01:37 +08:00
f0601afa75 Doc: update launch from source. (#6074)
### What problem does this PR solve?

#6050

### Type of change

- [x] Documentation Update

---------

Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
2025-03-14 14:20:18 +08:00
56e984f657 Fix: Prevent password boxes other than login passwords from displaying passwords saved in the browser's password manager by default. #6033 (#6084)
### What problem does this PR solve?

Fix: Prevent password boxes other than login passwords from displaying
passwords saved in the browser's password manager by default. #6033

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 14:15:43 +08:00
5d75b6be62 Fix executor name (#6080)
### What problem does this PR solve?

Fix executor name

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 14:13:47 +08:00
12c3023a22 Fix: remove NaN output of components. (#6079)
### What problem does this PR solve?

#6065

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 13:58:42 +08:00
56b228f187 Refa: remove max toekns for image2txt models. (#6078)
### What problem does this PR solve?

#6063

### Type of change


- [x] Refactoring
2025-03-14 13:51:45 +08:00
42eb99554f Feat: add token comsumption & speed to little lamp. (#6077)
### What problem does this PR solve?

#6059

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 13:37:31 +08:00
c85b468b8d Feat: Change “Document parser” to "PDF parser" #6072 (#6073)
### What problem does this PR solve?

Feat: Change “Document parser” to "PDF parser" #6072

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 12:03:35 +08:00
7463241896 Fix: empty doc id validation. (#6064)
### What problem does this PR solve?

#6031

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 11:45:44 +08:00
c00def5b71 Fix 6030 (#6070)
### What problem does this PR solve?

Close #6030 

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-14 11:29:22 +08:00
f16418ccf7 Feat: Add deepseek to llm_factories (#6051)
### What problem does this PR solve?

AWS Bedrock has made deepseek-r1 available on its serverless inference.

This adds the R1 serverless model for use via the bedrock model
abilities.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-03-14 10:35:44 +08:00
2d4a60cae6 Fix: Reduce excessive IO operations by loading LLM factory configurations (#6047)
…ions

### What problem does this PR solve?

This PR fixes an issue where the application was repeatedly reading the
llm_factories.json file from disk in multiple places, which could lead
to "Too many open files" errors under high load conditions. The fix
centralizes the file reading operation in the settings.py module and
stores the data in a global variable that can be accessed by other
modules.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [ ] New Feature (non-breaking change which adds functionality)
- [ ] Documentation Update
- [ ] Refactoring
- [x] Performance Improvement
- [ ] Other (please describe):
2025-03-14 09:54:38 +08:00
47926f7d21 Improve API Documentation, Standardize Error Handling, and Enhance Comments (#5990)
### What problem does this PR solve?  
- The API documentation lacks detailed error code explanations. Added
error code tables to `python_api_reference.md` and
`http_api_reference.md` to clarify possible error codes and their
meanings.
- Error handling in the codebase is inconsistent. Standardized error
handling logic in `sdk/python/ragflow_sdk/modules/chunk.py`.
- Improved API comments by adding standardized docstrings to enhance
code readability and maintainability.

### Type of change  
- [x] Documentation Update  
- [x] Refactoring
2025-03-13 19:06:50 +08:00
940072592f Fix: chat_completion answer data incorrect (#6041)
### What problem does this PR solve?

fix chat_completion answer data incorrect

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Co-authored-by: renqi <renqi08266@fxomail.com>
2025-03-13 18:59:59 +08:00
4ff609b6a8 Fix: optimize OCR garbage identification to reduce unnecessary filtering (#6027)
### What problem does this PR solve?

Optimize OCR garbage identification to reduce unnecessary filtering.
#5713

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-03-13 18:48:32 +08:00
0a877941f4 Test: Added test cases for Download Documents HTTP API (#6032)
### What problem does this PR solve?

cover [download docments
endpoints](https://ragflow.io/docs/dev/http_api_reference#download-document)

### Type of change

- [x] add test cases
2025-03-13 18:32:57 +08:00
328 changed files with 19985 additions and 6747 deletions

View File

@ -1,7 +1,7 @@
name: Bug Report
name: "🐞 Bug Report"
description: Create a bug issue for RAGFlow
title: "[Bug]: "
labels: [bug]
labels: ["🐞 bug"]
body:
- type: checkboxes
attributes:

View File

@ -1,10 +0,0 @@
---
name: Feature request
title: '[Feature Request]: '
about: Suggest an idea for RAGFlow
labels: ''
---
**Summary**
Description for this feature.

View File

@ -1,7 +1,7 @@
name: Feature request
name: "💞 Feature request"
description: Propose a feature request for RAGFlow.
title: "[Feature Request]: "
labels: [feature request]
labels: ["💞 feature"]
body:
- type: checkboxes
attributes:

View File

@ -1,7 +1,7 @@
name: Question
name: "🙋‍♀️ Question"
description: Ask questions on RAGFlow
title: "[Question]: "
labels: [question]
labels: ["🙋‍♀️ question"]
body:
- type: checkboxes
attributes:

View File

@ -51,7 +51,7 @@ jobs:
uses: astral-sh/ruff-action@v2
with:
version: ">=0.8.2"
args: "check --ignore E402"
args: "check"
- name: Build ragflow:nightly-slim
run: |
@ -145,7 +145,7 @@ jobs:
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_http_api && pytest -s --tb=short -m "not slow"
cd sdk/python && uv sync --python 3.10 --frozen && uv pip install . && source .venv/bin/activate && cd test/test_http_api && DOC_ENGINE=infinity pytest -s --tb=short -m "not slow"
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed

View File

@ -21,9 +21,7 @@ RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/huggingface.co
if [ "$LIGHTEN" != "1" ]; then \
(tar -cf - \
/huggingface.co/BAAI/bge-large-zh-v1.5 \
/huggingface.co/BAAI/bge-reranker-v2-m3 \
/huggingface.co/maidalun1020/bce-embedding-base_v1 \
/huggingface.co/maidalun1020/bce-reranker-base_v1 \
| tar -xf - --strip-components=2 -C /root/.ragflow) \
fi
@ -46,7 +44,8 @@ ENV DEBIAN_FRONTEND=noninteractive
# Building C extensions: libpython3-dev libgtk-4-1 libnss3 xdg-utils libgbm-dev
RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
if [ "$NEED_MIRROR" == "1" ]; then \
sed -i 's|http://archive.ubuntu.com|https://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list; \
sed -i 's|http://ports.ubuntu.com|http://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list; \
sed -i 's|http://archive.ubuntu.com|http://mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list; \
fi; \
rm -f /etc/apt/apt.conf.d/docker-clean && \
echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache && \
@ -199,9 +198,10 @@ COPY agent agent
COPY graphrag graphrag
COPY agentic_reasoning agentic_reasoning
COPY pyproject.toml uv.lock ./
COPY mcp mcp
COPY docker/service_conf.yaml.template ./conf/service_conf.yaml.template
COPY docker/entrypoint.sh docker/entrypoint-parser.sh ./
COPY docker/entrypoint.sh ./
RUN chmod +x ./entrypoint*.sh
# Copy compiled web pages

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.2-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.2">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -36,7 +36,7 @@
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -78,12 +78,10 @@ Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Latest Updates
- 2025-03-19 Supports using a multi-modal model to make sense of images within PDF or DOCX files.
- 2025-02-28 Combined with Internet search (Tavily), supports reasoning like Deep Research for any LLMs.
- 2025-02-05 Updates the model list of 'SILICONFLOW' and adds support for Deepseek-R1/DeepSeek-V3.
- 2025-01-26 Optimizes knowledge graph extraction and application, offering various configuration options.
- 2024-12-18 Upgrades Document Layout Analysis model in DeepDoc.
- 2024-12-04 Adds support for pagerank score in knowledge base.
- 2024-11-22 Adds more variables to Agent.
- 2024-11-01 Adds keyword extraction and related question generation to the parsed chunks to improve the accuracy of retrieval.
- 2024-08-22 Support text to SQL statements through RAG.
@ -178,17 +176,21 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.17.2-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.17.2-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2` for the full edition `v0.17.2`.
> The command below downloads the `v0.18.0-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.18.0-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` for the full edition `v0.18.0`.
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.17.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.2-slim | &approx;2 | ❌ | Stable release |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -276,7 +278,7 @@ This image is approximately 2 GB in size and relies on external LLM and embeddin
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Build a Docker image including embedding models
@ -286,7 +288,7 @@ This image is approximately 9 GB in size. As it includes embedding models, it re
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Launch service from source for development
@ -349,9 +351,12 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📚 Documentation
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
@ -359,7 +364,7 @@ See the [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214
## 🏄 Community
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.2-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.2">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -36,7 +36,7 @@
<a href="https://ragflow.io/docs/dev/">Dokumentasi</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Peta Jalan</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -75,12 +75,10 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Pembaruan Terbaru
- 2025-03-19 Mendukung penggunaan model multi-modal untuk memahami gambar di dalam file PDF atau DOCX.
- 2025-02-28 dikombinasikan dengan pencarian Internet (TAVILY), mendukung penelitian mendalam untuk LLM apa pun.
- 2025-02-05 Memperbarui daftar model 'SILICONFLOW' dan menambahkan dukungan untuk Deepseek-R1/DeepSeek-V3.
- 2025-01-26 Optimalkan ekstraksi dan penerapan grafik pengetahuan dan sediakan berbagai opsi konfigurasi.
- 2024-12-18 Meningkatkan model Analisis Tata Letak Dokumen di DeepDoc.
- 2024-12-04 Mendukung skor pagerank ke basis pengetahuan.
- 2024-11-22 Peningkatan definisi dan penggunaan variabel di Agen.
- 2024-11-01 Penambahan ekstraksi kata kunci dan pembuatan pertanyaan terkait untuk meningkatkan akurasi pengambilan.
- 2024-08-22 Dukungan untuk teks ke pernyataan SQL melalui RAG.
@ -171,19 +169,23 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.17.2-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.17.2-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2 untuk edisi lengkap v0.17.2.
> Perintah di bawah ini mengunduh edisi v0.18.0-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.18.0-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0 untuk edisi lengkap v0.18.0.
```bash
$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d
```
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.17.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.2-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
1. Periksa status server setelah server aktif dan berjalan:
@ -242,7 +244,7 @@ Image ini berukuran sekitar 2 GB dan bergantung pada aplikasi LLM eksternal dan
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Membangun Docker Image Termasuk Model Embedding
@ -252,7 +254,7 @@ Image ini berukuran sekitar 9 GB. Karena sudah termasuk model embedding, ia hany
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Menjalankan Aplikasi dari untuk Pengembangan
@ -315,9 +317,12 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📚 Dokumentasi
- [Quickstart](https://ragflow.io/docs/dev/)
- [Panduan Pengguna](https://ragflow.io/docs/dev/category/guides)
- [Referensi](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
@ -325,7 +330,7 @@ Lihat [Roadmap RAGFlow 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Komunitas
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.2-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.2">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -36,7 +36,7 @@
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -55,12 +55,10 @@
## 🔥 最新情報
- 2025-03-19 PDFまたはDOCXファイル内の画像を理解するために、多モーダルモデルを使用することをサポートします。
- 2025-02-28 インターネット検索 (TAVILY) と組み合わせて、あらゆる LLM の詳細な調査をサポートします。
- 2025-02-05 シリコン フローの St およびモデル リストを更新し、Deep Seek-R1/Deep Seek-V3 のサポートを追加しました。
- 2025-01-26 ナレッジ グラフの抽出と適用を最適化し、さまざまな構成オプションを提供します。
- 2024-12-18 DeepDoc のドキュメント レイアウト分析モデルをアップグレードします。
- 2024-12-04 ナレッジ ベースへのページランク スコアをサポートしました。
- 2024-11-22 エージェントでの変数の定義と使用法を改善しました。
- 2024-11-01 再現の精度を向上させるために、解析されたチャンクにキーワード抽出と関連質問の生成を追加しました。
- 2024-08-22 RAG を介して SQL ステートメントへのテキストをサポートします。
@ -151,17 +149,21 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.17.2-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.17.2-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.17.2 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.18.0-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.18.0-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.18.0 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0 と設定します。
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.17.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.2-slim | &approx;2 | ❌ | Stable release |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -238,7 +240,7 @@ RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトル
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 ソースコードをコンパイルした Docker イメージ(埋め込みモデルを含む)
@ -248,7 +250,7 @@ docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-s
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 ソースコードからサービスを起動する方法
@ -311,9 +313,12 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📚 ドキュメンテーション
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 ロードマップ
@ -321,7 +326,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🏄 コミュニティ
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.2-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.2">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -36,7 +36,7 @@
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -55,13 +55,10 @@
## 🔥 업데이트
- 2025-03-19 PDF 또는 DOCX 파일 내의 이미지를 이해하기 위해 다중 모드 모델을 사용하는 것을 지원합니다.
- 2025-02-28 인터넷 검색(TAVILY)과 결합되어 모든 LLM에 대한 심층 연구를 지원합니다.
- 2025-02-05 'SILICONFLOW' 모델 목록을 업데이트하고 Deepseek-R1/DeepSeek-V3에 대한 지원을 추가합니다.
- 2025-01-26 지식 그래프 추출 및 적용을 최적화하고 다양한 구성 옵션을 제공합니다.
- 2024-12-18 DeepDoc의 문서 레이아웃 분석 모델 업그레이드.
- 2024-12-04 지식베이스에 대한 페이지랭크 점수를 지원합니다.
- 2024-11-22 에이전트의 변수 정의 및 사용을 개선했습니다.
- 2024-11-01 파싱된 청크에 키워드 추출 및 관련 질문 생성을 추가하여 재현율을 향상시킵니다.
- 2024-08-22 RAG를 통해 SQL 문에 텍스트를 지원합니다.
@ -152,17 +149,21 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.17.2-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.17.2-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.17.2을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.18.0-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.18.0-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.18.0을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0로 설정합니다.
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.17.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.2-slim | &approx;2 | ❌ | Stable release |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -238,7 +239,7 @@ RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 소스 코드로 Docker 이미지를 컴파일합니다(임베딩 모델 포함)
@ -248,7 +249,7 @@ docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-s
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 소스 코드로 서비스를 시작합니다.
@ -311,9 +312,12 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📚 문서
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 로드맵
@ -321,7 +325,7 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 🏄 커뮤니티
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.2-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.2">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -36,7 +36,7 @@
<a href="https://ragflow.io/docs/dev/">Documentação</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -75,12 +75,10 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
## 🔥 Últimas Atualizações
- 28/02/2025 combinado com a pesquisa na Internet (T AVI LY), suporta pesquisas profundas para qualquer LLM.
- 05-02-2025 Atualiza a lista de modelos de 'SILICONFLOW' e adiciona suporte para Deepseek-R1/DeepSeek-V3.
- 19-03-2025 Suporta o uso de um modelo multi-modal para entender imagens dentro de arquivos PDF ou DOCX.
- 28-02-2025 combinado com a pesquisa na Internet (T AVI LY), suporta pesquisas profundas para qualquer LLM.
- 26-01-2025 Otimize a extração e aplicação de gráficos de conhecimento e forneça uma variedade de opções de configuração.
- 18-12-2024 Atualiza o modelo de Análise de Layout de Documentos no DeepDoc.
- 04-12-2024 Adiciona suporte para pontuação de pagerank na base de conhecimento.
- 22-11-2024 Adiciona mais variáveis para o Agente.
- 01-11-2024 Adiciona extração de palavras-chave e geração de perguntas relacionadas aos blocos analisados para melhorar a precisão da recuperação.
- 22-08-2024 Suporta conversão de texto para comandos SQL via RAG.
@ -171,17 +169,21 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.17.2-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.17.2-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2` para a edição completa `v0.17.2`.
> O comando abaixo baixa a edição `v0.18.0-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.18.0-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` para a edição completa `v0.18.0`.
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.17.2 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.17.2-slim | ~2 | ❌ | Lançamento estável |
| v0.18.0 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.18.0-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
@ -261,7 +263,7 @@ Esta imagem tem cerca de 2 GB de tamanho e depende de serviços externos de LLM
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Criar uma imagem Docker incluindo modelos de incorporação
@ -271,7 +273,7 @@ Esta imagem tem cerca de 9 GB de tamanho. Como inclui modelos de incorporação,
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 Lançar o serviço a partir do código-fonte para desenvolvimento
@ -335,10 +337,13 @@ docker build -f Dockerfile -t infiniflow/ragflow:nightly .
## 📚 Documentação
- [Início rápido](https://ragflow.io/docs/dev/)
- [Guia do usuário](https://ragflow.io/docs/dev/category/guides)
- [Referências](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [Quickstart](https://ragflow.io/docs/dev/)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 Roadmap
@ -346,7 +351,7 @@ Veja o [RAGFlow Roadmap 2025](https://github.com/infiniflow/ragflow/issues/4214)
## 🏄 Comunidade
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/NjYzJD3GM3)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)

View File

@ -21,7 +21,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.2-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.2">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -35,7 +35,7 @@
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -54,12 +54,10 @@
## 🔥 近期更新
- 2025-03-19 PDF和DOCX中的圖支持用多模態大模型去解析得到描述.
- 2025-02-28 結合網路搜尋Tavily對於任意大模型實現類似 Deep Research 的推理功能.
- 2025-02-05 更新「SILICONFLOW」的型號清單並新增 Deepseek-R1/DeepSeek-V3 的支援。
- 2025-01-26 最佳化知識圖譜的擷取與應用,提供了多種配置選擇。
- 2024-12-18 升級了 DeepDoc 的文檔佈局分析模型。
- 2024-12-04 支援知識庫的 Pagerank 分數。
- 2024-11-22 完善了 Agent 中的變數定義和使用。
- 2024-11-01 對解析後的 chunk 加入關鍵字抽取和相關問題產生以提高回想的準確度。
- 2024-08-22 支援用 RAG 技術實現從自然語言到 SQL 語句的轉換。
@ -150,17 +148,21 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.17.2-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.17.2-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2` 來下載 RAGFlow 鏡像的 `v0.17.2` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.18.0-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.18.0-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` 來下載 RAGFlow 鏡像的 `v0.18.0` 完整發行版。
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.17.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.2-slim | &approx;2 | ❌ | Stable release |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -249,7 +251,7 @@ RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 原始碼編譯 Docker 映像(包含 embedding 模型)
@ -259,7 +261,7 @@ docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t in
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以原始碼啟動服務
@ -325,9 +327,12 @@ npm install
## 📚 技術文檔
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 路線圖
@ -335,7 +340,7 @@ npm install
## 🏄 開源社群
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/zd4qPW6t)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.17.2-brightgreen" alt="docker pull infiniflow/ragflow:v0.17.2">
<img src="https://img.shields.io/badge/docker_pull-ragflow:v0.18.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.18.0">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -36,7 +36,7 @@
<a href="https://ragflow.io/docs/dev/">Document</a> |
<a href="https://github.com/infiniflow/ragflow/issues/4214">Roadmap</a> |
<a href="https://twitter.com/infiniflowai">Twitter</a> |
<a href="https://discord.gg/4XxujFgUN7">Discord</a> |
<a href="https://discord.gg/NjYzJD3GM3">Discord</a> |
<a href="https://demo.ragflow.io">Demo</a>
</h4>
@ -55,12 +55,10 @@
## 🔥 近期更新
- 2025-03-19 PDF和DOCX中的图支持用多模态大模型去解析得到描述.
- 2025-02-28 结合互联网搜索Tavily对于任意大模型实现类似 Deep Research 的推理功能.
- 2025-02-05 更新硅基流动的模型列表,增加了对 Deepseek-R1/DeepSeek-V3 的支持。
- 2025-01-26 优化知识图谱的提取和应用,提供了多种配置选择。
- 2024-12-18 升级了 DeepDoc 的文档布局分析模型。
- 2024-12-04 支持知识库的 Pagerank 分数。
- 2024-11-22 完善了 Agent 中的变量定义和使用。
- 2024-11-01 对解析后的 chunk 加入关键词抽取和相关问题生成以提高召回的准确度。
- 2024-08-22 支持用 RAG 技术实现从自然语言到 SQL 语句的转换。
@ -151,17 +149,21 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.17.2-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.17.2-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2` 来下载 RAGFlow 镜像的 `v0.17.2` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.18.0-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.18.0-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0` 来下载 RAGFlow 镜像的 `v0.18.0` 完整发行版。
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.17.2 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.17.2-slim | &approx;2 | ❌ | Stable release |
| v0.18.0 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.18.0-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
@ -250,7 +252,7 @@ RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
docker build --platform linux/amd64 --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 源码编译 Docker 镜像(包含 embedding 模型)
@ -260,7 +262,7 @@ docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t in
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以源代码启动服务
@ -286,12 +288,11 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
docker compose -f docker/docker-compose-base.yml up -d
```
在 `/etc/hosts` 中添加以下代码,将 **conf/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
在 `/etc/hosts` 中添加以下代码,目的是将 **conf/service_conf.yaml** 文件中的所有 host 地址都解析为 `127.0.0.1`
```
127.0.0.1 es01 infinity mysql minio redis
```
4. 如果无法访问 HuggingFace可以把环境变量 `HF_ENDPOINT` 设成相应的镜像站点:
```bash
@ -320,13 +321,21 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
_以下界面说明系统已经成功启动_
![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)
8. 开发完成后停止 RAGFlow 服务
停止 RAGFlow 前端和后端服务:
```bash
pkill -f "ragflow_server.py|task_executor.py"
```
## 📚 技术文档
- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/guides)
- [Configuration](https://ragflow.io/docs/dev/configurations)
- [Release notes](https://ragflow.io/docs/dev/release_notes)
- [User guides](https://ragflow.io/docs/dev/category/guides)
- [Developer guides](https://ragflow.io/docs/dev/category/developers)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)
- [FAQs](https://ragflow.io/docs/dev/faq)
## 📜 路线图
@ -334,7 +343,7 @@ docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:night
## 🏄 开源社区
- [Discord](https://discord.gg/4XxujFgUN7)
- [Discord](https://discord.gg/zd4qPW6t)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)

View File

@ -235,7 +235,7 @@ class Canvas:
pid = self.components[cid]["parent_id"]
o, _ = self.components[cid]["obj"].output(allow_partial=False)
oo, _ = self.components[pid]["obj"].output(allow_partial=False)
self.components[pid]["obj"].set(pd.concat([oo, o], ignore_index=True))
self.components[pid]["obj"].set_output(pd.concat([oo, o], ignore_index=True).dropna())
downstream = [pid]
for m in prepare2run(downstream):
@ -252,20 +252,20 @@ class Canvas:
if loop:
raise OverflowError(f"Too much loops: {loop}")
downstream = []
if cpn["obj"].component_name.lower() in ["switch", "categorize", "relevant"]:
switch_out = cpn["obj"].output()[1].iloc[0, 0]
assert switch_out in self.components, \
"{}'s output: {} not valid.".format(cpn_id, switch_out)
for m in prepare2run([switch_out]):
yield {"content": m, "running_status": True}
continue
downstream = [switch_out]
else:
downstream = cpn["downstream"]
downstream = cpn["downstream"]
if not downstream and cpn.get("parent_id"):
pid = cpn["parent_id"]
_, o = cpn["obj"].output(allow_partial=False)
_, oo = self.components[pid]["obj"].output(allow_partial=False)
self.components[pid]["obj"].set_output(pd.concat([oo.dropna(axis=1), o.dropna(axis=1)], ignore_index=True))
self.components[pid]["obj"].set_output(pd.concat([oo.dropna(axis=1), o.dropna(axis=1)], ignore_index=True).dropna())
downstream = [pid]
for m in prepare2run(downstream):

View File

@ -384,6 +384,11 @@ class ComponentBase(ABC):
"params": {}
}
"""
out = getattr(self._param, self._param.output_var_name)
if isinstance(out, pd.DataFrame) and "chunks" in out:
del out["chunks"]
setattr(self._param, self._param.output_var_name, out)
return """{{
"component_name": "{}",
"params": {},
@ -396,6 +401,8 @@ class ComponentBase(ABC):
)
def __init__(self, canvas, id, param: ComponentParamBase):
from agent.canvas import Canvas # Local import to avoid cyclic dependency
assert isinstance(canvas, Canvas), "canvas must be an instance of Canvas"
self._canvas = canvas
self._id = id
self._param = param
@ -429,7 +436,7 @@ class ComponentBase(ABC):
if not isinstance(o, partial):
if not isinstance(o, pd.DataFrame):
if isinstance(o, list):
return self._param.output_var_name, pd.DataFrame(o)
return self._param.output_var_name, pd.DataFrame(o).dropna()
if o is None:
return self._param.output_var_name, pd.DataFrame()
return self._param.output_var_name, pd.DataFrame([{"content": str(o)}])
@ -437,15 +444,15 @@ class ComponentBase(ABC):
if allow_partial or not isinstance(o, partial):
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
return pd.DataFrame(o if isinstance(o, list) else [o])
return pd.DataFrame(o if isinstance(o, list) else [o]).dropna()
return self._param.output_var_name, o
outs = None
for oo in o():
if not isinstance(oo, pd.DataFrame):
outs = pd.DataFrame(oo if isinstance(oo, list) else [oo])
outs = pd.DataFrame(oo if isinstance(oo, list) else [oo]).dropna()
else:
outs = oo
outs = oo.dropna()
return self._param.output_var_name, outs
def reset(self):
@ -463,6 +470,8 @@ class ComponentBase(ABC):
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
up_cpns = self.get_upstream()
reversed_up_cpnts = [cpn for cpn in reversed_cpnts if cpn in up_cpns]
if self._param.query:
self._param.inputs = []
@ -484,7 +493,7 @@ class ComponentBase(ABC):
if q["component_id"].lower().find("answer") == 0:
txt = []
for r, c in self._canvas.history[::-1][:self._param.message_history_window_size][::-1]:
txt.append(f"{r.upper()}: {c}")
txt.append(f"{r.upper()}:{c}")
txt = "\n".join(txt)
self._param.inputs.append({"content": txt, "component_id": q["component_id"]})
outs.append(pd.DataFrame([{"content": txt}]))
@ -505,7 +514,7 @@ class ComponentBase(ABC):
upstream_outs = []
for u in reversed_cpnts[::-1]:
for u in reversed_up_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "concentrator"]:
continue
if self.component_name.lower() == "generate" and self.get_component_name(u) == "retrieval":
@ -545,7 +554,7 @@ class ComponentBase(ABC):
return df
def get_input_elements(self):
assert self._param.query, "Please identify input parameters firstly."
assert self._param.query, "Please verify the input parameters first."
eles = []
for q in self._param.query:
if q.get("component_id"):
@ -565,8 +574,10 @@ class ComponentBase(ABC):
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
up_cpns = self.get_upstream()
reversed_up_cpnts = [cpn for cpn in reversed_cpnts if cpn in up_cpns]
for u in reversed_cpnts[::-1]:
for u in reversed_up_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "answer"]:
continue
return self._canvas.get_component(u)["obj"].output()[1]
@ -584,3 +595,7 @@ class ComponentBase(ABC):
def get_parent(self):
pid = self._canvas.get_component(self._id)["parent_id"]
return self._canvas.get_component(pid)["obj"]
def get_upstream(self):
cpn_nms = self._canvas.get_component(self._id)['upstream']
return cpn_nms

View File

@ -50,26 +50,29 @@ class CategorizeParam(GenerateParam):
for c, desc in self.category_description.items():
if desc.get("description"):
descriptions.append(
"--------------------\nCategory: {}\nDescription: {}\n".format(c, desc["description"]))
"\nCategory: {}\nDescription: {}".format(c, desc["description"]))
self.prompt = """
You're a text classifier. You need to categorize the users questions into {} categories,
namely: {}
Here's description of each category:
{}
Role: You're a text classifier.
Task: You need to categorize the users questions into {} categories, namely: {}
You could learn from the following examples:
{}
You could learn from the above examples.
Just mention the category names, no need for any additional words.
Here's description of each category:
{}
---- Real Data ----
{}
You could learn from the following examples:
{}
You could learn from the above examples.
Requirements:
- Just mention the category names, no need for any additional words.
---- Real Data ----
USER: {}\n
""".format(
len(self.category_description.keys()),
"/".join(list(self.category_description.keys())),
"\n".join(descriptions),
"- ".join(cate_lines),
"\n\n- ".join(cate_lines),
chat_hist
)
return self.prompt
@ -85,9 +88,16 @@ class Categorize(Generate, ABC):
ans = chat_mdl.chat(self._param.get_prompt(input), [{"role": "user", "content": "\nCategory: "}],
self._param.gen_conf())
logging.debug(f"input: {input}, answer: {str(ans)}")
# Count the number of times each category appears in the answer.
category_counts = {}
for c in self._param.category_description.keys():
if ans.lower().find(c.lower()) >= 0:
return Categorize.be_output(self._param.category_description[c]["to"])
count = ans.lower().count(c.lower())
category_counts[c] = count
# If a category is found, return the category with the highest count.
if any(category_counts.values()):
max_category = max(category_counts.items(), key=lambda x: x[1])
return Categorize.be_output(self._param.category_description[max_category[0]]["to"])
return Categorize.be_output(list(self._param.category_description.items())[-1][1]["to"])

View File

@ -82,7 +82,10 @@ class Email(ComponentBase, ABC):
logging.info(f"Connecting to SMTP server {self._param.smtp_server}:{self._param.smtp_port}")
context = smtplib.ssl.create_default_context()
with smtplib.SMTP_SSL(self._param.smtp_server, self._param.smtp_port, context=context) as server:
with smtplib.SMTP(self._param.smtp_server, self._param.smtp_port) as server:
server.ehlo()
server.starttls(context=context)
server.ehlo()
# Login
logging.info(f"Attempting to login with email: {self._param.email}")
server.login(self._param.email, self._param.password)

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
from functools import partial
import pandas as pd
@ -74,29 +75,30 @@ class Generate(ComponentBase):
return list(cpnts)
def set_cite(self, retrieval_res, answer):
retrieval_res = retrieval_res.dropna(subset=["vector", "content_ltks"]).reset_index(drop=True)
if "empty_response" in retrieval_res.columns:
retrieval_res["empty_response"].fillna("", inplace=True)
chunks = json.loads(retrieval_res["chunks"][0])
answer, idx = settings.retrievaler.insert_citations(answer,
[ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
[ck["vector"] for _, ck in retrieval_res.iterrows()],
[ck["content_ltks"] for ck in chunks],
[ck["vector"] for ck in chunks],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()), tkweight=0.7,
vtweight=0.3)
doc_ids = set([])
recall_docs = []
for i in idx:
did = retrieval_res.loc[int(i), "doc_id"]
did = chunks[int(i)]["doc_id"]
if did in doc_ids:
continue
doc_ids.add(did)
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
recall_docs.append({"doc_id": did, "doc_name": chunks[int(i)]["docnm_kwd"]})
del retrieval_res["vector"]
del retrieval_res["content_ltks"]
for c in chunks:
del c["vector"]
del c["content_ltks"]
reference = {
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
"chunks": chunks,
"doc_aggs": recall_docs
}
@ -200,7 +202,7 @@ class Generate(ComponentBase):
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
if self._param.cite and "chunks" in retrieval_res.columns:
res = self.set_cite(retrieval_res, ans)
return pd.DataFrame([res])
@ -229,7 +231,7 @@ class Generate(ComponentBase):
answer = ans
yield res
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
if self._param.cite and "chunks" in retrieval_res.columns:
res = self.set_cite(retrieval_res, answer)
yield res

View File

@ -57,6 +57,7 @@ class KeywordExtract(Generate, ABC):
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": query}],
self._param.gen_conf())
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
ans = re.sub(r".*keyword:", "", ans).strip()
logging.debug(f"ans: {ans}")
return KeywordExtract.be_output(ans)

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
from abc import ABC
@ -24,6 +25,7 @@ from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.app.tag import label_question
from rag.prompts import kb_prompt
from rag.utils.tavily_conn import Tavily
@ -56,9 +58,6 @@ class Retrieval(ComponentBase, ABC):
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
lines = query.split('\n')
user_queries = [line.split("USER:", 1)[1] for line in lines if line.startswith("USER:")]
query = user_queries[-1] if user_queries else ""
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
return Retrieval.be_output("")
@ -66,19 +65,25 @@ class Retrieval(ComponentBase, ABC):
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
embd_mdl = None
if embd_nms:
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
if kbs:
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs))
if self._param.use_kg:
else:
kbinfos = {"chunks": [], "doc_aggs": []}
if self._param.use_kg and kbs:
ck = settings.kg_retrievaler.retrieval(query,
[kbs[0].tenant_id],
self._param.kb_ids,
@ -99,10 +104,8 @@ class Retrieval(ComponentBase, ABC):
df["empty_response"] = self._param.empty_response
return df
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
df = pd.DataFrame({"content": kb_prompt(kbinfos, 200000), "chunks": json.dumps(kbinfos["chunks"])})
logging.debug("{} {}".format(query, df))
return df
return df.dropna()

View File

@ -54,7 +54,7 @@ class Switch(ComponentBase, ABC):
for item in cond["items"]:
if not item["cpn_id"]:
continue
if item["cpn_id"].find("begin") >= 0:
if item["cpn_id"].lower().find("begin") >= 0 or item["cpn_id"].lower().find("answer") >= 0:
continue
cid = item["cpn_id"].split("@")[0]
res.append(cid)
@ -75,7 +75,7 @@ class Switch(ComponentBase, ABC):
res.append(self.process_operator(p.get("value",""), item["operator"], item.get("value", "")))
break
else:
out = self._canvas.get_component(cid)["obj"].output()[1]
out = self._canvas.get_component(cid)["obj"].output(allow_partial=False)[1]
cpn_input = "" if "content" not in out.columns else " ".join([str(s) for s in out["content"]])
res.append(self.process_operator(cpn_input, item["operator"], item.get("value", "")))

View File

@ -109,16 +109,14 @@ class Template(ComponentBase):
pass
for n, v in kwargs.items():
try:
v = json.dumps(v, ensure_ascii=False)
except Exception:
pass
if not isinstance(v, str):
try:
v = json.dumps(v, ensure_ascii=False)
except Exception:
pass
content = re.sub(
r"\{%s\}" % re.escape(n), v, content
)
content = re.sub(
r"(\\\"|\")", "", content
)
content = re.sub(
r"(#+)", r" \1 ", content
)

View File

@ -83,7 +83,7 @@ app.errorhandler(Exception)(server_error_response)
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
app.config["MAX_CONTENT_LENGTH"] = int(
os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024)
os.environ.get("MAX_CONTENT_LENGTH", 1024 * 1024 * 1024)
)
Session(app)

View File

@ -479,7 +479,7 @@ def upload():
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
queue_tasks(doc, bucket, name, 0)
except Exception as e:
return server_error_response(e)

View File

@ -18,13 +18,16 @@ import traceback
from flask import request, Response
from flask_login import login_required, current_user
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.db.services.user_service import TenantService
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request, get_data_error_result
from agent.canvas import Canvas
from peewee import MySQLDatabase, PostgresqlDatabase
from api.db.db_models import APIToken
import logging
import time
@manager.route('/templates', methods=['GET']) # noqa: F821
@login_required
@ -61,7 +64,6 @@ def save():
req["user_id"] = current_user.id
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
if "id" not in req:
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()):
@ -75,16 +77,22 @@ def save():
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
# save version
UserCanvasVersionService.insert( user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req)
@manager.route('/get/<canvas_id>', methods=['GET']) # noqa: F821
@login_required
def get(canvas_id):
e, c = UserCanvasService.get_by_id(canvas_id)
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
logging.info(f"get canvas_id: {canvas_id} c: {c}")
if not e:
return get_data_error_result(message="canvas not found.")
return get_json_result(data=c.to_dict())
return get_json_result(data=c)
@manager.route('/getsse/<canvas_id>', methods=['GET']) # type: ignore # noqa: F821
def getsse(canvas_id):
@ -283,4 +291,62 @@ def test_db_connect():
return get_json_result(data="Database Connection Successful!")
except Exception as e:
return server_error_response(e)
#api get list version dsl of canvas
@manager.route('/getlistversion/<canvas_id>', methods=['GET']) # noqa: F821
@login_required
def getlistversion(canvas_id):
try:
list =sorted([c.to_dict() for c in UserCanvasVersionService.list_by_canvas_id(canvas_id)], key=lambda x: x["update_time"]*-1)
return get_json_result(data=list)
except Exception as e:
return get_data_error_result(message=f"Error getting history files: {e}")
#api get version dsl of canvas
@manager.route('/getversion/<version_id>', methods=['GET']) # noqa: F821
@login_required
def getversion( version_id):
try:
e, version = UserCanvasVersionService.get_by_id(version_id)
if version:
return get_json_result(data=version.to_dict())
except Exception as e:
return get_json_result(data=f"Error getting history file: {e}")
@manager.route('/listteam', methods=['GET']) # noqa: F821
@login_required
def list_kbs():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
kbs, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords)
return get_json_result(data={"kbs": kbs, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route('/setting', methods=['POST']) # noqa: F821
@validate_request("id", "title", "permission")
@login_required
def setting():
req = request.json
req["user_id"] = current_user.id
e,flow = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
flow = flow.to_dict()
flow["title"] = req["title"]
if req["description"]:
flow["description"] = req["description"]
if req["permission"]:
flow["permission"] = req["permission"]
if req["avatar"]:
flow["avatar"] = req["avatar"]
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
num= UserCanvasService.update_by_id(req["id"], flow)
return get_json_result(data=num)

View File

@ -17,26 +17,25 @@ import json
import re
import traceback
from copy import deepcopy
import trio
from api.db.db_models import APIToken
from api.db.services.conversation_service import ConversationService, structure_answer
from api.db.services.user_service import UserTenantService
from flask import request, Response
from flask_login import login_required, current_user
from flask import Response, request
from flask_login import current_user, login_required
from api import settings
from api.db import LLMType
from api.db.services.dialog_service import DialogService, chat, ask
from api.db.db_models import APIToken
from api.db.services.conversation_service import ConversationService, structure_answer
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle, TenantService
from api import settings
from api.utils.api_utils import get_json_result
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from graphrag.general.mind_map_extractor import MindMapExtractor
from rag.app.tag import label_question
@manager.route('/set', methods=['POST']) # noqa: F821
@manager.route("/set", methods=["POST"]) # noqa: F821
@login_required
def set_conversation():
req = request.json
@ -50,8 +49,7 @@ def set_conversation():
return get_data_error_result(message="Conversation not found!")
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(
message="Fail to update a conversation!")
return get_data_error_result(message="Fail to update a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
@ -61,38 +59,30 @@ def set_conversation():
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(message="Dialog not found")
conv = {
"id": conv_id,
"dialog_id": req["dialog_id"],
"name": req.get("name", "New conversation"),
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
conv = {"id": conv_id, "dialog_id": req["dialog_id"], "name": req.get("name", "New conversation"), "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]}
ConversationService.save(**conv)
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/get', methods=['GET']) # noqa: F821
@manager.route("/get", methods=["GET"]) # noqa: F821
@login_required
def get():
conv_id = request.args["conversation_id"]
try:
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(message="Conversation not found!")
tenants = UserTenantService.query(user_id=current_user.id)
avatar =None
avatar = None
for tenant in tenants:
dialog = DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id)
if dialog and len(dialog)>0:
if dialog and len(dialog) > 0:
avatar = dialog[0].icon
break
else:
return get_json_result(
data=False, message='Only owner of conversation authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
@ -100,26 +90,29 @@ def get():
for ref in conv.reference:
if isinstance(ref, list):
continue
ref["chunks"] = [{
"id": get_value(ck, "chunk_id", "id"),
"content": get_value(ck, "content", "content_with_weight"),
"document_id": get_value(ck, "doc_id", "document_id"),
"document_name": get_value(ck, "docnm_kwd", "document_name"),
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
} for ck in ref.get("chunks", [])]
ref["chunks"] = [
{
"id": get_value(ck, "chunk_id", "id"),
"content": get_value(ck, "content", "content_with_weight"),
"document_id": get_value(ck, "doc_id", "document_id"),
"document_name": get_value(ck, "docnm_kwd", "document_name"),
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
}
for ck in ref.get("chunks", [])
]
conv = conv.to_dict()
conv["avatar"]=avatar
conv["avatar"] = avatar
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/getsse/<dialog_id>', methods=['GET']) # type: ignore # noqa: F821
def getsse(dialog_id):
token = request.headers.get('Authorization').split()
@manager.route("/getsse/<dialog_id>", methods=["GET"]) # type: ignore # noqa: F821
def getsse(dialog_id):
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_data_error_result(message='Authorization is not valid!"')
token = token[1]
@ -131,13 +124,14 @@ def getsse(dialog_id):
if not e:
return get_data_error_result(message="Dialog not found!")
conv = conv.to_dict()
conv["avatar"]= conv["icon"]
conv["avatar"] = conv["icon"]
del conv["icon"]
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST']) # noqa: F821
@manager.route("/rm", methods=["POST"]) # noqa: F821
@login_required
def rm():
conv_ids = request.json["conversation_ids"]
@ -151,28 +145,21 @@ def rm():
if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
break
else:
return get_json_result(
data=False, message='Only owner of conversation authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
return get_json_result(data=False, message="Only owner of conversation authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
ConversationService.delete_by_id(cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET']) # noqa: F821
@manager.route("/list", methods=["GET"]) # noqa: F821
@login_required
def list_convsersation():
dialog_id = request.args["dialog_id"]
try:
if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
return get_json_result(
data=False, message='Only owner of dialog authorized for this operation.',
code=settings.RetCode.OPERATING_ERROR)
convs = ConversationService.query(
dialog_id=dialog_id,
order_by=ConversationService.model.create_time,
reverse=True)
return get_json_result(data=False, message="Only owner of dialog authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
convs = [d.to_dict() for d in convs]
return get_json_result(data=convs)
@ -180,7 +167,7 @@ def list_convsersation():
return server_error_response(e)
@manager.route('/completion', methods=['POST']) # noqa: F821
@manager.route("/completion", methods=["POST"]) # noqa: F821
@login_required
@validate_request("conversation_id", "messages")
def completion():
@ -207,25 +194,30 @@ def completion():
if not conv.reference:
conv.reference = []
else:
def get_value(d, k1, k2):
return d.get(k1, d.get(k2))
for ref in conv.reference:
if isinstance(ref, list):
continue
ref["chunks"] = [{
"id": get_value(ck, "chunk_id", "id"),
"content": get_value(ck, "content", "content_with_weight"),
"document_id": get_value(ck, "doc_id", "document_id"),
"document_name": get_value(ck, "docnm_kwd", "document_name"),
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
} for ck in ref.get("chunks", [])]
ref["chunks"] = [
{
"id": get_value(ck, "chunk_id", "id"),
"content": get_value(ck, "content", "content_with_weight"),
"document_id": get_value(ck, "doc_id", "document_id"),
"document_name": get_value(ck, "docnm_kwd", "document_name"),
"dataset_id": get_value(ck, "kb_id", "dataset_id"),
"image_id": get_value(ck, "image_id", "img_id"),
"positions": get_value(ck, "positions", "position_int"),
}
for ck in ref.get("chunks", [])
]
if not conv.reference:
conv.reference = []
conv.reference.append({"chunks": [], "doc_aggs": []})
def stream():
nonlocal dia, msg, req, conv
try:
@ -235,9 +227,7 @@ def completion():
ConversationService.update_by_id(conv.id, conv.to_dict())
except Exception as e:
traceback.print_exc()
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
@ -259,7 +249,7 @@ def completion():
return server_error_response(e)
@manager.route('/tts', methods=['POST']) # noqa: F821
@manager.route("/tts", methods=["POST"]) # noqa: F821
@login_required
def tts():
req = request.json
@ -281,9 +271,7 @@ def tts():
for chunk in tts_mdl.tts(txt):
yield chunk
except Exception as e:
yield ("data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e)}},
ensure_ascii=False)).encode('utf-8')
yield ("data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e)}}, ensure_ascii=False)).encode("utf-8")
resp = Response(stream_audio(), mimetype="audio/mpeg")
resp.headers.add_header("Cache-Control", "no-cache")
@ -293,7 +281,7 @@ def tts():
return resp
@manager.route('/delete_msg', methods=['POST']) # noqa: F821
@manager.route("/delete_msg", methods=["POST"]) # noqa: F821
@login_required
@validate_request("conversation_id", "message_id")
def delete_msg():
@ -316,7 +304,7 @@ def delete_msg():
return get_json_result(data=conv)
@manager.route('/thumbup', methods=['POST']) # noqa: F821
@manager.route("/thumbup", methods=["POST"]) # noqa: F821
@login_required
@validate_request("conversation_id", "message_id")
def thumbup():
@ -324,7 +312,7 @@ def thumbup():
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(message="Conversation not found!")
up_down = req.get("set")
up_down = req.get("thumbup")
feedback = req.get("feedback", "")
conv = conv.to_dict()
for i, msg in enumerate(conv["message"]):
@ -343,7 +331,7 @@ def thumbup():
return get_json_result(data=conv)
@manager.route('/ask', methods=['POST']) # noqa: F821
@manager.route("/ask", methods=["POST"]) # noqa: F821
@login_required
@validate_request("question", "kb_ids")
def ask_about():
@ -356,9 +344,7 @@ def ask_about():
for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
@ -369,7 +355,7 @@ def ask_about():
return resp
@manager.route('/mindmap', methods=['POST']) # noqa: F821
@manager.route("/mindmap", methods=["POST"]) # noqa: F821
@login_required
@validate_request("question", "kb_ids")
def mindmap():
@ -382,10 +368,7 @@ def mindmap():
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
question = req["question"]
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12,
0.3, 0.3, aggs=False,
rank_feature=label_question(question, [kb])
)
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12, 0.3, 0.3, aggs=False, rank_feature=label_question(question, [kb]))
mindmap = MindMapExtractor(chat_mdl)
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
mind_map = mind_map.output
@ -394,7 +377,7 @@ def mindmap():
return get_json_result(data=mind_map)
@manager.route('/related_questions', methods=['POST']) # noqa: F821
@manager.route("/related_questions", methods=["POST"]) # noqa: F821
@login_required
@validate_request("question")
def related_questions():
@ -402,31 +385,49 @@ def related_questions():
question = req["question"]
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
prompt = """
Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
Instructions:
- Based on the keywords provided by the user, generate 5-10 related search terms.
- Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
- Use common, general terms as much as possible, avoiding obscure words or technical jargon.
- Keep the term length between 2-4 words, concise and clear.
- DO NOT translate, use the language of the original keywords.
Role: You are an AI language model assistant tasked with generating 5-10 related questions based on a users original query. These questions should help expand the search query scope and improve search relevance.
### Example:
Keywords: Chinese football
Related search terms:
1. Current status of Chinese football
2. Reform of Chinese football
3. Youth training of Chinese football
4. Chinese football in the Asian Cup
5. Chinese football in the World Cup
Instructions:
Input: You are provided with a users question.
Output: Generate 5-10 alternative questions that are related to the original user question. These alternatives should help retrieve a broader range of relevant documents from a vector database.
Context: Focus on rephrasing the original question in different ways, making sure the alternative questions are diverse but still connected to the topic of the original query. Do not create overly obscure, irrelevant, or unrelated questions.
Fallback: If you cannot generate any relevant alternatives, do not return any questions.
Guidance:
1. Each alternative should be unique but still relevant to the original query.
2. Keep the phrasing clear, concise, and easy to understand.
3. Avoid overly technical jargon or specialized terms unless directly relevant.
4. Ensure that each question contributes towards improving search results by broadening the search angle, not narrowing it.
Example:
Original Question: What are the benefits of electric vehicles?
Alternative Questions:
1. How do electric vehicles impact the environment?
2. What are the advantages of owning an electric car?
3. What is the cost-effectiveness of electric vehicles?
4. How do electric vehicles compare to traditional cars in terms of fuel efficiency?
5. What are the environmental benefits of switching to electric cars?
6. How do electric vehicles help reduce carbon emissions?
7. Why are electric vehicles becoming more popular?
8. What are the long-term savings of using electric vehicles?
9. How do electric vehicles contribute to sustainability?
10. What are the key benefits of electric vehicles for consumers?
Reason:
- When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
- Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
Rephrasing the original query into multiple alternative questions helps the user explore different aspects of their search topic, improving the quality of search results.
These questions guide the search engine to provide a more comprehensive set of relevant documents.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
ans = chat_mdl.chat(
prompt,
[
{
"role": "user",
"content": f"""
Keywords: {question}
Related search terms:
"""}], {"temperature": 0.9})
""",
}
],
{"temperature": 0.9},
)
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])

View File

@ -331,10 +331,10 @@ def rm():
message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
deleted_file_count = FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
if deleted_file_count > 0:
STORAGE_IMPL.rm(b, n)
except Exception as e:
errors += str(e)
@ -380,7 +380,7 @@ def run():
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
queue_tasks(doc, bucket, name, 0)
return get_json_result(data=True)
except Exception as e:

View File

@ -38,8 +38,12 @@ def convert():
file2documents = []
try:
files = FileService.get_by_ids(file_ids)
files_set = dict({file.id: file for file in files})
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
file = files_set[file_id]
if not file:
return get_data_error_result(message="File not found!")
file_ids_list = [file_id]
if file.type == FileType.FOLDER.value:
file_ids_list = FileService.get_all_innermost_file_ids(file_id, [])
@ -86,6 +90,7 @@ def convert():
"file_id": id,
"document_id": doc.id,
})
file2documents.append(file2document.to_json())
return get_json_result(data=file2documents)
except Exception as e:

View File

@ -55,20 +55,17 @@ def upload():
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
file_res = []
try:
e, pf_folder = FileService.get_by_id(pf_id)
if not e:
return get_data_error_result( message="Can't find this folder!")
for file_obj in file_objs:
e, file = FileService.get_by_id(pf_id)
if not e:
return get_data_error_result(
message="Can't find this folder!")
MAX_FILE_NUM_PER_USER = int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))
if MAX_FILE_NUM_PER_USER > 0 and DocumentService.get_doc_count(current_user.id) >= MAX_FILE_NUM_PER_USER:
return get_data_error_result(
message="Exceed the maximum file number of a free user!")
return get_data_error_result( message="Exceed the maximum file number of a free user!")
# split file name path
if not file_obj.filename:
e, file = FileService.get_by_id(pf_id)
file_obj_names = [file.name, file_obj.filename]
file_obj_names = [pf_folder.name, file_obj.filename]
else:
full_path = '/' + file_obj.filename
file_obj_names = full_path.split('/')
@ -184,7 +181,7 @@ def list_files():
current_user.id, pf_id, page_number, items_per_page, orderby, desc, keywords)
parent_folder = FileService.get_parent_folder(pf_id)
if not FileService.get_parent_folder(pf_id):
if not parent_folder:
return get_json_result(message="File not found!")
return get_json_result(data={"total": total, "files": files, "parent_folder": parent_folder.to_json()})
@ -358,9 +355,14 @@ def move():
try:
file_ids = req["src_file_ids"]
parent_id = req["dest_file_id"]
files = FileService.get_by_ids(file_ids)
files_dict = {}
for file in files:
files_dict[file.id] = file
for file_id in file_ids:
e, file = FileService.get_by_id(file_id)
if not e:
file = files_dict[file_id]
if not file:
return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id:
return get_data_error_result(message="Tenant not found!")

View File

@ -73,7 +73,7 @@ def create():
@manager.route('/update', methods=['post']) # noqa: F821
@login_required
@validate_request("kb_id", "name", "description", "permission", "parser_id")
@validate_request("kb_id", "name", "description", "parser_id")
@not_allowed_parameters("id", "tenant_id", "created_by", "create_time", "update_time", "create_date", "update_date", "created_by")
def update():
req = request.json
@ -157,25 +157,38 @@ def detail():
return server_error_response(e)
@manager.route('/list', methods=['GET']) # noqa: F821
@manager.route('/list', methods=['POST']) # noqa: F821
@login_required
def list_kbs():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
page_number = int(request.args.get("page", 0))
items_per_page = int(request.args.get("page_size", 0))
parser_id = request.args.get("parser_id")
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
req = request.get_json()
owner_ids = req.get("owner_ids", [])
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
kbs, total = KnowledgebaseService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number,
items_per_page, orderby, desc, keywords, parser_id)
if not owner_ids:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
tenants = [m["tenant_id"] for m in tenants]
kbs, total = KnowledgebaseService.get_by_tenant_ids(
tenants, current_user.id, page_number,
items_per_page, orderby, desc, keywords, parser_id)
else:
tenants = owner_ids
kbs, total = KnowledgebaseService.get_by_tenant_ids(
tenants, current_user.id, 0,
0, orderby, desc, keywords, parser_id)
kbs = [kb for kb in kbs if kb["tenant_id"] in tenants]
if page_number and items_per_page:
kbs = kbs[(page_number-1)*items_per_page:page_number*items_per_page]
total = len(kbs)
return get_json_result(data={"kbs": kbs, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['post']) # noqa: F821
@login_required
@validate_request("kb_id")
@ -323,3 +336,17 @@ def knowledge_graph(kb_id):
filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_json_result(data=obj)
@manager.route('/<kb_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
@login_required
def delete_knowledge_graph(kb_id):
if not KnowledgebaseService.accessible(kb_id, current_user.id):
return get_json_result(
data=False,
message='No authorization.',
code=settings.RetCode.AUTHENTICATION_ERROR
)
_, kb = KnowledgebaseService.get_by_id(kb_id)
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
return get_json_result(data=True)

97
api/apps/langfuse_app.py Normal file
View File

@ -0,0 +1,97 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request
from flask_login import current_user, login_required
from langfuse import Langfuse
from api.db.db_models import DB
from api.db.services.langfuse_service import TenantLangfuseService
from api.utils.api_utils import get_error_data_result, get_json_result, server_error_response, validate_request
@manager.route("/api_key", methods=["POST", "PUT"]) # noqa: F821
@login_required
@validate_request("secret_key", "public_key", "host")
def set_api_key():
req = request.get_json()
secret_key = req.get("secret_key", "")
public_key = req.get("public_key", "")
host = req.get("host", "")
if not all([secret_key, public_key, host]):
return get_error_data_result(message="Missing required fields")
langfuse_keys = dict(
tenant_id=current_user.id,
secret_key=secret_key,
public_key=public_key,
host=host,
)
langfuse = Langfuse(public_key=langfuse_keys["public_key"], secret_key=langfuse_keys["secret_key"], host=langfuse_keys["host"])
if not langfuse.auth_check():
return get_error_data_result(message="Invalid Langfuse keys")
langfuse_entry = TenantLangfuseService.filter_by_tenant(tenant_id=current_user.id)
with DB.atomic():
try:
if not langfuse_entry:
TenantLangfuseService.save(**langfuse_keys)
else:
TenantLangfuseService.update_by_tenant(tenant_id=current_user.id, langfuse_keys=langfuse_keys)
return get_json_result(data=langfuse_keys)
except Exception as e:
server_error_response(e)
@manager.route("/api_key", methods=["GET"]) # noqa: F821
@login_required
@validate_request()
def get_api_key():
langfuse_entry = TenantLangfuseService.filter_by_tenant_with_info(tenant_id=current_user.id)
if not langfuse_entry:
return get_json_result(message="Have not record any Langfuse keys.")
langfuse = Langfuse(public_key=langfuse_entry["public_key"], secret_key=langfuse_entry["secret_key"], host=langfuse_entry["host"])
try:
if not langfuse.auth_check():
return get_error_data_result(message="Invalid Langfuse keys loaded")
except langfuse.api.core.api_error.ApiError as api_err:
return get_json_result(message=f"Error from Langfuse: {api_err}")
except Exception as e:
server_error_response(e)
langfuse_entry["project_id"] = langfuse.api.projects.get().dict()["data"][0]["id"]
langfuse_entry["project_name"] = langfuse.api.projects.get().dict()["data"][0]["name"]
return get_json_result(data=langfuse_entry)
@manager.route("/api_key", methods=["DELETE"]) # noqa: F821
@login_required
@validate_request()
def delete_api_key():
langfuse_entry = TenantLangfuseService.filter_by_tenant(tenant_id=current_user.id)
if not langfuse_entry:
return get_json_result(message="Have not record any Langfuse keys.")
with DB.atomic():
try:
TenantLangfuseService.delete_model(langfuse_entry)
return get_json_result(data=True)
except Exception as e:
server_error_response(e)

View File

@ -61,6 +61,7 @@ def set_api_key():
msg = ""
for llm in LLMService.query(fid=factory):
if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
@ -71,6 +72,7 @@ def set_api_key():
except Exception as e:
msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
elif not chat_passed and llm.model_type == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
@ -83,6 +85,7 @@ def set_api_key():
msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
e)
elif not rerank_passed and llm.model_type == LLMType.RERANK:
assert factory in RerankModel, f"Re-rank model from {factory} is not supported yet."
mdl = RerankModel[factory](
req["api_key"], llm.llm_name, base_url=req.get("base_url"))
try:
@ -136,7 +139,7 @@ def add_llm():
req = request.json
factory = req["llm_factory"]
api_key = req.get("api_key", "x")
llm_name = req["llm_name"]
llm_name = req.get("llm_name")
def apikey_json(keys):
nonlocal req
@ -203,6 +206,7 @@ def add_llm():
msg = ""
mdl_nm = llm["llm_name"].split("___")[0]
if llm["model_type"] == LLMType.EMBEDDING.value:
assert factory in EmbeddingModel, f"Embedding model from {factory} is not supported yet."
mdl = EmbeddingModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
@ -214,6 +218,7 @@ def add_llm():
except Exception as e:
msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.CHAT.value:
assert factory in ChatModel, f"Chat model from {factory} is not supported yet."
mdl = ChatModel[factory](
key=llm['api_key'],
model_name=mdl_nm,
@ -228,6 +233,7 @@ def add_llm():
msg += f"\nFail to access model({mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.RERANK:
assert factory in RerankModel, f"RE-rank model from {factory} is not supported yet."
try:
mdl = RerankModel[factory](
key=llm["api_key"],
@ -243,6 +249,7 @@ def add_llm():
msg += f"\nFail to access model({mdl_nm})." + str(
e)
elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
assert factory in CvModel, f"Image to text model from {factory} is not supported yet."
mdl = CvModel[factory](
key=llm["api_key"],
model_name=mdl_nm,
@ -256,6 +263,7 @@ def add_llm():
except Exception as e:
msg += f"\nFail to access model({mdl_nm})." + str(e)
elif llm["model_type"] == LLMType.TTS:
assert factory in TTSModel, f"TTS model from {factory} is not supported yet."
mdl = TTSModel[factory](
key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
)

View File

@ -23,8 +23,8 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result, token_required
from api.utils.api_utils import get_result
from api.utils.api_utils import get_error_data_result, token_required, get_result, check_duplicate_ids
@manager.route('/chats', methods=['POST']) # noqa: F821
@ -41,11 +41,6 @@ def create(tenant_id):
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
# Check if all documents in the knowledge base have been parsed
is_done, error_msg = KnowledgebaseService.is_parsed_done(kb_id)
if not is_done:
return get_error_data_result(error_msg)
kbs = KnowledgebaseService.get_by_ids(ids) if ids else []
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
@ -183,11 +178,6 @@ def update(tenant_id, chat_id):
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
# Check if all documents in the knowledge base have been parsed
is_done, error_msg = KnowledgebaseService.is_parsed_done(kb_id)
if not is_done:
return get_error_data_result(error_msg)
kbs = KnowledgebaseService.get_by_ids(ids)
embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
embd_count = list(set(embd_ids))
@ -233,11 +223,11 @@ def update(tenant_id, chat_id):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if "name" in req:
if not req.get("name"):
return get_error_data_result(message="`name` is not empty.")
return get_error_data_result(message="`name` cannot be empty.")
if req["name"].lower() != res["name"].lower() \
and len(
DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
return get_error_data_result(message="Duplicated chat name in updating dataset.")
return get_error_data_result(message="Duplicated chat name in updating chat.")
if "prompt_config" in req:
res["prompt_config"].update(req["prompt_config"])
for p in res["prompt_config"]["parameters"]:
@ -262,6 +252,8 @@ def update(tenant_id, chat_id):
@manager.route('/chats', methods=['DELETE']) # noqa: F821
@token_required
def delete(tenant_id):
errors = []
success_count = 0
req = request.json
if not req:
ids = None
@ -274,14 +266,39 @@ def delete(tenant_id):
id_list.append(dia.id)
else:
id_list = ids
for id in id_list:
unique_id_list, duplicate_messages = check_duplicate_ids(id_list, "assistant")
for id in unique_id_list:
if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
return get_error_data_result(message=f"You don't own the chat {id}")
errors.append(f"Assistant({id}) not found.")
continue
temp_dict = {"status": StatusEnum.INVALID.value}
DialogService.update_by_id(id, temp_dict)
success_count += 1
if errors:
if success_count > 0:
return get_result(
data={"success_count": success_count, "errors": errors},
message=f"Partially deleted {success_count} chats with {len(errors)} errors"
)
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(
message=f"Partially deleted {success_count} chats with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages}
)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@manager.route('/chats', methods=['GET']) # noqa: F821
@token_required
def list_chat(tenant_id):

View File

@ -30,7 +30,7 @@ from api.utils.api_utils import (
token_required,
get_error_data_result,
valid,
get_parser_config, valid_parser_config,
get_parser_config, valid_parser_config, dataset_readonly_fields,check_duplicate_ids
)
@ -69,7 +69,7 @@ def create(tenant_id):
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email", "tag"
"presentation", "picture", "one", "email", "tag"
]
description: Chunking method.
parser_config:
@ -85,6 +85,9 @@ def create(tenant_id):
type: object
"""
req = request.json
for k in req.keys():
if dataset_readonly_fields(k):
return get_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"'{k}' is readonly.")
e, t = TenantService.get_by_id(tenant_id)
permission = req.get("permission")
chunk_method = req.get("chunk_method")
@ -102,7 +105,6 @@ def create(tenant_id):
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
"tag"
]
@ -144,16 +146,6 @@ def create(tenant_id):
else:
valid_embedding_models = [
"BAAI/bge-large-zh-v1.5",
"BAAI/bge-base-en-v1.5",
"BAAI/bge-large-en-v1.5",
"BAAI/bge-small-en-v1.5",
"BAAI/bge-small-zh-v1.5",
"jinaai/jina-embeddings-v2-base-en",
"jinaai/jina-embeddings-v2-small-en",
"nomic-ai/nomic-embed-text-v1.5",
"sentence-transformers/all-MiniLM-L6-v2",
"text-embedding-v2",
"text-embedding-v3",
"maidalun1020/bce-embedding-base_v1",
]
embd_model = LLMService.query(
@ -242,6 +234,9 @@ def delete(tenant_id):
id_list.append(kb.id)
else:
id_list = ids
unique_id_list, duplicate_messages = check_duplicate_ids(id_list, "dataset")
id_list = unique_id_list
for id in id_list:
kbs = KnowledgebaseService.query(id=id, tenant_id=tenant_id)
if not kbs:
@ -273,6 +268,11 @@ def delete(tenant_id):
)
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially deleted {success_count} datasets with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages},)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result(code=settings.RetCode.SUCCESS)
@ -314,7 +314,7 @@ def update(tenant_id, dataset_id):
chunk_method:
type: string
enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
"presentation", "picture", "one", "knowledge_graph", "email", "tag"
"presentation", "picture", "one", "email", "tag"
]
description: Updated chunking method.
parser_config:
@ -329,6 +329,9 @@ def update(tenant_id, dataset_id):
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message="You don't own the dataset")
req = request.json
for k in req.keys():
if dataset_readonly_fields(k):
return get_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"'{k}' is readonly.")
e, t = TenantService.get_by_id(tenant_id)
invalid_keys = {"id", "embd_id", "chunk_num", "doc_num", "parser_id", "create_date", "create_time", "created_by", "status","token_num","update_date","update_time"}
if any(key in req for key in invalid_keys):
@ -349,7 +352,6 @@ def update(tenant_id, dataset_id):
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
"tag"
]

View File

@ -36,7 +36,7 @@ from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import construct_json_result, get_parser_config
from api.utils.api_utils import construct_json_result, get_parser_config, check_duplicate_ids
from rag.nlp import search
from rag.prompts import keyword_extraction
from rag.app.tag import label_question
@ -67,6 +67,7 @@ class Chunk(BaseModel):
raise ValueError("Each sublist in positions must have a length of 5")
return value
@manager.route("/datasets/<dataset_id>/documents", methods=["POST"]) # noqa: F821
@token_required
def upload(dataset_id, tenant_id):
@ -136,6 +137,10 @@ def upload(dataset_id, tenant_id):
return get_result(
message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR
)
if len(file_obj.filename.encode("utf-8")) >= 128:
return get_result(
message="File name should be less than 128 bytes.", code=settings.RetCode.ARGUMENT_ERROR
)
'''
# total size
total_size = 0
@ -246,6 +251,11 @@ def update_doc(tenant_id, dataset_id, document_id):
DocumentService.update_meta_fields(document_id, req["meta_fields"])
if "name" in req and req["name"] != doc.name:
if len(req["name"].encode("utf-8")) >= 128:
return get_result(
message="The name should be less than 128 bytes.",
code=settings.RetCode.ARGUMENT_ERROR,
)
if (
pathlib.Path(req["name"].lower()).suffix
!= pathlib.Path(doc.name.lower()).suffix
@ -363,6 +373,10 @@ def download(tenant_id, dataset_id, document_id):
schema:
type: object
"""
if not document_id:
return get_error_data_result(
message="Specify document_id please."
)
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message=f"You do not own the dataset {dataset_id}.")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
@ -578,15 +592,22 @@ def delete(tenant_id, dataset_id):
doc_list.append(doc.id)
else:
doc_list = doc_ids
unique_doc_ids, duplicate_messages = check_duplicate_ids(doc_list, "document")
doc_list = unique_doc_ids
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
not_found = []
success_count = 0
for doc_id in doc_list:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_error_data_result(message="Document not found!")
not_found.append(doc_id)
continue
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_error_data_result(message="Tenant not found!")
@ -608,12 +629,22 @@ def delete(tenant_id, dataset_id):
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
success_count += 1
except Exception as e:
errors += str(e)
if not_found:
return get_result(message=f"Documents not found: {not_found}", code=settings.RetCode.DATA_ERROR)
if errors:
return get_result(message=errors, code=settings.RetCode.SERVER_ERROR)
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially deleted {success_count} datasets with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages},)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@ -661,18 +692,24 @@ def parse(tenant_id, dataset_id):
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc_list = req.get("document_ids")
unique_doc_ids, duplicate_messages = check_duplicate_ids(doc_list, "document")
doc_list = unique_doc_ids
not_found = []
success_count = 0
for id in doc_list:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
not_found.append(id)
continue
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
if doc[0].progress != 0.0:
if 0.0 < doc[0].progress < 1.0:
return get_error_data_result(
"Can't stop parsing document with progress at 0 or 100"
"Can't parse document that is currently being processed"
)
info = {"run": "1", "progress": 0}
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
info = {"run": "1", "progress": 0, "progress_msg": "", "chunk_num": 0, "token_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
TaskService.filter_delete([Task.doc_id == id])
@ -680,7 +717,16 @@ def parse(tenant_id, dataset_id):
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
queue_tasks(doc, bucket, name, 0)
success_count += 1
if not_found:
return get_result(message=f"Documents not found: {not_found}", code=settings.RetCode.DATA_ERROR)
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially parsed {success_count} documents with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages},)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@ -726,9 +772,15 @@ def stop_parsing(tenant_id, dataset_id):
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc_list = req.get("document_ids")
unique_doc_ids, duplicate_messages = check_duplicate_ids(doc_list, "document")
doc_list = unique_doc_ids
success_count = 0
for id in doc_list:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
@ -739,6 +791,12 @@ def stop_parsing(tenant_id, dataset_id):
info = {"run": "2", "progress": 0, "chunk_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": doc[0].id}, search.index_name(tenant_id), dataset_id)
success_count += 1
if duplicate_messages:
if success_count > 0:
return get_result(message=f"Partially stopped {success_count} documents with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages},)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@ -859,6 +917,8 @@ def list_chunks(tenant_id, dataset_id, document_id):
res = {"total": 0, "chunks": [], "doc": renamed_doc}
if req.get("id"):
chunk = settings.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
if not chunk:
return get_result(message=f"Chunk not found: {dataset_id}/{req.get('id')}", code=settings.RetCode.NOT_FOUND)
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
@ -876,7 +936,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
"important_keywords":chunk.get("important_kwd",[]),
"questions":chunk.get("question_kwd",[]),
"dataset_id":chunk.get("kb_id",chunk.get("dataset_id")),
"image_id":chunk["img_id"],
"image_id":chunk.get("img_id", ""),
"available":bool(chunk.get("available_int",1)),
"positions":chunk.get("position_int",[]),
}
@ -901,7 +961,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
"questions": sres.field[id].get("question_kwd", []),
"dataset_id": sres.field[id].get("kb_id", sres.field[id].get("dataset_id")),
"image_id": sres.field[id].get("img_id", ""),
"available": bool(sres.field[id].get("available_int", 1)),
"available": bool(int(sres.field[id].get("available_int", "1"))),
"positions": sres.field[id].get("position_int",[]),
}
res["chunks"].append(d)
@ -986,7 +1046,7 @@ def add_chunk(tenant_id, dataset_id, document_id):
)
doc = doc[0]
req = request.json
if not req.get("content"):
if not str(req.get("content", "")).strip():
return get_error_data_result(message="`content` is required")
if "important_keywords" in req:
if not isinstance(req["important_keywords"], list):
@ -1009,7 +1069,7 @@ def add_chunk(tenant_id, dataset_id, document_id):
d["important_tks"] = rag_tokenizer.tokenize(
" ".join(req.get("important_keywords", []))
)
d["question_kwd"] = req.get("questions", [])
d["question_kwd"] = [str(q).strip() for q in req.get("questions", []) if str(q).strip()]
d["question_tks"] = rag_tokenizer.tokenize(
"\n".join(req.get("questions", []))
)
@ -1098,15 +1158,23 @@ def rm_chunk(tenant_id, dataset_id, document_id):
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
docs = DocumentService.get_by_ids([document_id])
if not docs:
raise LookupError(f"Can't find the document with ID {document_id}!")
req = request.json
condition = {"doc_id": document_id}
if "chunk_ids" in req:
condition["id"] = req["chunk_ids"]
unique_chunk_ids, duplicate_messages = check_duplicate_ids(req["chunk_ids"], "chunk")
condition["id"] = unique_chunk_ids
chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
if chunk_number != 0:
DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
if "chunk_ids" in req and chunk_number != len(req["chunk_ids"]):
return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(req['chunk_ids'])}")
if "chunk_ids" in req and chunk_number != len(unique_chunk_ids):
if len(unique_chunk_ids) == 0:
return get_result(message=f"deleted {chunk_number} chunks")
return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(unique_chunk_ids)}")
if duplicate_messages:
return get_result(message=f"Partially deleted {chunk_number} chunks with {len(duplicate_messages)} errors", data={"success_count": chunk_number, "errors": duplicate_messages},)
return get_result(message=f"deleted {chunk_number} chunks")
@ -1194,7 +1262,7 @@ def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
if "questions" in req:
if not isinstance(req["questions"], list):
return get_error_data_result("`questions` should be a list")
d["question_kwd"] = req.get("questions")
d["question_kwd"] = [str(q).strip() for q in req.get("questions", []) if str(q).strip()]
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["questions"]))
if "available" in req:
d["available_int"] = int(req["available"])

View File

@ -13,31 +13,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import json
import re
import time
from api.db import LLMType
import tiktoken
from flask import Response, jsonify, request
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.dialog_service import ask, chat
from api.db.services.canvas_service import completion as agent_completion, completionOpenAI
from agent.canvas import Canvas
from api.db import StatusEnum
from api.db import LLMType, StatusEnum
from api.db.db_models import APIToken
from api.db.services.api_service import API4ConversationService
from api.db.services.canvas_service import UserCanvasService
from api.db.services.dialog_service import DialogService
from api.db.services.dialog_service import DialogService, ask, chat
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result, validate_request
from api.utils.api_utils import get_result, token_required
from api.utils.api_utils import get_result, token_required, get_data_openai, get_error_data_result, validate_request, check_duplicate_ids
from api.db.services.llm_service import LLMBundle
from api.db.services.file_service import FileService
from flask import jsonify, request, Response
@manager.route('/chats/<chat_id>/sessions', methods=['POST']) # noqa: F821
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
@token_required
def create(tenant_id, chat_id):
req = request.json
@ -50,7 +49,7 @@ def create(tenant_id, chat_id):
"dialog_id": req["dialog_id"],
"name": req.get("name", "New session"),
"message": [{"role": "assistant", "content": dia[0].prompt_config.get("prologue")}],
"user_id": req.get("user_id", "")
"user_id": req.get("user_id", ""),
}
if not conv.get("name"):
return get_error_data_result(message="`name` can not be empty.")
@ -59,28 +58,25 @@ def create(tenant_id, chat_id):
if not e:
return get_error_data_result(message="Fail to create a session!")
conv = conv.to_dict()
conv['messages'] = conv.pop("message")
conv["messages"] = conv.pop("message")
conv["chat_id"] = conv.pop("dialog_id")
del conv["reference"]
return get_result(data=conv)
@manager.route('/agents/<agent_id>/sessions', methods=['POST']) # noqa: F821
@manager.route("/agents/<agent_id>/sessions", methods=["POST"]) # noqa: F821
@token_required
def create_agent_session(tenant_id, agent_id):
req = request.json
if not request.is_json:
req = request.form
files = request.files
user_id = request.args.get('user_id', '')
user_id = request.args.get("user_id", "")
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
return get_error_data_result("Agent not found.")
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_error_data_result("You cannot access the agent.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
@ -113,28 +109,22 @@ def create_agent_session(tenant_id, agent_id):
ele.pop("value")
else:
if req is not None and req.get(ele["key"]):
ele["value"] = req[ele['key']]
ele["value"] = req[ele["key"]]
else:
if "value" in ele:
ele.pop("value")
else:
for ans in canvas.run(stream=False):
pass
for ans in canvas.run(stream=False):
pass
cvs.dsl = json.loads(str(canvas))
conv = {
"id": get_uuid(),
"dialog_id": cvs.id,
"user_id": user_id,
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"source": "agent",
"dsl": cvs.dsl
}
conv = {"id": get_uuid(), "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv)
conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv)
@manager.route('/chats/<chat_id>/sessions/<session_id>', methods=['PUT']) # noqa: F821
@manager.route("/chats/<chat_id>/sessions/<session_id>", methods=["PUT"]) # noqa: F821
@token_required
def update(tenant_id, chat_id, session_id):
req = request.json
@ -156,14 +146,14 @@ def update(tenant_id, chat_id, session_id):
return get_result()
@manager.route('/chats/<chat_id>/completions', methods=['POST']) # noqa: F821
@manager.route("/chats/<chat_id>/completions", methods=["POST"]) # noqa: F821
@token_required
def chat_completion(tenant_id, chat_id):
req = request.json
if not req:
req = {"question": ""}
if not req.get("session_id"):
req["question"]=""
req["question"] = ""
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(f"You don't own the chat {chat_id}")
if req.get("session_id"):
@ -185,7 +175,7 @@ def chat_completion(tenant_id, chat_id):
return get_result(data=answer)
@manager.route('chats_openai/<chat_id>/chat/completions', methods=['POST']) # noqa: F821
@manager.route("/chats_openai/<chat_id>/chat/completions", methods=["POST"]) # noqa: F821
@validate_request("model", "messages") # noqa: F821
@token_required
def chat_completion_openai_like(tenant_id, chat_id):
@ -250,8 +240,18 @@ def chat_completion_openai_like(tenant_id, chat_id):
dia = dia[0]
# Filter system and non-sense assistant messages
msg = None
msg = [m for m in messages if m["role"] != "system" and (m["role"] != "assistant" or msg)]
msg = []
for m in messages:
if m["role"] == "system":
continue
if m["role"] == "assistant" and not msg:
continue
msg.append(m)
# tools = get_tools()
# toolcall_session = SimpleFunctionCallServer()
tools = None
toolcall_session = None
if req.get("stream", True):
# The value for the usage field on all chunks except for the last one will be null.
@ -259,40 +259,61 @@ def chat_completion_openai_like(tenant_id, chat_id):
# The choices field on the last chunk will always be an empty array [].
def streamed_response_generator(chat_id, dia, msg):
token_used = 0
should_split_index = 0
answer_cache = ""
reasoning_cache = ""
response = {
"id": f"chatcmpl-{chat_id}",
"choices": [
{
"delta": {
"content": "",
"role": "assistant",
"function_call": None,
"tool_calls": None
},
"finish_reason": None,
"index": 0,
"logprobs": None
}
],
"choices": [{"delta": {"content": "", "role": "assistant", "function_call": None, "tool_calls": None, "reasoning_content": ""}, "finish_reason": None, "index": 0, "logprobs": None}],
"created": int(time.time()),
"model": "model",
"object": "chat.completion.chunk",
"system_fingerprint": "",
"usage": None
"usage": None,
}
try:
for ans in chat(dia, msg, True):
for ans in chat(dia, msg, True, toolcall_session=toolcall_session, tools=tools):
answer = ans["answer"]
incremental = answer[should_split_index:]
token_used += len(incremental)
if incremental.endswith("</think>"):
response_data_len = len(incremental.rstrip("</think>"))
reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
if reasoning_match:
reasoning_part = reasoning_match.group(1)
content_part = answer[reasoning_match.end() :]
else:
response_data_len = len(incremental)
should_split_index += response_data_len
response["choices"][0]["delta"]["content"] = incremental
reasoning_part = ""
content_part = answer
reasoning_incremental = ""
if reasoning_part:
if reasoning_part.startswith(reasoning_cache):
reasoning_incremental = reasoning_part.replace(reasoning_cache, "", 1)
else:
reasoning_incremental = reasoning_part
reasoning_cache = reasoning_part
content_incremental = ""
if content_part:
if content_part.startswith(answer_cache):
content_incremental = content_part.replace(answer_cache, "", 1)
else:
content_incremental = content_part
answer_cache = content_part
token_used += len(reasoning_incremental) + len(content_incremental)
if not any([reasoning_incremental, content_incremental]):
continue
if reasoning_incremental:
response["choices"][0]["delta"]["reasoning_content"] = reasoning_incremental
else:
response["choices"][0]["delta"]["reasoning_content"] = None
if content_incremental:
response["choices"][0]["delta"]["content"] = content_incremental
else:
response["choices"][0]["delta"]["content"] = None
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
except Exception as e:
response["choices"][0]["delta"]["content"] = "**ERROR**: " + str(e)
@ -300,16 +321,12 @@ def chat_completion_openai_like(tenant_id, chat_id):
# The last chunk
response["choices"][0]["delta"]["content"] = None
response["choices"][0]["delta"]["reasoning_content"] = None
response["choices"][0]["finish_reason"] = "stop"
response["usage"] = {
"prompt_tokens": len(prompt),
"completion_tokens": token_used,
"total_tokens": len(prompt) + token_used
}
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
yield f"data:{json.dumps(response, ensure_ascii=False)}\n\n"
yield "data:[DONE]\n\n"
resp = Response(streamed_response_generator(chat_id, dia, msg), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
@ -318,13 +335,13 @@ def chat_completion_openai_like(tenant_id, chat_id):
return resp
else:
answer = None
for ans in chat(dia, msg, False):
for ans in chat(dia, msg, False, toolcall_session=toolcall_session, tools=tools):
# focus answer content only
answer = ans
break
content = answer["answer"]
response = {
response = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion",
"created": int(time.time()),
@ -336,25 +353,49 @@ def chat_completion_openai_like(tenant_id, chat_id):
"completion_tokens_details": {
"reasoning_tokens": context_token_used,
"accepted_prediction_tokens": len(content),
"rejected_prediction_tokens": 0 # 0 for simplicity
}
"rejected_prediction_tokens": 0, # 0 for simplicity
},
},
"choices": [
{
"message": {
"role": "assistant",
"content": content
},
"logprobs": None,
"finish_reason": "stop",
"index": 0
}
]
"choices": [{"message": {"role": "assistant", "content": content}, "logprobs": None, "finish_reason": "stop", "index": 0}],
}
return jsonify(response)
@manager.route('/agents_openai/<agent_id>/chat/completions', methods=['POST']) # noqa: F821
@validate_request("model", "messages") # noqa: F821
@token_required
def agents_completion_openai_compatibility (tenant_id, agent_id):
req = request.json
tiktokenenc = tiktoken.get_encoding("cl100k_base")
messages = req.get("messages", [])
if not messages:
return get_error_data_result("You must provide at least one message.")
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_error_data_result(f"You don't own the agent {agent_id}")
@manager.route('/agents/<agent_id>/completions', methods=['POST']) # noqa: F821
filtered_messages = [m for m in messages if m["role"] in ["user", "assistant"]]
prompt_tokens = sum(len(tiktokenenc.encode(m["content"])) for m in filtered_messages)
if not filtered_messages:
return jsonify(get_data_openai(
id=agent_id,
content="No valid messages found (user or assistant).",
finish_reason="stop",
model=req.get("model", ""),
completion_tokens=len(tiktokenenc.encode("No valid messages found (user or assistant).")),
prompt_tokens=prompt_tokens,
))
# Get the last user message as the question
question = next((m["content"] for m in reversed(messages) if m["role"] == "user"), "")
if req.get("stream", True):
return Response(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", ""), stream=True), mimetype="text/event-stream")
else:
# For non-streaming, just return the response directly
response = next(completionOpenAI(tenant_id, agent_id, question, session_id=req.get("id", ""), stream=False))
return jsonify(response)
@manager.route("/agents/<agent_id>/completions", methods=["POST"]) # noqa: F821
@token_required
def agent_completions(tenant_id, agent_id):
req = request.json
@ -365,9 +406,7 @@ def agent_completions(tenant_id, agent_id):
dsl = cvs[0].dsl
if not isinstance(dsl, str):
dsl = json.dumps(dsl)
#canvas = Canvas(dsl, tenant_id)
#if canvas.get_preset_param():
# req["question"] = ""
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
if not conv:
return get_error_data_result(f"You don't own the session {req['session_id']}")
@ -380,9 +419,7 @@ def agent_completions(tenant_id, agent_id):
states = {field: current_dsl.get(field, []) for field in state_fields}
current_dsl.update(new_dsl)
current_dsl.update(states)
API4ConversationService.update_by_id(req["session_id"], {
"dsl": current_dsl
})
API4ConversationService.update_by_id(req["session_id"], {"dsl": current_dsl})
else:
req["question"] = ""
if req.get("stream", True):
@ -399,7 +436,7 @@ def agent_completions(tenant_id, agent_id):
return get_error_data_result(str(e))
@manager.route('/chats/<chat_id>/sessions', methods=['GET']) # noqa: F821
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
@token_required
def list_session(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
@ -418,7 +455,7 @@ def list_session(tenant_id, chat_id):
if not convs:
return get_result(data=[])
for conv in convs:
conv['messages'] = conv.pop("message")
conv["messages"] = conv.pop("message")
infos = conv["messages"]
for info in infos:
if "prompt" in info:
@ -452,7 +489,7 @@ def list_session(tenant_id, chat_id):
return get_result(data=convs)
@manager.route('/agents/<agent_id>/sessions', methods=['GET']) # noqa: F821
@manager.route("/agents/<agent_id>/sessions", methods=["GET"]) # noqa: F821
@token_required
def list_agent_session(tenant_id, agent_id):
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
@ -468,12 +505,11 @@ def list_agent_session(tenant_id, agent_id):
desc = True
# dsl defaults to True in all cases except for False and false
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id,
user_id, include_dsl)
convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
if not convs:
return get_result(data=[])
for conv in convs:
conv['messages'] = conv.pop("message")
conv["messages"] = conv.pop("message")
infos = conv["messages"]
for info in infos:
if "prompt" in info:
@ -506,11 +542,14 @@ def list_agent_session(tenant_id, agent_id):
return get_result(data=convs)
@manager.route('/chats/<chat_id>/sessions', methods=["DELETE"]) # noqa: F821
@manager.route("/chats/<chat_id>/sessions", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id, chat_id):
if not DialogService.query(id=chat_id, tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(message="You don't own the chat")
errors = []
success_count = 0
req = request.json
convs = ConversationService.query(dialog_id=chat_id)
if not req:
@ -524,17 +563,44 @@ def delete(tenant_id, chat_id):
conv_list.append(conv.id)
else:
conv_list = ids
unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
conv_list = unique_conv_ids
for id in conv_list:
conv = ConversationService.query(id=id, dialog_id=chat_id)
if not conv:
return get_error_data_result(message="The chat doesn't own the session")
errors.append(f"The chat doesn't own the session {id}")
continue
ConversationService.delete_by_id(id)
success_count += 1
if errors:
if success_count > 0:
return get_result(
data={"success_count": success_count, "errors": errors},
message=f"Partially deleted {success_count} sessions with {len(errors)} errors"
)
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages}
)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@manager.route('/agents/<agent_id>/sessions', methods=["DELETE"]) # noqa: F821
@manager.route("/agents/<agent_id>/sessions", methods=["DELETE"]) # noqa: F821
@token_required
def delete_agent_session(tenant_id, agent_id):
errors = []
success_count = 0
req = request.json
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
if not cvs:
@ -556,15 +622,39 @@ def delete_agent_session(tenant_id, agent_id):
else:
conv_list = ids
unique_conv_ids, duplicate_messages = check_duplicate_ids(conv_list, "session")
conv_list = unique_conv_ids
for session_id in conv_list:
conv = API4ConversationService.query(id=session_id, dialog_id=agent_id)
if not conv:
return get_error_data_result(f"The agent doesn't own the session ${session_id}")
errors.append(f"The agent doesn't own the session {session_id}")
continue
API4ConversationService.delete_by_id(session_id)
success_count += 1
if errors:
if success_count > 0:
return get_result(
data={"success_count": success_count, "errors": errors},
message=f"Partially deleted {success_count} sessions with {len(errors)} errors"
)
else:
return get_error_data_result(message="; ".join(errors))
if duplicate_messages:
if success_count > 0:
return get_result(
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages}
)
else:
return get_error_data_result(message=";".join(duplicate_messages))
return get_result()
@manager.route('/sessions/ask', methods=['POST']) # noqa: F821
@manager.route("/sessions/ask", methods=["POST"]) # noqa: F821
@token_required
def ask_about(tenant_id):
req = request.json
@ -590,9 +680,7 @@ def ask_about(tenant_id):
for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream")
@ -603,7 +691,7 @@ def ask_about(tenant_id):
return resp
@manager.route('/sessions/related_questions', methods=['POST']) # noqa: F821
@manager.route("/sessions/related_questions", methods=["POST"]) # noqa: F821
@token_required
def related_questions(tenant_id):
req = request.json
@ -635,18 +723,27 @@ Reason:
- At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
"""
ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
ans = chat_mdl.chat(
prompt,
[
{
"role": "user",
"content": f"""
Keywords: {question}
Related search terms:
"""}], {"temperature": 0.9})
""",
}
],
{"temperature": 0.9},
)
return get_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
@manager.route('/chatbots/<dialog_id>/completions', methods=['POST']) # noqa: F821
@manager.route("/chatbots/<dialog_id>/completions", methods=["POST"]) # noqa: F821
def chatbot_completions(dialog_id):
req = request.json
token = request.headers.get('Authorization').split()
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
@ -669,11 +766,11 @@ def chatbot_completions(dialog_id):
return get_result(data=answer)
@manager.route('/agentbots/<agent_id>/completions', methods=['POST']) # noqa: F821
@manager.route("/agentbots/<agent_id>/completions", methods=["POST"]) # noqa: F821
def agent_bot_completions(agent_id):
req = request.json
token = request.headers.get('Authorization').split()
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]

View File

@ -37,7 +37,6 @@ from timeit import default_timer as timer
from rag.utils.redis_conn import REDIS_CONN
@manager.route("/version", methods=["GET"]) # noqa: F821
@login_required
def version():
@ -298,3 +297,25 @@ def rm(token):
[APIToken.tenant_id == current_user.id, APIToken.token == token]
)
return get_json_result(data=True)
@manager.route('/config', methods=['GET']) # noqa: F821
def get_config():
"""
Get system configuration.
---
tags:
- System
responses:
200:
description: Return system configuration
schema:
type: object
properties:
registerEnable:
type: integer 0 means disabled, 1 means enabled
description: Whether user registration is enabled
"""
return get_json_result(data={
"registerEnabled": settings.REGISTER_ENABLED
})

View File

@ -562,6 +562,14 @@ def user_add():
schema:
type: object
"""
if not settings.REGISTER_ENABLED:
return get_json_result(
data=False,
message="User registration is disabled!",
code=settings.RetCode.OPERATING_ERROR,
)
req = request.json
email_address = req["email"]

File diff suppressed because it is too large Load Diff

View File

@ -103,16 +103,12 @@ def init_llm_factory():
except Exception:
pass
factory_llm_infos = json.load(
open(
os.path.join(get_project_base_directory(), "conf", "llm_factories.json"),
"r",
)
)
for factory_llm_info in factory_llm_infos["factory_llm_infos"]:
llm_infos = factory_llm_info.pop("llm")
factory_llm_infos = settings.FACTORY_LLM_INFOS
for factory_llm_info in factory_llm_infos:
info = deepcopy(factory_llm_info)
llm_infos = info.pop("llm")
try:
LLMFactoriesService.save(**factory_llm_info)
LLMFactoriesService.save(**info)
except Exception:
pass
LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
@ -152,7 +148,7 @@ def init_llm_factory():
pass
break
for kb_id in KnowledgebaseService.get_all_ids():
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=DocumentService.get_kb_doc_count(kb_id))

View File

@ -18,13 +18,15 @@ import time
import traceback
from uuid import uuid4
from agent.canvas import Canvas
from api.db.db_models import DB, CanvasTemplate, UserCanvas, API4Conversation
from api.db import TenantPermission
from api.db.db_models import DB, CanvasTemplate, User, UserCanvas, API4Conversation
from api.db.services.api_service import API4ConversationService
from api.db.services.common_service import CommonService
from api.db.services.conversation_service import structure_answer
from api.utils import get_uuid
from api.utils.api_utils import get_data_openai
import tiktoken
from peewee import fn
class CanvasTemplateService(CommonService):
model = CanvasTemplate
@ -51,6 +53,73 @@ class UserCanvasService(CommonService):
return list(agents.dicts())
@classmethod
@DB.connection_context()
def get_by_tenant_id(cls, pid):
try:
fields = [
cls.model.id,
cls.model.avatar,
cls.model.title,
cls.model.dsl,
cls.model.description,
cls.model.permission,
cls.model.update_time,
cls.model.user_id,
cls.model.create_time,
cls.model.create_date,
cls.model.update_date,
User.nickname,
User.avatar.alias('tenant_avatar'),
]
angents = cls.model.select(*fields) \
.join(User, on=(cls.model.user_id == User.id)) \
.where(cls.model.id == pid)
# obj = cls.model.query(id=pid)[0]
return True, angents.dicts()[0]
except Exception as e:
print(e)
return False, None
@classmethod
@DB.connection_context()
def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
page_number, items_per_page,
orderby, desc, keywords,
):
fields = [
cls.model.id,
cls.model.avatar,
cls.model.title,
cls.model.dsl,
cls.model.description,
cls.model.permission,
User.nickname,
User.avatar.alias('tenant_avatar'),
cls.model.update_time
]
if keywords:
angents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id)),
(fn.LOWER(cls.model.title).contains(keywords.lower()))
)
else:
angents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.user_id == user_id))
)
if desc:
angents = angents.order_by(cls.model.getter_by(orderby).desc())
else:
angents = angents.order_by(cls.model.getter_by(orderby).asc())
count = angents.count()
angents = angents.paginate(page_number, items_per_page)
return list(angents.dicts()), count
def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
e, cvs = UserCanvasService.get_by_id(agent_id)
@ -86,8 +155,6 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
conv = API4Conversation(**conv)
else:
e, conv = API4ConversationService.get_by_id(session_id)
@ -153,3 +220,206 @@ def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kw
API4ConversationService.append_message(conv.id, conv.to_dict())
yield result
break
def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
"""Main function for OpenAI-compatible completions, structured similarly to the completion function."""
tiktokenenc = tiktoken.get_encoding("cl100k_base")
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
yield get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: Agent not found."
)
return
if cvs.user_id != tenant_id:
yield get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: You do not own the agent"
)
return
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
canvas = Canvas(cvs.dsl, tenant_id)
canvas.reset()
message_id = str(uuid4())
# Handle new session creation
if not session_id:
query = canvas.get_preset_param()
if query:
for ele in query:
if not ele["optional"]:
if not kwargs.get(ele["key"]):
yield get_data_openai(
id=None,
model=agent_id,
content=f"`{ele['key']}` is required",
completion_tokens=len(tiktokenenc.encode(f"`{ele['key']}` is required")),
prompt_tokens=len(tiktokenenc.encode(question if question else ""))
)
return
ele["value"] = kwargs[ele["key"]]
if ele["optional"]:
if kwargs.get(ele["key"]):
ele["value"] = kwargs[ele['key']]
else:
if "value" in ele:
ele.pop("value")
cvs.dsl = json.loads(str(canvas))
session_id = get_uuid()
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
"source": "agent",
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
conv = API4Conversation(**conv)
# Handle existing session
else:
e, conv = API4ConversationService.get_by_id(session_id)
if not e:
yield get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: Session not found!"
)
return
canvas = Canvas(json.dumps(conv.dsl), tenant_id)
canvas.messages.append({"role": "user", "content": question, "id": message_id})
canvas.add_user_input(question)
if not conv.message:
conv.message = []
conv.message.append({
"role": "user",
"content": question,
"id": message_id
})
if not conv.reference:
conv.reference = []
conv.reference.append({"chunks": [], "doc_aggs": []})
# Process request based on stream mode
final_ans = {"reference": [], "content": ""}
prompt_tokens = len(tiktokenenc.encode(str(question)))
if stream:
try:
completion_tokens = 0
for ans in canvas.run(stream=True):
if ans.get("running_status"):
completion_tokens += len(tiktokenenc.encode(ans.get("content", "")))
yield "data: " + json.dumps(
get_data_openai(
id=session_id,
model=agent_id,
content=ans["content"],
object="chat.completion.chunk",
completion_tokens=completion_tokens,
prompt_tokens=prompt_tokens
),
ensure_ascii=False
) + "\n\n"
continue
for k in ans.keys():
final_ans[k] = ans[k]
completion_tokens += len(tiktokenenc.encode(final_ans.get("content", "")))
yield "data: " + json.dumps(
get_data_openai(
id=session_id,
model=agent_id,
content=final_ans["content"],
object="chat.completion.chunk",
finish_reason="stop",
completion_tokens=completion_tokens,
prompt_tokens=prompt_tokens
),
ensure_ascii=False
) + "\n\n"
# Update conversation
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
yield "data: [DONE]\n\n"
except Exception as e:
traceback.print_exc()
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
yield "data: " + json.dumps(
get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: " + str(e),
finish_reason="stop",
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
prompt_tokens=prompt_tokens
),
ensure_ascii=False
) + "\n\n"
yield "data: [DONE]\n\n"
else: # Non-streaming mode
try:
all_answer_content = ""
for answer in canvas.run(stream=False):
if answer.get("running_status"):
continue
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
final_ans["reference"] = answer.get("reference", [])
all_answer_content += final_ans["content"]
final_ans["content"] = all_answer_content
# Update conversation
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
# Return the response in OpenAI format
yield get_data_openai(
id=session_id,
model=agent_id,
content=final_ans["content"],
finish_reason="stop",
completion_tokens=len(tiktokenenc.encode(final_ans["content"])),
prompt_tokens=prompt_tokens,
param=canvas.get_preset_param() # Added param info like in completion
)
except Exception as e:
traceback.print_exc()
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
yield get_data_openai(
id=session_id,
model=agent_id,
content="**ERROR**: " + str(e),
finish_reason="stop",
completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
prompt_tokens=prompt_tokens
)

View File

@ -22,17 +22,56 @@ from api.utils import datetime_format, current_timestamp, get_uuid
class CommonService:
"""Base service class that provides common database operations.
This class serves as a foundation for all service classes in the application,
implementing standard CRUD operations and common database query patterns.
It uses the Peewee ORM for database interactions and provides a consistent
interface for database operations across all derived service classes.
Attributes:
model: The Peewee model class that this service operates on. Must be set by subclasses.
"""
model = None
@classmethod
@DB.connection_context()
def query(cls, cols=None, reverse=None, order_by=None, **kwargs):
"""Execute a database query with optional column selection and ordering.
This method provides a flexible way to query the database with various filters
and sorting options. It supports column selection, sort order control, and
additional filter conditions.
Args:
cols (list, optional): List of column names to select. If None, selects all columns.
reverse (bool, optional): If True, sorts in descending order. If False, sorts in ascending order.
order_by (str, optional): Column name to sort results by.
**kwargs: Additional filter conditions passed as keyword arguments.
Returns:
peewee.ModelSelect: A query result containing matching records.
"""
return cls.model.query(cols=cols, reverse=reverse,
order_by=order_by, **kwargs)
@classmethod
@DB.connection_context()
def get_all(cls, cols=None, reverse=None, order_by=None):
"""Retrieve all records from the database with optional column selection and ordering.
This method fetches all records from the model's table with support for
column selection and result ordering. If no order_by is specified and reverse
is True, it defaults to ordering by create_time.
Args:
cols (list, optional): List of column names to select. If None, selects all columns.
reverse (bool, optional): If True, sorts in descending order. If False, sorts in ascending order.
order_by (str, optional): Column name to sort results by. Defaults to 'create_time' if reverse is specified.
Returns:
peewee.ModelSelect: A query containing all matching records.
"""
if cols:
query_records = cls.model.select(*cols)
else:
@ -51,11 +90,36 @@ class CommonService:
@classmethod
@DB.connection_context()
def get(cls, **kwargs):
"""Get a single record matching the given criteria.
This method retrieves a single record from the database that matches
the specified filter conditions.
Args:
**kwargs: Filter conditions as keyword arguments.
Returns:
Model instance: Single matching record.
Raises:
peewee.DoesNotExist: If no matching record is found.
"""
return cls.model.get(**kwargs)
@classmethod
@DB.connection_context()
def get_or_none(cls, **kwargs):
"""Get a single record or None if not found.
This method attempts to retrieve a single record matching the given criteria,
returning None if no match is found instead of raising an exception.
Args:
**kwargs: Filter conditions as keyword arguments.
Returns:
Model instance or None: Matching record if found, None otherwise.
"""
try:
return cls.model.get(**kwargs)
except peewee.DoesNotExist:
@ -64,14 +128,34 @@ class CommonService:
@classmethod
@DB.connection_context()
def save(cls, **kwargs):
# if "id" not in kwargs:
# kwargs["id"] = get_uuid()
"""Save a new record to database.
This method creates a new record in the database with the provided field values,
forcing an insert operation rather than an update.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The created record object.
"""
sample_obj = cls.model(**kwargs).save(force_insert=True)
return sample_obj
@classmethod
@DB.connection_context()
def insert(cls, **kwargs):
"""Insert a new record with automatic ID and timestamps.
This method creates a new record with automatically generated ID and timestamp fields.
It handles the creation of create_time, create_date, update_time, and update_date fields.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The newly created record object.
"""
if "id" not in kwargs:
kwargs["id"] = get_uuid()
kwargs["create_time"] = current_timestamp()
@ -84,6 +168,15 @@ class CommonService:
@classmethod
@DB.connection_context()
def insert_many(cls, data_list, batch_size=100):
"""Insert multiple records in batches.
This method efficiently inserts multiple records into the database using batch processing.
It automatically sets creation timestamps for all records.
Args:
data_list (list): List of dictionaries containing record data to insert.
batch_size (int, optional): Number of records to insert in each batch. Defaults to 100.
"""
with DB.atomic():
for d in data_list:
d["create_time"] = current_timestamp()
@ -94,6 +187,15 @@ class CommonService:
@classmethod
@DB.connection_context()
def update_many_by_id(cls, data_list):
"""Update multiple records by their IDs.
This method updates multiple records in the database, identified by their IDs.
It automatically updates the update_time and update_date fields for each record.
Args:
data_list (list): List of dictionaries containing record data to update.
Each dictionary must include an 'id' field.
"""
with DB.atomic():
for data in data_list:
data["update_time"] = current_timestamp()
@ -104,6 +206,12 @@ class CommonService:
@classmethod
@DB.connection_context()
def update_by_id(cls, pid, data):
# Update a single record by ID
# Args:
# pid: Record ID
# data: Updated field values
# Returns:
# Number of records updated
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
num = cls.model.update(data).where(cls.model.id == pid).execute()
@ -112,15 +220,28 @@ class CommonService:
@classmethod
@DB.connection_context()
def get_by_id(cls, pid):
# Get a record by ID
# Args:
# pid: Record ID
# Returns:
# Tuple of (success, record)
try:
obj = cls.model.query(id=pid)[0]
return True, obj
obj = cls.model.get_or_none(cls.model.id == pid)
if obj:
return True, obj
except Exception:
return False, None
pass
return False, None
@classmethod
@DB.connection_context()
def get_by_ids(cls, pids, cols=None):
# Get multiple records by their IDs
# Args:
# pids: List of record IDs
# cols: List of columns to select
# Returns:
# Query of matching records
if cols:
objs = cls.model.select(*cols)
else:
@ -130,11 +251,21 @@ class CommonService:
@classmethod
@DB.connection_context()
def delete_by_id(cls, pid):
# Delete a record by ID
# Args:
# pid: Record ID
# Returns:
# Number of records deleted
return cls.model.delete().where(cls.model.id == pid).execute()
@classmethod
@DB.connection_context()
def filter_delete(cls, filters):
# Delete records matching given filters
# Args:
# filters: List of filter conditions
# Returns:
# Number of records deleted
with DB.atomic():
num = cls.model.delete().where(*filters).execute()
return num
@ -142,11 +273,23 @@ class CommonService:
@classmethod
@DB.connection_context()
def filter_update(cls, filters, update_data):
# Update records matching given filters
# Args:
# filters: List of filter conditions
# update_data: Updated field values
# Returns:
# Number of records updated
with DB.atomic():
return cls.model.update(update_data).where(*filters).execute()
@staticmethod
def cut_list(tar_list, n):
# Split a list into chunks of size n
# Args:
# tar_list: List to split
# n: Chunk size
# Returns:
# List of tuples containing chunks
length = len(tar_list)
arr = range(length)
result = [tuple(tar_list[x:(x + n)]) for x in arr[::n]]
@ -156,6 +299,14 @@ class CommonService:
@DB.connection_context()
def filter_scope_list(cls, in_key, in_filters_list,
filters=None, cols=None):
# Get records matching IN clause filters with optional column selection
# Args:
# in_key: Field name for IN clause
# in_filters_list: List of values for IN clause
# filters: Additional filter conditions
# cols: List of columns to select
# Returns:
# List of matching records
in_filters_tuple_list = cls.cut_list(in_filters_list, 20)
if not filters:
filters = []

View File

@ -13,45 +13,79 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import binascii
import time
from functools import partial
from datetime import datetime
import logging
import re
import time
from copy import deepcopy
from functools import partial
from timeit import default_timer as timer
from langfuse import Langfuse
from agentic_reasoning import DeepResearcher
from api import settings
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import Dialog, DB
from api.db.db_models import DB, Dialog
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.llm_service import LLMBundle, TenantLLMService
from api.utils import current_timestamp, datetime_format
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import kb_prompt, message_fit_in, llm_id2llm_type, keyword_extraction, full_question, chunks_format, \
citation_prompt
from rag.utils import rmSpace, num_tokens_from_string
from rag.prompts import chunks_format, citation_prompt, full_question, kb_prompt, keyword_extraction, llm_id2llm_type, message_fit_in
from rag.utils import num_tokens_from_string, rmSpace
from rag.utils.tavily_conn import Tavily
class DialogService(CommonService):
model = Dialog
@classmethod
def save(cls, **kwargs):
"""Save a new record to database.
This method creates a new record in the database with the provided field values,
forcing an insert operation rather than an update.
Args:
**kwargs: Record field values as keyword arguments.
Returns:
Model instance: The created record object.
"""
sample_obj = cls.model(**kwargs).save(force_insert=True)
return sample_obj
@classmethod
def update_many_by_id(cls, data_list):
"""Update multiple records by their IDs.
This method updates multiple records in the database, identified by their IDs.
It automatically updates the update_time and update_date fields for each record.
Args:
data_list (list): List of dictionaries containing record data to update.
Each dictionary must include an 'id' field.
"""
with DB.atomic():
for data in data_list:
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
cls.model.update(data).where(cls.model.id == data["id"]).execute()
@classmethod
@DB.connection_context()
def get_list(cls, tenant_id,
page_number, items_per_page, orderby, desc, id, name):
def get_list(cls, tenant_id, page_number, items_per_page, orderby, desc, id, name):
chats = cls.model.select()
if id:
chats = chats.where(cls.model.id == id)
if name:
chats = chats.where(cls.model.name == name)
chats = chats.where(
(cls.model.tenant_id == tenant_id)
& (cls.model.status == StatusEnum.VALID.value)
)
chats = chats.where((cls.model.tenant_id == tenant_id) & (cls.model.status == StatusEnum.VALID.value))
if desc:
chats = chats.order_by(cls.model.getter_by(orderby).desc())
else:
@ -72,13 +106,12 @@ def chat_solo(dialog, messages, stream=True):
tts_mdl = None
if prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
for m in messages if m["role"] != "system"]
msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"]
if stream:
last_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans):]
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
@ -110,6 +143,16 @@ def chat(dialog, messages, stream=True, **kwargs):
check_llm_ts = timer()
langfuse_tracer = None
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=dialog.tenant_id)
if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
if langfuse.auth_check():
langfuse_tracer = langfuse
langfuse.trace = langfuse_tracer.trace(name=f"{dialog.name}-{llm_model_config['llm_name']}")
check_langfuse_tracer_ts = timer()
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
embedding_list = list(set([kb.embd_id for kb in kbs]))
if len(embedding_list) != 1:
@ -137,6 +180,9 @@ def chat(dialog, messages, stream=True, **kwargs):
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
toolcall_session, tools = kwargs.get("toolcall_session"), kwargs.get("tools")
if toolcall_session and tools:
chat_mdl.bind_tools(toolcall_session, tools)
bind_llm_ts = timer()
@ -159,8 +205,7 @@ def chat(dialog, messages, stream=True, **kwargs):
if p["key"] not in kwargs and not p["optional"]:
raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace(
"{%s}" % p["key"], " ")
prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
if len(questions) > 1 and prompt_config.get("refine_multiturn"):
questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
@ -189,9 +234,11 @@ def chat(dialog, messages, stream=True, **kwargs):
knowledges = []
if prompt_config.get("reasoning", False):
reasoner = DeepResearcher(chat_mdl,
prompt_config,
partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3))
reasoner = DeepResearcher(
chat_mdl,
prompt_config,
partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3),
)
for think in reasoner.thinking(kbinfos, " ".join(questions)):
if isinstance(think, str):
@ -200,31 +247,34 @@ def chat(dialog, messages, stream=True, **kwargs):
elif stream:
yield think
else:
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs)
)
kbinfos = retriever.retrieval(
" ".join(questions),
embd_mdl,
tenant_ids,
dialog.kb_ids,
1,
dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k,
aggs=False,
rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs),
)
if prompt_config.get("tavily_api_key"):
tav = Tavily(prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(questions))
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions),
tenant_ids,
dialog.kb_ids,
embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT))
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl, LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
knowledges = kb_prompt(kbinfos, max_tokens)
logging.debug(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
logging.debug("{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
retrieval_ts = timer()
if not knowledges and prompt_config.get("empty_response"):
@ -239,19 +289,16 @@ def chat(dialog, messages, stream=True, **kwargs):
prompt4citation = ""
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
prompt4citation = citation_prompt()
msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
for m in messages if m["role"] != "system"])
msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"])
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.95))
assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
prompt = msg[0]["content"]
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(
gen_conf["max_tokens"],
max_tokens - used_token_count)
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], max_tokens - used_token_count)
def decorate_answer(answer):
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions, langfuse_tracer
refs = []
ans = answer.split("</think>")
@ -259,27 +306,37 @@ def chat(dialog, messages, stream=True, **kwargs):
if len(ans) == 2:
think = ans[0] + "</think>"
answer = ans[1]
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer = re.sub(r"##[ij]\$\$", "", answer, flags=re.DOTALL)
idx = set([])
if not re.search(r"##[0-9]+\$\$", answer):
answer, idx = retriever.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
answer, idx = retriever.insert_citations(
answer,
[ck["content_ltks"] for ck in kbinfos["chunks"]],
[ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight,
)
else:
idx = set([])
for r in re.finditer(r"##([0-9]+)\$\$", answer):
i = int(r.group(1))
for match in re.finditer(r"##([0-9]+)\$\$", answer):
i = int(match.group(1))
if i < len(kbinfos["chunks"]):
idx.add(i)
# handle (ID: 1), ID: 2 etc.
for match in re.finditer(r"\(\s*ID:\s*(\d+)\s*\)|ID[: ]+\s*(\d+)", answer):
full_match = match.group(0)
id = match.group(1) or match.group(2)
if id:
i = int(id)
if i < len(kbinfos["chunks"]):
idx.add(i)
answer = answer.replace(full_match, f"##{i}$$")
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
@ -295,7 +352,8 @@ def chat(dialog, messages, stream=True, **kwargs):
total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000
check_langfuse_tracer_cost = (check_langfuse_tracer_ts - check_llm_ts) * 1000
create_retriever_time_cost = (create_retriever_ts - check_langfuse_tracer_ts) * 1000
bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
@ -304,28 +362,57 @@ def chat(dialog, messages, stream=True, **kwargs):
retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
tk_num = num_tokens_from_string(think + answer)
prompt += "\n\n### Query:\n%s" % " ".join(questions)
prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
prompt = (
f"{prompt}\n\n"
"## Time elapsed:\n"
f" - Total: {total_time_cost:.1f}ms\n"
f" - Check LLM: {check_llm_time_cost:.1f}ms\n"
f" - Check Langfuse tracer: {check_langfuse_tracer_cost:.1f}ms\n"
f" - Create retriever: {create_retriever_time_cost:.1f}ms\n"
f" - Bind embedding: {bind_embedding_time_cost:.1f}ms\n"
f" - Bind LLM: {bind_llm_time_cost:.1f}ms\n"
f" - Multi-turn optimization: {refine_question_time_cost:.1f}ms\n"
f" - Bind reranker: {bind_reranker_time_cost:.1f}ms\n"
f" - Generate keyword: {generate_keyword_time_cost:.1f}ms\n"
f" - Retrieval: {retrieval_time_cost:.1f}ms\n"
f" - Generate answer: {generate_result_time_cost:.1f}ms\n\n"
"## Token usage:\n"
f" - Generated tokens(approximately): {tk_num}\n"
f" - Token speed: {int(tk_num / (generate_result_time_cost / 1000.0))}/s"
)
langfuse_output = "\n" + re.sub(r"^.*?(### Query:.*)", r"\1", prompt, flags=re.DOTALL)
langfuse_output = {"time_elapsed:": re.sub(r"\n", " \n", langfuse_output), "created_at": time.time()}
# Add a condition check to call the end method only if langfuse_tracer exists
if langfuse_tracer and "langfuse_generation" in locals():
langfuse_generation.end(output=langfuse_output)
return {"answer": think + answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
if langfuse_tracer:
langfuse_generation = langfuse_tracer.trace.generation(name="chat", model=llm_model_config["llm_name"], input={"prompt": prompt, "prompt4citation": prompt4citation, "messages": msg})
if stream:
last_ans = ""
answer = ""
for ans in chat_mdl.chat_streamly(prompt+prompt4citation, msg[1:], gen_conf):
for ans in chat_mdl.chat_streamly(prompt + prompt4citation, msg[1:], gen_conf):
if thought:
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans):]
delta_ans = ans[len(last_ans) :]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans):]
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans) :]
if delta_ans:
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought+answer)
yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought + answer)
else:
answer = chat_mdl.chat(prompt+prompt4citation, msg[1:], gen_conf)
answer = chat_mdl.chat(prompt + prompt4citation, msg[1:], gen_conf)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
res = decorate_answer(answer)
@ -343,27 +430,22 @@ Table of database fields are as follows:
Question are as follows:
{}
Please write the SQL, only SQL, without any other explanations or text.
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question
)
""".format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question)
tried_times = 0
def get_table():
nonlocal sys_prompt, user_prompt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {
"temperature": 0.06})
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {"temperature": 0.06})
sql = re.sub(r"<think>.*</think>", "", sql, flags=re.DOTALL)
logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;]|```).*", "", sql)
if sql[:len("select ")] != "select ":
if sql[: len("select ")] != "select ":
return None, None
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
if sql[:len("select *")] != "select *":
if sql[: len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
@ -400,11 +482,7 @@ Please write the SQL, only SQL, without any other explanations or text.
{}
Please correct the error and write SQL again, only SQL, without any other explanations or text.
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question, sql, tbl["error"]
)
""".format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question, sql, tbl["error"])
tbl, sql = get_table()
logging.debug("TRY it again: {}".format(sql))
@ -412,24 +490,18 @@ Please write the SQL, only SQL, without any other explanations or text.
if tbl.get("error") or len(tbl["rows"]) == 0:
return None
docid_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "doc_id"])
doc_name_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "docnm_kwd"])
column_idx = [ii for ii in range(
len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
doc_name_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
column_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
# compose Markdown table
columns = "|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"],
tbl["columns"][i]["name"])) for i in
column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
columns = (
"|" + "|".join([re.sub(r"(/.*|[^]+)", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
)
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + \
("|------|" if docid_idx and docid_idx else "")
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + ("|------|" if docid_idx and docid_idx else "")
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
rows = ["|" + "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
@ -439,11 +511,7 @@ Please write the SQL, only SQL, without any other explanations or text.
if not docid_idx or not doc_name_idx:
logging.warning("SQL missing field: " + sql)
return {
"answer": "\n".join([columns, line, rows]),
"reference": {"chunks": [], "doc_aggs": []},
"prompt": sys_prompt
}
return {"answer": "\n".join([columns, line, rows]), "reference": {"chunks": [], "doc_aggs": []}, "prompt": sys_prompt}
docid_idx = list(docid_idx)[0]
doc_name_idx = list(doc_name_idx)[0]
@ -454,10 +522,11 @@ Please write the SQL, only SQL, without any other explanations or text.
doc_aggs[r[docid_idx]]["count"] += 1
return {
"answer": "\n".join([columns, line, rows]),
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
doc_aggs.items()]},
"prompt": sys_prompt
"reference": {
"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()],
},
"prompt": sys_prompt,
}
@ -481,10 +550,7 @@ def ask(question, kb_ids, tenant_id):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
max_tokens = chat_mdl.max_length
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids,
1, 12, 0.1, 0.3, aggs=False,
rank_feature=label_question(question, kbs)
)
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False, rank_feature=label_question(question, kbs))
knowledges = kb_prompt(kbinfos, max_tokens)
prompt = """
Role: You're a smart assistant. Your name is Miss R.
@ -506,17 +572,9 @@ def ask(question, kb_ids, tenant_id):
def decorate_answer(answer):
nonlocal knowledges, kbinfos, prompt
answer, idx = retriever.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=0.7,
vtweight=0.3)
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs

View File

@ -13,33 +13,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import xxhash
import json
import logging
import random
import re
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from datetime import datetime
from io import BytesIO
import trio
import trio
import xxhash
from peewee import fn
from api.db.db_utils import bulk_insert_into_db
from api import settings
from api.utils import current_timestamp, get_format_time, get_uuid
from rag.settings import SVR_QUEUE_NAME
from rag.utils.storage_factory import STORAGE_IMPL
from rag.nlp import search, rag_tokenizer
from api.db import FileType, TaskStatus, ParserType, LLMType
from api.db.db_models import DB, Knowledgebase, Tenant, Task, UserTenant
from api.db.db_models import Document
from api.db import FileType, LLMType, ParserType, StatusEnum, TaskStatus, UserTenantRole
from api.db.db_models import DB, Document, Knowledgebase, Task, Tenant, UserTenant
from api.db.db_utils import bulk_insert_into_db
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db import StatusEnum
from api.utils import current_timestamp, get_format_time, get_uuid
from rag.nlp import rag_tokenizer, search
from rag.settings import get_svr_queue_name
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL
class DocumentService(CommonService):
@ -96,9 +93,7 @@ class DocumentService(CommonService):
def insert(cls, doc):
if not cls.save(**doc):
raise RuntimeError("Database error (Document)!")
e, kb = KnowledgebaseService.get_by_id(doc["kb_id"])
if not KnowledgebaseService.update_by_id(
kb.id, {"doc_num": kb.doc_num + 1}):
if not KnowledgebaseService.atomic_increase_doc_num_by_id(doc["kb_id"]):
raise RuntimeError("Database error (Knowledgebase)!")
return Document(**doc)
@ -108,13 +103,13 @@ class DocumentService(CommonService):
cls.clear_chunk_num(doc.id)
try:
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "community_report"], "source_id": doc.id},
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "source_id": doc.id},
{"remove": {"source_id": doc.id}},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.update({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["graph"]},
{"removed_kwd": "Y"},
search.index_name(tenant_id), doc.kb_id)
settings.docStoreConn.delete({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "community_report"], "must_not": {"exists": "source_id"}},
settings.docStoreConn.delete({"kb_id": doc.kb_id, "knowledge_graph_kwd": ["entity", "relation", "graph", "subgraph", "community_report"], "must_not": {"exists": "source_id"}},
search.index_name(tenant_id), doc.kb_id)
except Exception:
pass
@ -174,9 +169,9 @@ class DocumentService(CommonService):
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num +
token_num,
token_num,
chunk_num=Knowledgebase.chunk_num +
chunk_num).where(
chunk_num).where(
Knowledgebase.id == kb_id).execute()
return num
@ -192,9 +187,9 @@ class DocumentService(CommonService):
"Document not found which is supposed to be there")
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
token_num,
token_num,
chunk_num=Knowledgebase.chunk_num -
chunk_num
chunk_num
).where(
Knowledgebase.id == kb_id).execute()
return num
@ -207,9 +202,9 @@ class DocumentService(CommonService):
num = Knowledgebase.update(
token_num=Knowledgebase.token_num -
doc.token_num,
doc.token_num,
chunk_num=Knowledgebase.chunk_num -
doc.chunk_num,
doc.chunk_num,
doc_num=Knowledgebase.doc_num - 1
).where(
Knowledgebase.id == doc.kb_id).execute()
@ -221,7 +216,7 @@ class DocumentService(CommonService):
docs = cls.model.select(
Knowledgebase.tenant_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
@ -243,7 +238,7 @@ class DocumentService(CommonService):
docs = cls.model.select(
Knowledgebase.tenant_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
@ -256,7 +251,7 @@ class DocumentService(CommonService):
docs = cls.model.select(
cls.model.id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)
Knowledgebase.id == cls.model.kb_id)
).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == doc_id, UserTenant.user_id == user_id).paginate(0, 1)
docs = docs.dicts()
@ -267,11 +262,18 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def accessible4deletion(cls, doc_id, user_id):
docs = cls.model.select(
cls.model.id).join(
docs = cls.model.select(cls.model.id
).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)
).where(cls.model.id == doc_id, Knowledgebase.created_by == user_id).paginate(0, 1)
Knowledgebase.id == cls.model.kb_id)
).join(
UserTenant, on=(
(UserTenant.tenant_id == Knowledgebase.created_by) & (UserTenant.user_id == user_id))
).where(
cls.model.id == doc_id,
UserTenant.status == StatusEnum.VALID.value,
((UserTenant.role == UserTenantRole.NORMAL) | (UserTenant.role == UserTenantRole.OWNER))
).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
@ -283,7 +285,7 @@ class DocumentService(CommonService):
docs = cls.model.select(
Knowledgebase.embd_id).join(
Knowledgebase, on=(
Knowledgebase.id == cls.model.kb_id)).where(
Knowledgebase.id == cls.model.kb_id)).where(
cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
docs = docs.dicts()
if not docs:
@ -306,9 +308,9 @@ class DocumentService(CommonService):
Tenant.asr_id,
Tenant.llm_id,
)
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id))
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
.where(cls.model.id == doc_id)
.join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id))
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
.where(cls.model.id == doc_id)
)
configs = configs.dicts()
if not configs:
@ -336,6 +338,8 @@ class DocumentService(CommonService):
@classmethod
@DB.connection_context()
def update_parser_config(cls, id, config):
if not config:
return
e, d = cls.get_by_id(id)
if not e:
raise LookupError(f"Document({id}) not found.")
@ -372,6 +376,7 @@ class DocumentService(CommonService):
"progress_msg": "Task is queued...",
"process_begin_at": get_format_time()
})
@classmethod
@DB.connection_context()
def update_meta_fields(cls, doc_id, meta_fields):
@ -394,6 +399,7 @@ class DocumentService(CommonService):
has_graphrag = False
e, doc = DocumentService.get_by_id(d["id"])
status = doc.run # TaskStatus.RUNNING.value
priority = 0
for t in tsks:
if 0 <= t.progress < 1:
finished = False
@ -405,16 +411,17 @@ class DocumentService(CommonService):
has_raptor = True
elif t.task_type == "graphrag":
has_graphrag = True
priority = max(priority, t.priority)
prg /= len(tsks)
if finished and bad:
prg = -1
status = TaskStatus.FAIL.value
elif finished:
if d["parser_config"].get("raptor", {}).get("use_raptor") and not has_raptor:
queue_raptor_o_graphrag_tasks(d, "raptor")
queue_raptor_o_graphrag_tasks(d, "raptor", priority)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
elif d["parser_config"].get("graphrag", {}).get("use_graphrag") and not has_graphrag:
queue_raptor_o_graphrag_tasks(d, "graphrag")
queue_raptor_o_graphrag_tasks(d, "graphrag", priority)
prg = 0.98 * len(tsks) / (len(tsks) + 1)
else:
status = TaskStatus.DONE.value
@ -423,7 +430,7 @@ class DocumentService(CommonService):
info = {
"process_duation": datetime.timestamp(
datetime.now()) -
d["process_begin_at"].timestamp(),
d["process_begin_at"].timestamp(),
"run": status}
if prg != 0:
info["progress"] = prg
@ -451,7 +458,7 @@ class DocumentService(CommonService):
return False
def queue_raptor_o_graphrag_tasks(doc, ty):
def queue_raptor_o_graphrag_tasks(doc, ty, priority):
chunking_config = DocumentService.get_chunking_config(doc["id"])
hasher = xxhash.xxh64()
for field in sorted(chunking_config.keys()):
@ -474,17 +481,17 @@ def queue_raptor_o_graphrag_tasks(doc, ty):
hasher.update(ty.encode("utf-8"))
task["digest"] = hasher.hexdigest()
bulk_insert_into_db(Task, [task], True)
assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status."
assert REDIS_CONN.queue_product(get_svr_queue_name(priority), message=task), "Can't access Redis. Please check the Redis' status."
def doc_upload_and_parse(conversation_id, file_objs, user_id):
from rag.app import presentation, picture, naive, audio, email
from api.db.services.api_service import API4ConversationService
from api.db.services.conversation_service import ConversationService
from api.db.services.dialog_service import DialogService
from api.db.services.file_service import FileService
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from api.db.services.api_service import API4ConversationService
from api.db.services.conversation_service import ConversationService
from rag.app import audio, email, naive, picture, presentation
e, conv = ConversationService.get_by_id(conversation_id)
if not e:

View File

@ -34,12 +34,24 @@ from rag.utils.storage_factory import STORAGE_IMPL
class FileService(CommonService):
# Service class for managing file operations and storage
model = File
@classmethod
@DB.connection_context()
def get_by_pf_id(cls, tenant_id, pf_id, page_number, items_per_page,
orderby, desc, keywords):
# Get files by parent folder ID with pagination and filtering
# Args:
# tenant_id: ID of the tenant
# pf_id: Parent folder ID
# page_number: Page number for pagination
# items_per_page: Number of items per page
# orderby: Field to order by
# desc: Boolean indicating descending order
# keywords: Search keywords
# Returns:
# Tuple of (file_list, total_count)
if keywords:
files = cls.model.select().where(
(cls.model.tenant_id == tenant_id),
@ -80,6 +92,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_kb_id_by_file_id(cls, file_id):
# Get knowledge base IDs associated with a file
# Args:
# file_id: File ID
# Returns:
# List of dictionaries containing knowledge base IDs and names
kbs = (cls.model.select(*[Knowledgebase.id, Knowledgebase.name])
.join(File2Document, on=(File2Document.file_id == file_id))
.join(Document, on=(File2Document.document_id == Document.id))
@ -95,6 +112,12 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_by_pf_id_name(cls, id, name):
# Get file by parent folder ID and name
# Args:
# id: Parent folder ID
# name: File name
# Returns:
# File object or None if not found
file = cls.model.select().where((cls.model.parent_id == id) & (cls.model.name == name))
if file.count():
e, file = cls.get_by_id(file[0].id)
@ -106,6 +129,14 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_id_list_by_id(cls, id, name, count, res):
# Recursively get list of file IDs by traversing folder structure
# Args:
# id: Starting folder ID
# name: List of folder names to traverse
# count: Current depth in traversal
# res: List to store results
# Returns:
# List of file IDs
if count < len(name):
file = cls.get_by_pf_id_name(id, name[count])
if file:
@ -119,6 +150,12 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_all_innermost_file_ids(cls, folder_id, result_ids):
# Get IDs of all files in the deepest level of folders
# Args:
# folder_id: Starting folder ID
# result_ids: List to store results
# Returns:
# List of file IDs
subfolders = cls.model.select().where(cls.model.parent_id == folder_id)
if subfolders.exists():
for subfolder in subfolders:
@ -130,6 +167,14 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def create_folder(cls, file, parent_id, name, count):
# Recursively create folder structure
# Args:
# file: Current file object
# parent_id: Parent folder ID
# name: List of folder names to create
# count: Current depth in creation
# Returns:
# Created file object
if count > len(name) - 2:
return file
else:
@ -148,6 +193,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def is_parent_folder_exist(cls, parent_id):
# Check if parent folder exists
# Args:
# parent_id: Parent folder ID
# Returns:
# Boolean indicating if folder exists
parent_files = cls.model.select().where(cls.model.id == parent_id)
if parent_files.count():
return True
@ -157,6 +207,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_root_folder(cls, tenant_id):
# Get or create root folder for tenant
# Args:
# tenant_id: Tenant ID
# Returns:
# Root folder dictionary
for file in cls.model.select().where((cls.model.tenant_id == tenant_id),
(cls.model.parent_id == cls.model.id)
):
@ -179,6 +234,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_kb_folder(cls, tenant_id):
# Get knowledge base folder for tenant
# Args:
# tenant_id: Tenant ID
# Returns:
# Knowledge base folder dictionary
for root in cls.model.select().where(
(cls.model.tenant_id == tenant_id), (cls.model.parent_id == cls.model.id)):
for folder in cls.model.select().where(
@ -190,6 +250,16 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def new_a_file_from_kb(cls, tenant_id, name, parent_id, ty=FileType.FOLDER.value, size=0, location=""):
# Create a new file from knowledge base
# Args:
# tenant_id: Tenant ID
# name: File name
# parent_id: Parent folder ID
# ty: File type
# size: File size
# location: File location
# Returns:
# Created file dictionary
for file in cls.query(tenant_id=tenant_id, parent_id=parent_id, name=name):
return file.to_dict()
file = {
@ -209,6 +279,10 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def init_knowledgebase_docs(cls, root_id, tenant_id):
# Initialize knowledge base documents
# Args:
# root_id: Root folder ID
# tenant_id: Tenant ID
for _ in cls.model.select().where((cls.model.name == KNOWLEDGEBASE_FOLDER_NAME)\
& (cls.model.parent_id == root_id)):
return
@ -222,6 +296,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_parent_folder(cls, file_id):
# Get parent folder of a file
# Args:
# file_id: File ID
# Returns:
# Parent folder object
file = cls.model.select().where(cls.model.id == file_id)
if file.count():
e, file = cls.get_by_id(file[0].parent_id)
@ -234,6 +313,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def get_all_parent_folders(cls, start_id):
# Get all parent folders in path
# Args:
# start_id: Starting file ID
# Returns:
# List of parent folder objects
parent_folders = []
current_id = start_id
while current_id:
@ -249,6 +333,11 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def insert(cls, file):
# Insert a new file record
# Args:
# file: File data dictionary
# Returns:
# Created file object
if not cls.save(**file):
raise RuntimeError("Database error (File)!")
return File(**file)
@ -256,6 +345,7 @@ class FileService(CommonService):
@classmethod
@DB.connection_context()
def delete(cls, file):
#
return cls.delete_by_id(file.id)
@classmethod

View File

@ -13,28 +13,80 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.db import StatusEnum, TenantPermission
from api.db.db_models import Knowledgebase, DB, Tenant, User, UserTenant,Document
from api.db.services.common_service import CommonService
from datetime import datetime
from peewee import fn
from api.db import StatusEnum, TenantPermission
from api.db.db_models import DB, Document, Knowledgebase, Tenant, User, UserTenant
from api.db.services.common_service import CommonService
from api.utils import current_timestamp, datetime_format
class KnowledgebaseService(CommonService):
"""Service class for managing knowledge base operations.
This class extends CommonService to provide specialized functionality for knowledge base
management, including document parsing status tracking, access control, and configuration
management. It handles operations such as listing, creating, updating, and deleting
knowledge bases, as well as managing their associated documents and permissions.
The class implements a comprehensive set of methods for:
- Document parsing status verification
- Knowledge base access control
- Parser configuration management
- Tenant-based knowledge base organization
Attributes:
model: The Knowledgebase model class for database operations.
"""
model = Knowledgebase
@classmethod
@DB.connection_context()
def is_parsed_done(cls, kb_id):
"""
Check if all documents in the knowledge base have completed parsing
def accessible4deletion(cls, kb_id, user_id):
"""Check if a knowledge base can be deleted by a specific user.
This method verifies whether a user has permission to delete a knowledge base
by checking if they are the creator of that knowledge base.
Args:
kb_id: Knowledge base ID
kb_id (str): The unique identifier of the knowledge base to check.
user_id (str): The unique identifier of the user attempting the deletion.
Returns:
If all documents are parsed successfully, returns (True, None)
If any document is not fully parsed, returns (False, error_message)
bool: True if the user has permission to delete the knowledge base,
False if the user doesn't have permission or the knowledge base doesn't exist.
Example:
>>> KnowledgebaseService.accessible4deletion("kb123", "user456")
True
Note:
- This method only checks creator permissions
- A return value of False can mean either:
1. The knowledge base doesn't exist
2. The user is not the creator of the knowledge base
"""
# Check if a knowledge base can be deleted by a user
docs = cls.model.select(
cls.model.id).where(cls.model.id == kb_id, cls.model.created_by == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
return True
@classmethod
@DB.connection_context()
def is_parsed_done(cls, kb_id):
# Check if all documents in the knowledge base have completed parsing
#
# Args:
# kb_id: Knowledge base ID
#
# Returns:
# If all documents are parsed successfully, returns (True, None)
# If any document is not fully parsed, returns (False, error_message)
from api.db import TaskStatus
from api.db.services.document_service import DocumentService
@ -60,11 +112,16 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def list_documents_by_ids(cls,kb_ids):
doc_ids=cls.model.select(Document.id.alias("document_id")).join(Document,on=(cls.model.id == Document.kb_id)).where(
def list_documents_by_ids(cls, kb_ids):
# Get document IDs associated with given knowledge base IDs
# Args:
# kb_ids: List of knowledge base IDs
# Returns:
# List of document IDs
doc_ids = cls.model.select(Document.id.alias("document_id")).join(Document, on=(cls.model.id == Document.kb_id)).where(
cls.model.id.in_(kb_ids)
)
doc_ids =list(doc_ids.dicts())
doc_ids = list(doc_ids.dicts())
doc_ids = [doc["document_id"] for doc in doc_ids]
return doc_ids
@ -75,12 +132,25 @@ class KnowledgebaseService(CommonService):
orderby, desc, keywords,
parser_id=None
):
# Get knowledge bases by tenant IDs with pagination and filtering
# Args:
# joined_tenant_ids: List of tenant IDs
# user_id: Current user ID
# page_number: Page number for pagination
# items_per_page: Number of items per page
# orderby: Field to order by
# desc: Boolean indicating descending order
# keywords: Search keywords
# parser_id: Optional parser ID filter
# Returns:
# Tuple of (knowledge_base_list, total_count)
fields = [
cls.model.id,
cls.model.avatar,
cls.model.name,
cls.model.language,
cls.model.description,
cls.model.tenant_id,
cls.model.permission,
cls.model.doc_num,
cls.model.token_num,
@ -115,13 +185,19 @@ class KnowledgebaseService(CommonService):
count = kbs.count()
kbs = kbs.paginate(page_number, items_per_page)
if page_number and items_per_page:
kbs = kbs.paginate(page_number, items_per_page)
return list(kbs.dicts()), count
@classmethod
@DB.connection_context()
def get_kb_ids(cls, tenant_id):
# Get all knowledge base IDs for a tenant
# Args:
# tenant_id: Tenant ID
# Returns:
# List of knowledge base IDs
fields = [
cls.model.id,
]
@ -132,9 +208,13 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_detail(cls, kb_id):
# Get detailed information about a knowledge base
# Args:
# kb_id: Knowledge base ID
# Returns:
# Dictionary containing knowledge base details
fields = [
cls.model.id,
# Tenant.embd_id,
cls.model.embd_id,
cls.model.avatar,
cls.model.name,
@ -148,24 +228,28 @@ class KnowledgebaseService(CommonService):
cls.model.parser_config,
cls.model.pagerank]
kbs = cls.model.select(*fields).join(Tenant, on=(
(Tenant.id == cls.model.tenant_id) & (Tenant.status == StatusEnum.VALID.value))).where(
(Tenant.id == cls.model.tenant_id) & (Tenant.status == StatusEnum.VALID.value))).where(
(cls.model.id == kb_id),
(cls.model.status == StatusEnum.VALID.value)
)
if not kbs:
return
d = kbs[0].to_dict()
# d["embd_id"] = kbs[0].tenant.embd_id
return d
@classmethod
@DB.connection_context()
def update_parser_config(cls, id, config):
# Update parser configuration for a knowledge base
# Args:
# id: Knowledge base ID
# config: New parser configuration
e, m = cls.get_by_id(id)
if not e:
raise LookupError(f"knowledgebase({id}) not found.")
def dfs_update(old, new):
# Deep update of nested configuration
for k, v in new.items():
if k not in old:
old[k] = v
@ -185,6 +269,11 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_field_map(cls, ids):
# Get field mappings for knowledge bases
# Args:
# ids: List of knowledge base IDs
# Returns:
# Dictionary of field mappings
conf = {}
for k in cls.get_by_ids(ids):
if k.parser_config and "field_map" in k.parser_config:
@ -194,6 +283,12 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_by_name(cls, kb_name, tenant_id):
# Get knowledge base by name and tenant ID
# Args:
# kb_name: Knowledge base name
# tenant_id: Tenant ID
# Returns:
# Tuple of (exists, knowledge_base)
kb = cls.model.select().where(
(cls.model.name == kb_name)
& (cls.model.tenant_id == tenant_id)
@ -206,12 +301,27 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_all_ids(cls):
# Get all knowledge base IDs
# Returns:
# List of all knowledge base IDs
return [m["id"] for m in cls.model.select(cls.model.id).dicts()]
@classmethod
@DB.connection_context()
def get_list(cls, joined_tenant_ids, user_id,
page_number, items_per_page, orderby, desc, id, name):
# Get list of knowledge bases with filtering and pagination
# Args:
# joined_tenant_ids: List of tenant IDs
# user_id: Current user ID
# page_number: Page number for pagination
# items_per_page: Number of items per page
# orderby: Field to order by
# desc: Boolean indicating descending order
# id: Optional ID filter
# name: Optional name filter
# Returns:
# List of knowledge bases
kbs = cls.model.select()
if id:
kbs = kbs.where(cls.model.id == id)
@ -220,7 +330,7 @@ class KnowledgebaseService(CommonService):
kbs = kbs.where(
((cls.model.tenant_id.in_(joined_tenant_ids) & (cls.model.permission ==
TenantPermission.TEAM.value)) | (
cls.model.tenant_id == user_id))
cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value)
)
if desc:
@ -235,9 +345,15 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def accessible(cls, kb_id, user_id):
# Check if a knowledge base is accessible by a user
# Args:
# kb_id: Knowledge base ID
# user_id: User ID
# Returns:
# Boolean indicating accessibility
docs = cls.model.select(
cls.model.id).join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
@ -246,26 +362,64 @@ class KnowledgebaseService(CommonService):
@classmethod
@DB.connection_context()
def get_kb_by_id(cls, kb_id, user_id):
# Get knowledge base by ID and user ID
# Args:
# kb_id: Knowledge base ID
# user_id: User ID
# Returns:
# List containing knowledge base information
kbs = cls.model.select().join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
).where(cls.model.id == kb_id, UserTenant.user_id == user_id).paginate(0, 1)
kbs = kbs.dicts()
return list(kbs)
@classmethod
@DB.connection_context()
def get_kb_by_name(cls, kb_name, user_id):
# Get knowledge base by name and user ID
# Args:
# kb_name: Knowledge base name
# user_id: User ID
# Returns:
# List containing knowledge base information
kbs = cls.model.select().join(UserTenant, on=(UserTenant.tenant_id == Knowledgebase.tenant_id)
).where(cls.model.name == kb_name, UserTenant.user_id == user_id).paginate(0, 1)
).where(cls.model.name == kb_name, UserTenant.user_id == user_id).paginate(0, 1)
kbs = kbs.dicts()
return list(kbs)
@classmethod
@DB.connection_context()
def accessible4deletion(cls, kb_id, user_id):
docs = cls.model.select(
cls.model.id).where(cls.model.id == kb_id, cls.model.created_by == user_id).paginate(0, 1)
docs = docs.dicts()
if not docs:
return False
return True
def atomic_increase_doc_num_by_id(cls, kb_id):
data = {}
data["update_time"] = current_timestamp()
data["update_date"] = datetime_format(datetime.now())
data["doc_num"] = cls.model.doc_num + 1
num = cls.model.update(data).where(cls.model.id == kb_id).execute()
return num
@classmethod
@DB.connection_context()
def update_document_number_in_init(cls, kb_id, doc_num):
"""
Only use this function when init system
"""
ok, kb = cls.get_by_id(kb_id)
if not ok:
return
kb.doc_num = doc_num
dirty_fields = kb.dirty_fields
if cls.model._meta.combined.get("update_time") in dirty_fields:
dirty_fields.remove(cls.model._meta.combined["update_time"])
if cls.model._meta.combined.get("update_date") in dirty_fields:
dirty_fields.remove(cls.model._meta.combined["update_date"])
try:
kb.save(only=dirty_fields)
except ValueError as e:
if str(e) == "no data to save!":
pass # that's OK
else:
raise e

View File

@ -0,0 +1,71 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from datetime import datetime
import peewee
from api.db.db_models import DB, TenantLangfuse
from api.db.services.common_service import CommonService
from api.utils import current_timestamp, datetime_format
class TenantLangfuseService(CommonService):
"""
All methods that modify the status should be enclosed within a DB.atomic() context to ensure atomicity
and maintain data integrity in case of errors during execution.
"""
model = TenantLangfuse
@classmethod
@DB.connection_context()
def filter_by_tenant(cls, tenant_id):
fields = [cls.model.tenant_id, cls.model.host, cls.model.secret_key, cls.model.public_key]
try:
keys = cls.model.select(*fields).where(cls.model.tenant_id == tenant_id).first()
return keys
except peewee.DoesNotExist:
return None
@classmethod
@DB.connection_context()
def filter_by_tenant_with_info(cls, tenant_id):
fields = [cls.model.tenant_id, cls.model.host, cls.model.secret_key, cls.model.public_key]
try:
keys = cls.model.select(*fields).where(cls.model.tenant_id == tenant_id).dicts().first()
return keys
except peewee.DoesNotExist:
return None
@classmethod
def update_by_tenant(cls, tenant_id, langfuse_keys):
langfuse_keys["update_time"] = current_timestamp()
langfuse_keys["update_date"] = datetime_format(datetime.now())
return cls.model.update(**langfuse_keys).where(cls.model.tenant_id == tenant_id).execute()
@classmethod
def save(cls, **kwargs):
kwargs["create_time"] = current_timestamp()
kwargs["create_date"] = datetime_format(datetime.now())
kwargs["update_time"] = current_timestamp()
kwargs["update_date"] = datetime_format(datetime.now())
obj = cls.model.create(**kwargs)
return obj
@classmethod
def delete_model(cls, langfuse_model):
langfuse_model.delete_instance()

View File

@ -13,17 +13,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import os
from api.db.services.user_service import TenantService
from api.utils.file_utils import get_project_base_directory
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel, TTSModel
from langfuse import Langfuse
from api import settings
from api.db import LLMType
from api.db.db_models import DB
from api.db.db_models import LLMFactories, LLM, TenantLLM
from api.db.db_models import DB, LLM, LLMFactories, TenantLLM
from api.db.services.common_service import CommonService
from api.db.services.langfuse_service import TenantLangfuseService
from api.db.services.user_service import TenantService
from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
class LLMFactoriesService(CommonService):
@ -52,16 +52,8 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def get_my_llms(cls, tenant_id):
fields = [
cls.model.llm_factory,
LLMFactories.logo,
LLMFactories.tags,
cls.model.model_type,
cls.model.llm_name,
cls.model.used_tokens
]
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
return list(objs)
@ -75,7 +67,7 @@ class TenantLLMService(CommonService):
# model name must be xxx@yyy
try:
model_factories = json.load(open(os.path.join(get_project_base_directory(), "conf/llm_factories.json"), "r"))["factory_llm_infos"]
model_factories = settings.FACTORY_LLM_INFOS
model_providers = set([f["name"] for f in model_factories])
if arr[-1] not in model_providers:
return model_name, None
@ -110,6 +102,9 @@ class TenantLLMService(CommonService):
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
if model_config:
model_config = model_config.to_dict()
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if llm:
model_config["is_tools"] = llm[0].is_tools
if not model_config:
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
@ -117,8 +112,7 @@ class TenantLLMService(CommonService):
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
if not model_config:
if mdlnm == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
"llm_name": llm_name, "api_base": ""}
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
else:
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
@ -127,43 +121,32 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type,
llm_name=None, lang="Chinese"):
def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese"):
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
return EmbeddingModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.RERANK:
if model_config["llm_factory"] not in RerankModel:
return
return RerankModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.IMAGE2TEXT.value:
if model_config["llm_factory"] not in CvModel:
return
return CvModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], lang,
base_url=model_config["api_base"]
)
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"])
if llm_type == LLMType.CHAT.value:
if model_config["llm_factory"] not in ChatModel:
return
return ChatModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.SPEECH2TEXT:
if model_config["llm_factory"] not in Seq2txtModel:
return
return Seq2txtModel[model_config["llm_factory"]](
key=model_config["api_key"], model_name=model_config["llm_name"],
lang=lang,
base_url=model_config["api_base"]
)
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
if llm_type == LLMType.TTS:
if model_config["llm_factory"] not in TTSModel:
return
@ -176,6 +159,12 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
try:
if not DB.is_connection_usable():
DB.connect()
except Exception:
DB.close()
DB.connect()
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
logging.error(f"Tenant not found: {tenant_id}")
@ -187,7 +176,7 @@ class TenantLLMService(CommonService):
LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name
LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
}
mdlnm = llm_map.get(llm_type)
@ -198,17 +187,13 @@ class TenantLLMService(CommonService):
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
try:
num = cls.model.update(
used_tokens=cls.model.used_tokens + used_tokens
).where(
cls.model.tenant_id == tenant_id,
cls.model.llm_name == llm_name,
cls.model.llm_factory == llm_factory if llm_factory else True
).execute()
num = (
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
.execute()
)
except Exception:
logging.exception(
"TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s",
tenant_id, llm_name)
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
return 0
return num
@ -216,11 +201,7 @@ class TenantLLMService(CommonService):
@classmethod
@DB.connection_context()
def get_openai_models(cls):
objs = cls.model.select().where(
(cls.model.llm_factory == "OpenAI"),
~(cls.model.llm_name == "text-embedding-3-small"),
~(cls.model.llm_name == "text-embedding-3-large")
).dicts()
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
return list(objs)
@ -229,79 +210,174 @@ class LLMBundle:
self.tenant_id = tenant_id
self.llm_type = llm_type
self.llm_name = llm_name
self.mdl = TenantLLMService.model_instance(
tenant_id, llm_type, llm_name, lang=lang)
assert self.mdl, "Can't find model for {}/{}/{}".format(
tenant_id, llm_type, llm_name)
self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang)
assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
self.max_length = model_config.get("max_tokens", 8192)
self.is_tools = model_config.get("is_tools", False)
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
if langfuse.auth_check():
self.langfuse = langfuse
self.trace = self.langfuse.trace(name=f"{self.llm_type}-{self.llm_name}")
else:
self.langfuse = None
def bind_tools(self, toolcall_session, tools):
if not self.is_tools:
return
self.mdl.bind_tools(toolcall_session, tools)
def encode(self, texts: list):
if self.langfuse:
generation = self.trace.generation(name="encode", model=self.llm_name, input={"texts": texts})
embeddings, used_tokens = self.mdl.encode(texts)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(usage_details={"total_tokens": used_tokens})
return embeddings, used_tokens
def encode_queries(self, query: str):
if self.langfuse:
generation = self.trace.generation(name="encode_queries", model=self.llm_name, input={"query": query})
emd, used_tokens = self.mdl.encode_queries(query)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(usage_details={"total_tokens": used_tokens})
return emd, used_tokens
def similarity(self, query: str, texts: list):
if self.langfuse:
generation = self.trace.generation(name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
sim, used_tokens = self.mdl.similarity(query, texts)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(usage_details={"total_tokens": used_tokens})
return sim, used_tokens
def describe(self, image, max_tokens=300):
txt, used_tokens = self.mdl.describe(image, max_tokens)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation = self.trace.generation(name="describe", metadata={"model": self.llm_name})
txt, used_tokens = self.mdl.describe(image)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
return txt
def describe_with_prompt(self, image, prompt):
if self.langfuse:
generation = self.trace.generation(name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
return txt
def transcription(self, audio):
if self.langfuse:
generation = self.trace.generation(name="transcription", metadata={"model": self.llm_name})
txt, used_tokens = self.mdl.transcription(audio)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
if self.langfuse:
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
return txt
def tts(self, text):
if self.langfuse:
span = self.trace.span(name="tts", input={"text": text})
for chunk in self.mdl.tts(text):
if isinstance(chunk, int):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, chunk, self.llm_name):
logging.error(
"LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
return
yield chunk
if self.langfuse:
span.end()
def _remove_reasoning_content(self, txt: str) -> str:
first_think_start = txt.find("<think>")
if first_think_start == -1:
return txt
last_think_end = txt.rfind("</think>")
if last_think_end == -1:
return txt
if last_think_end < first_think_start:
return txt
return txt[last_think_end + len("</think>") :]
def chat(self, system, history, gen_conf):
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
if isinstance(txt, int) and not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
logging.error(
"LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name,
used_tokens))
if self.langfuse:
generation = self.trace.generation(name="chat", model=self.llm_name, input={"system": system, "history": history})
chat = self.mdl.chat
if self.is_tools and self.mdl.is_tools:
chat = self.mdl.chat_with_tools
txt, used_tokens = chat(system, history, gen_conf)
txt = self._remove_reasoning_content(txt)
if isinstance(txt, int) and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
if self.langfuse:
generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
return txt
def chat_streamly(self, system, history, gen_conf):
for txt in self.mdl.chat_streamly(system, history, gen_conf):
if self.langfuse:
generation = self.trace.generation(name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
ans = ""
chat_streamly = self.mdl.chat_streamly
total_tokens = 0
if self.is_tools and self.mdl.is_tools:
chat_streamly = self.mdl.chat_streamly_with_tools
for txt in chat_streamly(system, history, gen_conf):
if isinstance(txt, int):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, txt, self.llm_name):
logging.error(
"LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name,
txt))
return
yield txt
total_tokens = txt
if self.langfuse:
generation.end(output={"output": ans})
break
if txt.endswith("</think>"):
ans = ans.rstrip("</think>")
ans += txt
yield ans
if total_tokens > 0:
if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))

View File

@ -28,7 +28,7 @@ from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.utils import current_timestamp, get_uuid
from deepdoc.parser.excel_parser import RAGFlowExcelParser
from rag.settings import SVR_QUEUE_NAME
from rag.settings import get_svr_queue_name
from rag.utils.storage_factory import STORAGE_IMPL
from rag.utils.redis_conn import REDIS_CONN
from api import settings
@ -36,6 +36,12 @@ from rag.nlp import search
def trim_header_by_lines(text: str, max_length) -> str:
# Trim header text to maximum length while preserving line breaks
# Args:
# text: Input text to trim
# max_length: Maximum allowed length
# Returns:
# Trimmed text
len_text = len(text)
if len_text <= max_length:
return text
@ -46,11 +52,37 @@ def trim_header_by_lines(text: str, max_length) -> str:
class TaskService(CommonService):
"""Service class for managing document processing tasks.
This class extends CommonService to provide specialized functionality for document
processing task management, including task creation, progress tracking, and chunk
management. It handles various document types (PDF, Excel, etc.) and manages their
processing lifecycle.
The class implements a robust task queue system with retry mechanisms and progress
tracking, supporting both synchronous and asynchronous task execution.
Attributes:
model: The Task model class for database operations.
"""
model = Task
@classmethod
@DB.connection_context()
def get_task(cls, task_id):
"""Retrieve detailed task information by task ID.
This method fetches comprehensive task details including associated document,
knowledge base, and tenant information. It also handles task retry logic and
progress updates.
Args:
task_id (str): The unique identifier of the task to retrieve.
Returns:
dict: Task details dictionary containing all task information and related metadata.
Returns None if task is not found or has exceeded retry limit.
"""
fields = [
cls.model.id,
cls.model.doc_id,
@ -105,6 +137,18 @@ class TaskService(CommonService):
@classmethod
@DB.connection_context()
def get_tasks(cls, doc_id: str):
"""Retrieve all tasks associated with a document.
This method fetches all processing tasks for a given document, ordered by page
number and creation time. It includes task progress and chunk information.
Args:
doc_id (str): The unique identifier of the document.
Returns:
list[dict]: List of task dictionaries containing task details.
Returns None if no tasks are found.
"""
fields = [
cls.model.id,
cls.model.from_page,
@ -124,11 +168,31 @@ class TaskService(CommonService):
@classmethod
@DB.connection_context()
def update_chunk_ids(cls, id: str, chunk_ids: str):
"""Update the chunk IDs associated with a task.
This method updates the chunk_ids field of a task, which stores the IDs of
processed document chunks in a space-separated string format.
Args:
id (str): The unique identifier of the task.
chunk_ids (str): Space-separated string of chunk identifiers.
"""
cls.model.update(chunk_ids=chunk_ids).where(cls.model.id == id).execute()
@classmethod
@DB.connection_context()
def get_ongoing_doc_name(cls):
"""Get names of documents that are currently being processed.
This method retrieves information about documents that are in the processing state,
including their locations and associated IDs. It uses database locking to ensure
thread safety when accessing the task information.
Returns:
list[tuple]: A list of tuples, each containing (parent_id/kb_id, location)
for documents currently being processed. Returns empty list if
no documents are being processed.
"""
with DB.lock("get_task", -1):
docs = (
cls.model.select(
@ -172,6 +236,18 @@ class TaskService(CommonService):
@classmethod
@DB.connection_context()
def do_cancel(cls, id):
"""Check if a task should be cancelled based on its document status.
This method determines whether a task should be cancelled by checking the
associated document's run status and progress. A task should be cancelled
if its document is marked for cancellation or has negative progress.
Args:
id (str): The unique identifier of the task to check.
Returns:
bool: True if the task should be cancelled, False otherwise.
"""
task = cls.model.get_by_id(id)
_, doc = DocumentService.get_by_id(task.doc_id)
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
@ -179,6 +255,18 @@ class TaskService(CommonService):
@classmethod
@DB.connection_context()
def update_progress(cls, id, info):
"""Update the progress information for a task.
This method updates both the progress message and completion percentage of a task.
It handles platform-specific behavior (macOS vs others) and uses database locking
when necessary to ensure thread safety.
Args:
id (str): The unique identifier of the task to update.
info (dict): Dictionary containing progress information with keys:
- progress_msg (str, optional): Progress message to append
- progress (float, optional): Progress percentage (0.0 to 1.0)
"""
if os.environ.get("MACOS"):
if info["progress_msg"]:
task = cls.model.get_by_id(id)
@ -201,7 +289,26 @@ class TaskService(CommonService):
).execute()
def queue_tasks(doc: dict, bucket: str, name: str):
def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
"""Create and queue document processing tasks.
This function creates processing tasks for a document based on its type and configuration.
It handles different document types (PDF, Excel, etc.) differently and manages task
chunking and configuration. It also implements task reuse optimization by checking
for previously completed tasks.
Args:
doc (dict): Document dictionary containing metadata and configuration.
bucket (str): Storage bucket name where the document is stored.
name (str): File name of the document.
priority (int, optional): Priority level for task queueing (default is 0).
Note:
- For PDF documents, tasks are created per page range based on configuration
- For Excel documents, tasks are created per row range
- Task digests are calculated for optimization and reuse
- Previous task chunks may be reused if available
"""
def new_task():
return {"id": get_uuid(), "doc_id": doc["id"], "progress": 0.0, "from_page": 0, "to_page": 100000000}
@ -252,6 +359,7 @@ def queue_tasks(doc: dict, bucket: str, name: str):
task_digest = hasher.hexdigest()
task["digest"] = task_digest
task["progress"] = 0.0
task["priority"] = priority
prev_tasks = TaskService.get_tasks(doc["id"])
ck_num = 0
@ -274,11 +382,31 @@ def queue_tasks(doc: dict, bucket: str, name: str):
unfinished_task_array = [task for task in parse_task_array if task["progress"] < 1.0]
for unfinished_task in unfinished_task_array:
assert REDIS_CONN.queue_product(
SVR_QUEUE_NAME, message=unfinished_task
get_svr_queue_name(priority), message=unfinished_task
), "Can't access Redis. Please check the Redis' status."
def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
"""Attempt to reuse chunks from previous tasks for optimization.
This function checks if chunks from previously completed tasks can be reused for
the current task, which can significantly improve processing efficiency. It matches
tasks based on page ranges and configuration digests.
Args:
task (dict): Current task dictionary to potentially reuse chunks for.
prev_tasks (list[dict]): List of previous task dictionaries to check for reuse.
chunking_config (dict): Configuration dictionary for chunk processing.
Returns:
int: Number of chunks successfully reused. Returns 0 if no chunks could be reused.
Note:
Chunks can only be reused if:
- A previous task exists with matching page range and configuration digest
- The previous task was completed successfully (progress = 1.0)
- The previous task has valid chunk IDs
"""
idx = 0
while idx < len(prev_tasks):
prev_task = prev_tasks[idx]

View File

@ -0,0 +1,43 @@
from api.db.db_models import UserCanvasVersion, DB
from api.db.services.common_service import CommonService
from peewee import DoesNotExist
class UserCanvasVersionService(CommonService):
model = UserCanvasVersion
@classmethod
@DB.connection_context()
def list_by_canvas_id(cls, user_canvas_id):
try:
user_canvas_version = cls.model.select(
*[cls.model.id,
cls.model.create_time,
cls.model.title,
cls.model.create_date,
cls.model.update_date,
cls.model.user_canvas_id,
cls.model.update_time]
).where(cls.model.user_canvas_id == user_canvas_id)
return user_canvas_version
except DoesNotExist:
return None
except Exception:
return None
@classmethod
@DB.connection_context()
def delete_all_versions(cls, user_canvas_id):
try:
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(cls.model.create_time.desc())
if user_canvas_version.count() > 20:
for i in range(20, user_canvas_version.count()):
cls.delete(user_canvas_version[i].id)
return True
except DoesNotExist:
return None
except Exception:
return None

View File

@ -29,11 +29,27 @@ from rag.settings import MINIO
class UserService(CommonService):
"""Service class for managing user-related database operations.
This class extends CommonService to provide specialized functionality for user management,
including authentication, user creation, updates, and deletions.
Attributes:
model: The User model class for database operations.
"""
model = User
@classmethod
@DB.connection_context()
def filter_by_id(cls, user_id):
"""Retrieve a user by their ID.
Args:
user_id: The unique identifier of the user.
Returns:
User object if found, None otherwise.
"""
try:
user = cls.model.select().where(cls.model.id == user_id).get()
return user
@ -43,6 +59,15 @@ class UserService(CommonService):
@classmethod
@DB.connection_context()
def query_user(cls, email, password):
"""Authenticate a user with email and password.
Args:
email: User's email address.
password: User's password in plain text.
Returns:
User object if authentication successful, None otherwise.
"""
user = cls.model.select().where((cls.model.email == email),
(cls.model.status == StatusEnum.VALID.value)).first()
if user and check_password_hash(str(user.password), password):
@ -85,6 +110,14 @@ class UserService(CommonService):
class TenantService(CommonService):
"""Service class for managing tenant-related database operations.
This class extends CommonService to provide functionality for tenant management,
including tenant information retrieval and credit management.
Attributes:
model: The Tenant model class for database operations.
"""
model = Tenant
@classmethod
@ -136,8 +169,25 @@ class TenantService(CommonService):
class UserTenantService(CommonService):
"""Service class for managing user-tenant relationship operations.
This class extends CommonService to handle the many-to-many relationship
between users and tenants, managing user roles and tenant memberships.
Attributes:
model: The UserTenant model class for database operations.
"""
model = UserTenant
@classmethod
@DB.connection_context()
def filter_by_id(cls, user_tenant_id):
try:
user_tenant = cls.model.select().where((cls.model.id == user_tenant_id) & (cls.model.status == StatusEnum.VALID.value)).get()
return user_tenant
except peewee.DoesNotExist:
return None
@classmethod
@DB.connection_context()
def save(cls, **kwargs):
@ -150,6 +200,7 @@ class UserTenantService(CommonService):
@DB.connection_context()
def get_by_tenant_id(cls, tenant_id):
fields = [
cls.model.id,
cls.model.user_id,
cls.model.status,
cls.model.role,
@ -181,3 +232,21 @@ class UserTenantService(CommonService):
return list(cls.model.select(*fields)
.join(User, on=((cls.model.tenant_id == User.id) & (UserTenant.user_id == user_id) & (UserTenant.status == StatusEnum.VALID.value)))
.where(cls.model.status == StatusEnum.VALID.value).dicts())
@classmethod
@DB.connection_context()
def get_num_members(cls, user_id: str):
cnt_members = cls.model.select(peewee.fn.COUNT(cls.model.id)).where(cls.model.tenant_id == user_id).scalar()
return cnt_members
@classmethod
@DB.connection_context()
def filter_by_tenant_and_user_id(cls, tenant_id, user_id):
try:
user_tenant = cls.model.select().where(
(cls.model.tenant_id == tenant_id) & (cls.model.status == StatusEnum.VALID.value) &
(cls.model.user_id == user_id)
).first()
return user_tenant
except peewee.DoesNotExist:
return None

View File

@ -29,6 +29,7 @@ import time
import traceback
from concurrent.futures import ThreadPoolExecutor
import threading
import uuid
from werkzeug.serving import run_simple
from api import settings
@ -46,13 +47,17 @@ from rag.utils.redis_conn import RedisDistributedLock
stop_event = threading.Event()
RAGFLOW_DEBUGPY_LISTEN = int(os.environ.get('RAGFLOW_DEBUGPY_LISTEN', "0"))
def update_progress():
redis_lock = RedisDistributedLock("update_progress", timeout=60)
lock_value = str(uuid.uuid4())
redis_lock = RedisDistributedLock("update_progress", lock_value=lock_value, timeout=60)
logging.info(f"update_progress lock_value: {lock_value}")
while not stop_event.is_set():
try:
if not redis_lock.acquire():
continue
DocumentService.update_progress()
if redis_lock.acquire():
DocumentService.update_progress()
redis_lock.release()
stop_event.wait(6)
except Exception:
logging.exception("update_progress exception")
@ -84,6 +89,11 @@ if __name__ == '__main__':
settings.init_settings()
print_rag_settings()
if RAGFLOW_DEBUGPY_LISTEN > 0:
logging.info(f"debugpy listen on {RAGFLOW_DEBUGPY_LISTEN}")
import debugpy
debugpy.listen(("0.0.0.0", RAGFLOW_DEBUGPY_LISTEN))
# init db
init_web_db()
init_web_data()

View File

@ -16,6 +16,7 @@
import os
from datetime import date
from enum import IntEnum, Enum
import json
import rag.utils.es_conn
import rag.utils.infinity_conn
@ -24,6 +25,7 @@ from rag.nlp import search
from graphrag import search as kg_search
from api.utils import get_base_config, decrypt_database_config
from api.constants import RAG_FLOW_SERVICE_NAME
from api.utils.file_utils import get_project_base_directory
LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
@ -40,6 +42,7 @@ PARSERS = None
HOST_IP = None
HOST_PORT = None
SECRET_KEY = None
FACTORY_LLM_INFOS = None
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
@ -59,9 +62,12 @@ docStoreConn = None
retrievaler = None
kg_retrievaler = None
# user registration switch
REGISTER_ENABLED = 1
def init_settings():
global LLM, LLM_FACTORY, LLM_BASE_URL, LIGHTEN, DATABASE_TYPE, DATABASE
global LLM, LLM_FACTORY, LLM_BASE_URL, LIGHTEN, DATABASE_TYPE, DATABASE, FACTORY_LLM_INFOS, REGISTER_ENABLED
LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
@ -69,6 +75,16 @@ def init_settings():
LLM_DEFAULT_MODELS = LLM.get("default_models", {})
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
LLM_BASE_URL = LLM.get("base_url")
try:
REGISTER_ENABLED = int(os.environ.get("REGISTER_ENABLED", "1"))
except Exception:
pass
try:
with open(os.path.join(get_project_base_directory(), "conf", "llm_factories.json"), "r") as f:
FACTORY_LLM_INFOS = json.load(f)["factory_llm_infos"]
except Exception:
FACTORY_LLM_INFOS = []
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
if not LIGHTEN:
@ -93,7 +109,7 @@ def init_settings():
API_KEY = LLM.get("api_key", "")
PARSERS = LLM.get(
"parsers",
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email,tag:Tag")
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag")
HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")

View File

@ -13,9 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import functools
import json
import logging
import random
import time
from base64 import b64encode
@ -27,59 +27,60 @@ from uuid import uuid1
import requests
from flask import (
Response, jsonify, send_file, make_response,
Response,
jsonify,
make_response,
send_file,
)
from flask import (
request as flask_request,
)
from itsdangerous import URLSafeTimedSerializer
from werkzeug.http import HTTP_STATUS_CODES
from api.db.db_models import APIToken
from api import settings
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
from api.db.db_models import APIToken
from api.utils import CustomJSONEncoder, get_uuid, json_dumps
from api.utils import CustomJSONEncoder, get_uuid
from api.utils import json_dumps
from api.constants import REQUEST_WAIT_SEC, REQUEST_MAX_WAIT_SEC
requests.models.complexjson.dumps = functools.partial(
json.dumps, cls=CustomJSONEncoder)
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
def request(**kwargs):
sess = requests.Session()
stream = kwargs.pop('stream', sess.stream)
timeout = kwargs.pop('timeout', None)
kwargs['headers'] = {
k.replace(
'_',
'-').upper(): v for k,
v in kwargs.get(
'headers',
{}).items()}
stream = kwargs.pop("stream", sess.stream)
timeout = kwargs.pop("timeout", None)
kwargs["headers"] = {k.replace("_", "-").upper(): v for k, v in kwargs.get("headers", {}).items()}
prepped = requests.Request(**kwargs).prepare()
if settings.CLIENT_AUTHENTICATION and settings.HTTP_APP_KEY and settings.SECRET_KEY:
timestamp = str(round(time() * 1000))
nonce = str(uuid1())
signature = b64encode(HMAC(settings.SECRET_KEY.encode('ascii'), b'\n'.join([
timestamp.encode('ascii'),
nonce.encode('ascii'),
settings.HTTP_APP_KEY.encode('ascii'),
prepped.path_url.encode('ascii'),
prepped.body if kwargs.get('json') else b'',
urlencode(
sorted(
kwargs['data'].items()),
quote_via=quote,
safe='-._~').encode('ascii')
if kwargs.get('data') and isinstance(kwargs['data'], dict) else b'',
]), 'sha1').digest()).decode('ascii')
signature = b64encode(
HMAC(
settings.SECRET_KEY.encode("ascii"),
b"\n".join(
[
timestamp.encode("ascii"),
nonce.encode("ascii"),
settings.HTTP_APP_KEY.encode("ascii"),
prepped.path_url.encode("ascii"),
prepped.body if kwargs.get("json") else b"",
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode("ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
]
),
"sha1",
).digest()
).decode("ascii")
prepped.headers.update({
'TIMESTAMP': timestamp,
'NONCE': nonce,
'APP-KEY': settings.HTTP_APP_KEY,
'SIGNATURE': signature,
})
prepped.headers.update(
{
"TIMESTAMP": timestamp,
"NONCE": nonce,
"APP-KEY": settings.HTTP_APP_KEY,
"SIGNATURE": signature,
}
)
return sess.send(prepped, stream=stream, timeout=timeout)
@ -87,7 +88,7 @@ def request(**kwargs):
def get_exponential_backoff_interval(retries, full_jitter=False):
"""Calculate the exponential backoff wait time."""
# Will be zero if factor equals 0
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2 ** retries))
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2**retries))
# Full jitter according to
# https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
if full_jitter:
@ -96,12 +97,9 @@ def get_exponential_backoff_interval(retries, full_jitter=False):
return max(0, countdown)
def get_data_error_result(code=settings.RetCode.DATA_ERROR,
message='Sorry! Data missing!'):
def get_data_error_result(code=settings.RetCode.DATA_ERROR, message="Sorry! Data missing!"):
logging.exception(Exception(message))
result_dict = {
"code": code,
"message": message}
result_dict = {"code": code, "message": message}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
@ -119,23 +117,27 @@ def server_error_response(e):
except BaseException:
pass
if len(e.args) > 1:
return get_json_result(
code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=e.args[1])
if repr(e).find("index_not_found_exception") >= 0:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR,
message="No chunk found, please upload file and parse it.")
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
def error_response(response_code, message=None):
if message is None:
message = HTTP_STATUS_CODES.get(response_code, 'Unknown Error')
message = HTTP_STATUS_CODES.get(response_code, "Unknown Error")
return Response(json.dumps({
'message': message,
'code': response_code,
}), status=response_code, mimetype='application/json')
return Response(
json.dumps(
{
"message": message,
"code": response_code,
}
),
status=response_code,
mimetype="application/json",
)
def validate_request(*args, **kwargs):
@ -160,13 +162,10 @@ def validate_request(*args, **kwargs):
if no_arguments or error_arguments:
error_string = ""
if no_arguments:
error_string += "required argument are missing: {}; ".format(
",".join(no_arguments))
error_string += "required argument are missing: {}; ".format(",".join(no_arguments))
if error_arguments:
error_string += "required argument values: {}".format(
",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
return get_json_result(
code=settings.RetCode.ARGUMENT_ERROR, message=error_string)
error_string += "required argument values: {}".format(",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=error_string)
return func(*_args, **_kwargs)
return decorated_function
@ -180,8 +179,7 @@ def not_allowed_parameters(*params):
input_arguments = flask_request.json or flask_request.form.to_dict()
for param in params:
if param in input_arguments:
return get_json_result(
code=settings.RetCode.ARGUMENT_ERROR, message=f"Parameter {param} isn't allowed")
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"Parameter {param} isn't allowed")
return f(*args, **kwargs)
return wrapper
@ -190,14 +188,14 @@ def not_allowed_parameters(*params):
def is_localhost(ip):
return ip in {'127.0.0.1', '::1', '[::1]', 'localhost'}
return ip in {"127.0.0.1", "::1", "[::1]", "localhost"}
def send_file_in_mem(data, filename):
if not isinstance(data, (str, bytes)):
data = json_dumps(data)
if isinstance(data, str):
data = data.encode('utf-8')
data = data.encode("utf-8")
f = BytesIO()
f.write(data)
@ -206,7 +204,7 @@ def send_file_in_mem(data, filename):
return send_file(f, as_attachment=True, attachment_filename=filename)
def get_json_result(code=settings.RetCode.SUCCESS, message='success', data=None):
def get_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
response = {"code": code, "message": message, "data": data}
return jsonify(response)
@ -214,27 +212,24 @@ def get_json_result(code=settings.RetCode.SUCCESS, message='success', data=None)
def apikey_required(func):
@wraps(func)
def decorated_function(*args, **kwargs):
token = flask_request.headers.get('Authorization').split()[1]
token = flask_request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return build_error_result(
message='API-KEY is invalid!', code=settings.RetCode.FORBIDDEN
)
kwargs['tenant_id'] = objs[0].tenant_id
return build_error_result(message="API-KEY is invalid!", code=settings.RetCode.FORBIDDEN)
kwargs["tenant_id"] = objs[0].tenant_id
return func(*args, **kwargs)
return decorated_function
def build_error_result(code=settings.RetCode.FORBIDDEN, message='success'):
def build_error_result(code=settings.RetCode.FORBIDDEN, message="success"):
response = {"code": code, "message": message}
response = jsonify(response)
response.status_code = code
return response
def construct_response(code=settings.RetCode.SUCCESS,
message='success', data=None, auth=None):
def construct_response(code=settings.RetCode.SUCCESS, message="success", data=None, auth=None):
result_dict = {"code": code, "message": message, "data": data}
response_dict = {}
for key, value in result_dict.items():
@ -253,7 +248,7 @@ def construct_response(code=settings.RetCode.SUCCESS,
return response
def construct_result(code=settings.RetCode.DATA_ERROR, message='data is missing'):
def construct_result(code=settings.RetCode.DATA_ERROR, message="data is missing"):
result_dict = {"code": code, "message": message}
response = {}
for key, value in result_dict.items():
@ -264,7 +259,7 @@ def construct_result(code=settings.RetCode.DATA_ERROR, message='data is missing'
return jsonify(response)
def construct_json_result(code=settings.RetCode.SUCCESS, message='success', data=None):
def construct_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
if data is None:
return jsonify({"code": code, "message": message})
else:
@ -286,7 +281,7 @@ def construct_error_response(e):
def token_required(func):
@wraps(func)
def decorated_function(*args, **kwargs):
authorization_str = flask_request.headers.get('Authorization')
authorization_str = flask_request.headers.get("Authorization")
if not authorization_str:
return get_json_result(data=False, message="`Authorization` can't be empty")
authorization_list = authorization_str.split()
@ -295,11 +290,8 @@ def token_required(func):
token = authorization_list[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!',
code=settings.RetCode.AUTHENTICATION_ERROR
)
kwargs['tenant_id'] = objs[0].tenant_id
return get_json_result(data=False, message="Authentication error: API key is invalid!", code=settings.RetCode.AUTHENTICATION_ERROR)
kwargs["tenant_id"] = objs[0].tenant_id
return func(*args, **kwargs)
return decorated_function
@ -316,11 +308,11 @@ def get_result(code=settings.RetCode.SUCCESS, message="", data=None):
return jsonify(response)
def get_error_data_result(message='Sorry! Data missing!', code=settings.RetCode.DATA_ERROR,
):
result_dict = {
"code": code,
"message": message}
def get_error_data_result(
message="Sorry! Data missing!",
code=settings.RetCode.DATA_ERROR,
):
result_dict = {"code": code, "message": message}
response = {}
for key, value in result_dict.items():
if value is None and key != "code":
@ -347,14 +339,17 @@ def valid_parameter(parameter, valid_values):
return get_error_data_result(f"'{parameter}' is not in {valid_values}")
def dataset_readonly_fields(field_name):
return field_name in ["chunk_count", "create_date", "create_time", "update_date", "update_time", "created_by", "document_count", "token_num", "status", "tenant_id", "id"]
def get_parser_config(chunk_method, parser_config):
if parser_config:
return parser_config
if not chunk_method:
chunk_method = "naive"
key_mapping = {
"naive": {"chunk_token_num": 128, "delimiter": "\\n!?;。;!?", "html4excel": False, "layout_recognize": "DeepDOC",
"raptor": {"use_raptor": False}},
"naive": {"chunk_token_num": 128, "delimiter": "\\n!?;。;!?", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}},
"qa": {"raptor": {"use_raptor": False}},
"tag": None,
"resume": None,
@ -365,38 +360,115 @@ def get_parser_config(chunk_method, parser_config):
"laws": {"raptor": {"use_raptor": False}},
"presentation": {"raptor": {"use_raptor": False}},
"one": None,
"knowledge_graph": {"chunk_token_num": 8192, "delimiter": "\\n!?;。;!?",
"entity_types": ["organization", "person", "location", "event", "time"]},
"knowledge_graph": {"chunk_token_num": 8192, "delimiter": "\\n!?;。;!?", "entity_types": ["organization", "person", "location", "event", "time"]},
"email": None,
"picture": None}
"picture": None,
}
parser_config = key_mapping[chunk_method]
return parser_config
def get_data_openai(id=None,
created=None,
model=None,
prompt_tokens= 0,
completion_tokens=0,
content = None,
finish_reason= None,
object="chat.completion",
param=None,
):
total_tokens= prompt_tokens + completion_tokens
return {
"id":f"{id}",
"object": object,
"created": int(time.time()) if created else None,
"model": model,
"param":param,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
"completion_tokens_details": {
"reasoning_tokens": 0,
"accepted_prediction_tokens": 0,
"rejected_prediction_tokens": 0
}
},
"choices": [
{
"message": {
"role": "assistant",
"content": content
},
"logprobs": None,
"finish_reason": finish_reason,
"index": 0
}
]
}
def valid_parser_config(parser_config):
if not parser_config:
return
scopes = set([
"chunk_token_num",
"delimiter",
"raptor",
"graphrag",
"layout_recognize",
"task_page_size",
"pages",
"html4excel",
"auto_keywords",
"auto_questions",
"tag_kb_ids",
"topn_tags",
"filename_embd_weight"
])
scopes = set(
[
"chunk_token_num",
"delimiter",
"raptor",
"graphrag",
"layout_recognize",
"task_page_size",
"pages",
"html4excel",
"auto_keywords",
"auto_questions",
"tag_kb_ids",
"topn_tags",
"filename_embd_weight",
]
)
for k in parser_config.keys():
assert k in scopes, f"Abnormal 'parser_config'. Invalid key: {k}"
assert isinstance(parser_config.get("chunk_token_num", 1), int), "chunk_token_num should be int"
assert 1 <= parser_config.get("chunk_token_num", 1) < 100000000, "chunk_token_num should be in range from 1 to 100000000"
assert isinstance(parser_config.get("task_page_size", 1), int), "task_page_size should be int"
assert 1 <= parser_config.get("task_page_size", 1) < 100000000, "task_page_size should be in range from 1 to 100000000"
assert isinstance(parser_config.get("auto_keywords", 1), int), "auto_keywords should be int"
assert 0 <= parser_config.get("auto_keywords", 0) < 32, "auto_keywords should be in range from 0 to 32"
assert isinstance(parser_config.get("auto_questions", 1), int), "auto_questions should be int"
assert 0 <= parser_config.get("auto_questions", 0) < 10, "auto_questions should be in range from 0 to 10"
assert isinstance(parser_config.get("topn_tags", 1), int), "topn_tags should be int"
assert 0 <= parser_config.get("topn_tags", 0) < 10, "topn_tags should be in range from 0 to 10"
assert isinstance(parser_config.get("html4excel", False), bool), "html4excel should be True or False"
assert isinstance(parser_config.get("delimiter", ""), str), "delimiter should be str"
def check_duplicate_ids(ids, id_type="item"):
"""
Check for duplicate IDs in a list and return unique IDs and error messages.
Args:
ids (list): List of IDs to check for duplicates
id_type (str): Type of ID for error messages (e.g., 'document', 'dataset', 'chunk')
Returns:
tuple: (unique_ids, error_messages)
- unique_ids (list): List of unique IDs
- error_messages (list): List of error messages for duplicate IDs
"""
id_count = {}
duplicate_messages = []
# Count occurrences of each ID
for id_value in ids:
id_count[id_value] = id_count.get(id_value, 0) + 1
# Check for duplicates
for id_value, count in id_count.items():
if count > 1:
duplicate_messages.append(f"Duplicate {id_type} ids: {id_value}")
# Return unique IDs and error messages
return list(set(ids)), duplicate_messages

View File

@ -5,10 +5,10 @@
"create_time": {"type": "varchar", "default": ""},
"create_timestamp_flt": {"type": "float", "default": 0.0},
"img_id": {"type": "varchar", "default": ""},
"docnm_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"docnm_kwd": {"type": "varchar", "default": ""},
"title_tks": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"title_sm_tks": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"name_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"name_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"important_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"tag_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"important_tks": {"type": "varchar", "default": "", "analyzer": "whitespace"},
@ -27,16 +27,16 @@
"rank_int": {"type": "integer", "default": 0},
"rank_flt": {"type": "float", "default": 0},
"available_int": {"type": "integer", "default": 1},
"knowledge_graph_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"knowledge_graph_kwd": {"type": "varchar", "default": ""},
"entities_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"pagerank_fea": {"type": "integer", "default": 0},
"tag_feas": {"type": "varchar", "default": ""},
"from_entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"to_entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"entity_type_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"},
"source_id": {"type": "varchar", "default": ""},
"from_entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"to_entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"entity_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"entity_type_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"source_id": {"type": "varchar", "default": "", "analyzer": "whitespace-#"},
"n_hop_with_weight": {"type": "varchar", "default": ""},
"removed_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace"}
"removed_kwd": {"type": "varchar", "default": "", "analyzer": "whitespace-#"}
}

File diff suppressed because it is too large Load Diff

View File

@ -45,7 +45,7 @@ class RAGFlowExcelParser:
raise Exception(f"****wxy: Failed to parse CSV and convert to Excel Workbook: {e_csv}")
try:
return load_workbook(file_like_object)
return load_workbook(file_like_object,data_only= True)
except Exception as e:
logging.info(f"****wxy: openpyxl load error: {e}, try pandas instead")
try:

View File

@ -0,0 +1,91 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from PIL import Image
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from rag.prompts import vision_llm_figure_describe_prompt
def vision_figure_parser_figure_data_wraper(figures_data_without_positions):
return [(
(figure_data[1], [figure_data[0]]),
[(0, 0, 0, 0, 0)]
) for figure_data in figures_data_without_positions if isinstance(figure_data[1], Image.Image)]
class VisionFigureParser:
def __init__(self, vision_model, figures_data, *args, **kwargs):
self.vision_model = vision_model
self._extract_figures_info(figures_data)
assert len(self.figures) == len(self.descriptions)
assert not self.positions or (len(self.figures) == len(self.positions))
def _extract_figures_info(self, figures_data):
self.figures = []
self.descriptions = []
self.positions = []
for item in figures_data:
# position
if len(item) == 2 and isinstance(item[1], list) and len(item[1]) == 1 and isinstance(item[1][0], tuple) and len(item[1][0]) == 5:
img_desc = item[0]
assert len(img_desc) == 2 and isinstance(img_desc[0], Image.Image) and isinstance(img_desc[1], list), "Should be (figure, [description])"
self.figures.append(img_desc[0])
self.descriptions.append(img_desc[1])
self.positions.append(item[1])
else:
assert len(item) == 2 and isinstance(item, tuple) and isinstance(item[1], list), f"get {len(item)=}, {item=}"
self.figures.append(item[0])
self.descriptions.append(item[1])
def _assemble(self):
self.assembled = []
self.has_positions = len(self.positions) != 0
for i in range(len(self.figures)):
figure = self.figures[i]
desc = self.descriptions[i]
pos = self.positions[i] if self.has_positions else None
figure_desc = (figure, desc)
if pos is not None:
self.assembled.append((figure_desc, pos))
else:
self.assembled.append((figure_desc,))
return self.assembled
def __call__(self, **kwargs):
callback = kwargs.get("callback", lambda prog, msg: None)
for idx, img_binary in enumerate(self.figures or []):
figure_num = idx # 0-based
txt = picture_vision_llm_chunk(
binary=img_binary,
vision_model=self.vision_model,
prompt=vision_llm_figure_describe_prompt(),
callback=callback,
)
if txt:
self.descriptions[figure_num] = txt + "\n".join(self.descriptions[figure_num])
self._assemble()
return self.assembled

View File

@ -17,31 +17,36 @@
import logging
import os
import random
from timeit import default_timer as timer
import re
import sys
import threading
import xgboost as xgb
from copy import deepcopy
from io import BytesIO
import re
import pdfplumber
from PIL import Image
from timeit import default_timer as timer
import numpy as np
import pdfplumber
import trio
import xgboost as xgb
from huggingface_hub import snapshot_download
from PIL import Image
from pypdf import PdfReader as pdf2_read
from api import settings
from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer
from deepdoc.vision import OCR, LayoutRecognizer, Recognizer, TableStructureRecognizer
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from rag.nlp import rag_tokenizer
from copy import deepcopy
from huggingface_hub import snapshot_download
from rag.prompts import vision_llm_describe_prompt
from rag.settings import PARALLEL_DEVICES
LOCK_KEY_pdfplumber = "global_shared_lock_pdfplumber"
if LOCK_KEY_pdfplumber not in sys.modules:
sys.modules[LOCK_KEY_pdfplumber] = threading.Lock()
class RAGFlowPdfParser:
def __init__(self):
def __init__(self, **kwargs):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
@ -53,7 +58,12 @@ class RAGFlowPdfParser:
^_-
"""
self.ocr = OCR()
self.parallel_limiter = None
if PARALLEL_DEVICES is not None and PARALLEL_DEVICES > 1:
self.parallel_limiter = [trio.CapacityLimiter(1) for _ in range(PARALLEL_DEVICES)]
if hasattr(self, "model_speciess"):
self.layouter = LayoutRecognizer("layout." + self.model_speciess)
else:
@ -63,7 +73,7 @@ class RAGFlowPdfParser:
self.updown_cnt_mdl = xgb.Booster()
if not settings.LIGHTEN:
try:
import torch
import torch.cuda
if torch.cuda.is_available():
self.updown_cnt_mdl.set_param({"device": "cuda"})
except Exception:
@ -97,7 +107,7 @@ class RAGFlowPdfParser:
def _y_dis(
self, a, b):
return (
b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
b["top"] + b["bottom"] - a["top"] - a["bottom"]) / 2
def _match_proj(self, b):
proj_patt = [
@ -120,9 +130,9 @@ class RAGFlowPdfParser:
tks_down = rag_tokenizer.tokenize(down["text"][:LEN]).split()
tks_up = rag_tokenizer.tokenize(up["text"][-LEN:]).split()
tks_all = up["text"][-LEN:].strip() \
+ (" " if re.match(r"[a-zA-Z0-9]+",
up["text"][-1] + down["text"][0]) else "") \
+ down["text"][:LEN].strip()
+ (" " if re.match(r"[a-zA-Z0-9]+",
up["text"][-1] + down["text"][0]) else "") \
+ down["text"][:LEN].strip()
tks_all = rag_tokenizer.tokenize(tks_all).split()
fea = [
up.get("R", -1) == down.get("R", -1),
@ -144,7 +154,7 @@ class RAGFlowPdfParser:
True if re.search(r"[,][^。.]+$", up["text"]) else False,
True if re.search(r"[,][^。.]+$", up["text"]) else False,
True if re.search(r"[\(][^\)]+$", up["text"])
and re.search(r"[\)]", down["text"]) else False,
and re.search(r"[\)]", down["text"]) else False,
self._match_proj(down),
True if re.match(r"[A-Z]", down["text"]) else False,
True if re.match(r"[A-Z]", up["text"][-1]) else False,
@ -206,7 +216,7 @@ class RAGFlowPdfParser:
continue
for tb in tbls: # for table
left, top, right, bott = tb["x0"] - MARGIN, tb["top"] - MARGIN, \
tb["x1"] + MARGIN, tb["bottom"] + MARGIN
tb["x1"] + MARGIN, tb["bottom"] + MARGIN
left *= ZM
top *= ZM
right *= ZM
@ -283,9 +293,9 @@ class RAGFlowPdfParser:
b["H_right"] = spans[ii]["x1"]
b["SP"] = ii
def __ocr(self, pagenum, img, chars, ZM=3):
def __ocr(self, pagenum, img, chars, ZM=3, device_id: int | None = None):
start = timer()
bxs = self.ocr.detect(np.array(img))
bxs = self.ocr.detect(np.array(img), device_id)
logging.info(f"__ocr detecting boxes of a image cost ({timer() - start}s)")
start = timer()
@ -330,7 +340,7 @@ class RAGFlowPdfParser:
b["box_image"] = self.ocr.get_rotate_crop_image(img_np, np.array([[left, top], [right, top], [right, bott], [left, bott]], dtype=np.float32))
boxes_to_reg.append(b)
del b["txt"]
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg])
texts = self.ocr.recognize_batch([b["box_image"] for b in boxes_to_reg], device_id)
for i in range(len(boxes_to_reg)):
boxes_to_reg[i]["text"] = texts[i]
del boxes_to_reg[i]["box_image"]
@ -448,7 +458,7 @@ class RAGFlowPdfParser:
b_["text"],
any(feats),
any(concatting_feats),
))
))
i += 1
continue
# merge up and down
@ -643,8 +653,7 @@ class RAGFlowPdfParser:
b_["top"] = b["top"]
self.boxes.pop(i)
def _extract_table_figure(self, need_image, ZM,
return_html, need_position):
def _extract_table_figure(self, need_image, ZM, return_html, need_position, separate_tables_figures=False):
tables = {}
figures = {}
# extract figure and table boxes
@ -656,7 +665,7 @@ class RAGFlowPdfParser:
i += 1
continue
lout_no = str(self.boxes[i]["page_number"]) + \
"-" + str(self.boxes[i]["layoutno"])
"-" + str(self.boxes[i]["layoutno"])
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption",
"title",
"figure caption",
@ -758,9 +767,6 @@ class RAGFlowPdfParser:
tk)
self.boxes.pop(i)
res = []
positions = []
def cropout(bxs, ltype, poss):
nonlocal ZM
pn = set([b["page_number"] - 1 for b in bxs])
@ -808,6 +814,10 @@ class RAGFlowPdfParser:
height += img.size[1]
return pic
res = []
positions = []
figure_results = []
figure_positions = []
# crop figure out and add caption
for k, bxs in figures.items():
txt = "\n".join([b["text"] for b in bxs])
@ -815,28 +825,46 @@ class RAGFlowPdfParser:
continue
poss = []
res.append(
(cropout(
bxs,
"figure", poss),
[txt]))
positions.append(poss)
if separate_tables_figures:
figure_results.append(
(cropout(
bxs,
"figure", poss),
[txt]))
figure_positions.append(poss)
else:
res.append(
(cropout(
bxs,
"figure", poss),
[txt]))
positions.append(poss)
for k, bxs in tables.items():
if not bxs:
continue
bxs = Recognizer.sort_Y_firstly(bxs, np.mean(
[(b["bottom"] - b["top"]) / 2 for b in bxs]))
poss = []
res.append((cropout(bxs, "table", poss),
self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
positions.append(poss)
assert len(positions) == len(res)
if need_position:
return list(zip(res, positions))
return res
if separate_tables_figures:
assert len(positions) + len(figure_positions) == len(res) + len(figure_results)
if need_position:
return list(zip(res, positions)), list(zip(figure_results, figure_positions))
else:
return res, figure_results
else:
assert len(positions) == len(res)
if need_position:
return list(zip(res, positions))
else:
return res
def proj_match(self, line):
if len(line) <= 2:
@ -976,62 +1004,56 @@ class RAGFlowPdfParser:
start = timer()
try:
with sys.modules[LOCK_KEY_pdfplumber]:
self.pdf = pdfplumber.open(fnm) if isinstance(
fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
try:
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
except Exception as e:
logging.warning(f"Failed to extract characters for pages {page_from}-{page_to}: {str(e)}")
self.page_chars = [[] for _ in range(page_to - page_from)] # If failed to extract, using empty list instead.
with (pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))) as pdf:
self.pdf = pdf
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
try:
self.page_chars = [[c for c in page.dedupe_chars().chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
except Exception as e:
logging.warning(f"Failed to extract characters for pages {page_from}-{page_to}: {str(e)}")
self.page_chars = [[] for _ in range(page_to - page_from)] # If failed to extract, using empty list instead.
self.total_page = len(self.pdf.pages)
self.total_page = len(self.pdf.pages)
except Exception:
logging.exception("RAGFlowPdfParser __images__")
logging.info(f"__images__ dedupe_chars cost {timer() - start}s")
self.outlines = []
try:
self.pdf = pdf2_read(fnm if isinstance(fnm, str) else BytesIO(fnm))
outlines = self.pdf.outline
with (pdf2_read(fnm if isinstance(fnm, str)
else BytesIO(fnm))) as pdf:
self.pdf = pdf
def dfs(arr, depth):
for a in arr:
if isinstance(a, dict):
self.outlines.append((a["/Title"], depth))
continue
dfs(a, depth + 1)
outlines = self.pdf.outline
def dfs(arr, depth):
for a in arr:
if isinstance(a, dict):
self.outlines.append((a["/Title"], depth))
continue
dfs(a, depth + 1)
dfs(outlines, 0)
dfs(outlines, 0)
except Exception as e:
logging.warning(f"Outlines exception: {e}")
finally:
self.pdf.close()
if not self.outlines:
logging.warning("Miss outlines")
logging.debug("Images converted.")
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(
random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in
range(len(self.page_chars))]
range(len(self.page_chars))]
if sum([1 if e else 0 for e in self.is_english]) > len(
self.page_images) / 2:
self.is_english = True
else:
self.is_english = False
start = timer()
for i, img in enumerate(self.page_images):
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(
np.median(sorted([c["height"] for c in chars])) if chars else 0
)
self.mean_width.append(
np.median(sorted([c["width"] for c in chars])) if chars else 8
)
self.page_cum_height.append(img.size[1] / zoomin)
async def __img_ocr(i, id, img, chars, limiter):
j = 0
while j + 1 < len(chars):
if chars[j]["text"] and chars[j + 1]["text"] \
@ -1041,9 +1063,44 @@ class RAGFlowPdfParser:
chars[j]["text"] += " "
j += 1
self.__ocr(i + 1, img, chars, zoomin)
if limiter:
async with limiter:
await trio.to_thread.run_sync(lambda: self.__ocr(i + 1, img, chars, zoomin, id))
else:
self.__ocr(i + 1, img, chars, zoomin, id)
if callback and i % 6 == 5:
callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
async def __img_ocr_launcher():
def __ocr_preprocess():
chars = self.page_chars[i] if not self.is_english else []
self.mean_height.append(
np.median(sorted([c["height"] for c in chars])) if chars else 0
)
self.mean_width.append(
np.median(sorted([c["width"] for c in chars])) if chars else 8
)
self.page_cum_height.append(img.size[1] / zoomin)
return chars
if self.parallel_limiter:
async with trio.open_nursery() as nursery:
for i, img in enumerate(self.page_images):
chars = __ocr_preprocess()
nursery.start_soon(__img_ocr, i, i % PARALLEL_DEVICES, img, chars,
self.parallel_limiter[i % PARALLEL_DEVICES])
await trio.sleep(0.1)
else:
for i, img in enumerate(self.page_images):
chars = __ocr_preprocess()
await __img_ocr(i, 0, img, chars, None)
start = timer()
trio.run(__img_ocr_launcher)
logging.info(f"__images__ {len(self.page_images)} pages cost {timer() - start}s")
if not self.is_english and not any(
@ -1108,7 +1165,7 @@ class RAGFlowPdfParser:
self.page_images[pns[0]].crop((left * ZM, top * ZM,
right *
ZM, min(
bottom, self.page_images[pns[0]].size[1])
bottom, self.page_images[pns[0]].size[1])
))
)
if 0 < ii < len(poss) - 1:
@ -1206,5 +1263,52 @@ class PlainParser:
raise NotImplementedError
class VisionParser(RAGFlowPdfParser):
def __init__(self, vision_model, *args, **kwargs):
super().__init__(*args, **kwargs)
self.vision_model = vision_model
def __images__(self, fnm, zoomin=3, page_from=0, page_to=299, callback=None):
try:
with sys.modules[LOCK_KEY_pdfplumber]:
self.pdf = pdfplumber.open(fnm) if isinstance(
fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.total_page = len(self.pdf.pages)
except Exception:
self.page_images = None
self.total_page = 0
logging.exception("VisionParser __images__")
def __call__(self, filename, from_page=0, to_page=100000, **kwargs):
callback = kwargs.get("callback", lambda prog, msg: None)
self.__images__(fnm=filename, zoomin=3, page_from=from_page, page_to=to_page, **kwargs)
total_pdf_pages = self.total_page
start_page = max(0, from_page)
end_page = min(to_page, total_pdf_pages)
all_docs = []
for idx, img_binary in enumerate(self.page_images or []):
pdf_page_num = idx # 0-based
if pdf_page_num < start_page or pdf_page_num >= end_page:
continue
docs = picture_vision_llm_chunk(
binary=img_binary,
vision_model=self.vision_model,
prompt=vision_llm_describe_prompt(page=pdf_page_num+1),
callback=callback,
)
if docs:
all_docs.append(docs)
return [(doc, "") for doc in all_docs], []
if __name__ == "__main__":
pass

View File

@ -23,25 +23,56 @@ class RAGFlowPptParser:
def __init__(self):
super().__init__()
def __get_bulleted_text(self, paragraph):
is_bulleted = bool(paragraph._p.xpath("./a:pPr/a:buChar")) or bool(paragraph._p.xpath("./a:pPr/a:buAutoNum")) or bool(paragraph._p.xpath("./a:pPr/a:buBlip"))
if is_bulleted:
return f"{' '* paragraph.level}.{paragraph.text}"
else:
return paragraph.text
def __extract(self, shape):
if shape.shape_type == 19:
tb = shape.table
rows = []
for i in range(1, len(tb.rows)):
rows.append("; ".join([tb.cell(
0, j).text + ": " + tb.cell(i, j).text for j in range(len(tb.columns)) if tb.cell(i, j)]))
return "\n".join(rows)
try:
# First try to get text content
if hasattr(shape, 'has_text_frame') and shape.has_text_frame:
text_frame = shape.text_frame
texts = []
for paragraph in text_frame.paragraphs:
if paragraph.text.strip():
texts.append(self.__get_bulleted_text(paragraph))
return "\n".join(texts)
if shape.has_text_frame:
return shape.text_frame.text
# Safely get shape_type
try:
shape_type = shape.shape_type
except NotImplementedError:
# If shape_type is not available, try to get text content
if hasattr(shape, 'text'):
return shape.text.strip()
return ""
if shape.shape_type == 6:
texts = []
for p in sorted(shape.shapes, key=lambda x: (x.top // 10, x.left)):
t = self.__extract(p)
if t:
texts.append(t)
return "\n".join(texts)
# Handle table
if shape_type == 19:
tb = shape.table
rows = []
for i in range(1, len(tb.rows)):
rows.append("; ".join([tb.cell(
0, j).text + ": " + tb.cell(i, j).text for j in range(len(tb.columns)) if tb.cell(i, j)]))
return "\n".join(rows)
# Handle group shape
if shape_type == 6:
texts = []
for p in sorted(shape.shapes, key=lambda x: (x.top // 10, x.left)):
t = self.__extract_texts(p)
if t:
texts.append(t)
return "\n".join(texts)
return ""
except Exception as e:
logging.error(f"Error processing shape: {str(e)}")
return ""
def __call__(self, fnm, from_page, to_page, callback=None):
ppt = Presentation(fnm) if isinstance(

View File

@ -46,8 +46,8 @@ class LayoutRecognizer(Recognizer):
def __init__(self, domain):
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
get_project_base_directory(),
"rag/res/deepdoc")
super().__init__(self.labels, domain, model_dir)
except Exception:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
@ -56,18 +56,23 @@ class LayoutRecognizer(Recognizer):
super().__init__(self.labels, domain, model_dir)
self.garbage_layouts = ["footer", "header", "reference"]
self.client = None
if os.environ.get("TENSORRT_DLA_SVR"):
from deepdoc.vision.dla_cli import DLAClient
self.client = DLAClient(os.environ["TENSORRT_DLA_SVR"])
def __call__(self, image_list, ocr_res, scale_factor=3,
thr=0.2, batch_size=16, drop=True):
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16, drop=True):
def __is_garbage(b):
patt = [r"^•+$", r"(版权归©|免责条款|地址[:])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
patt = [r"^•+$", "^[0-9]{1,2} / ?[0-9]{1,2}$",
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
"(资料|数据)来源[:]", "[0-9a-z._-]+@[a-z0-9-]+\\.[a-z]{2,3}",
"\\(cid *: *[0-9]+ *\\)"
]
return any([re.search(p, b["text"]) for p in patt])
layouts = super().__call__(image_list, thr, batch_size)
if self.client:
layouts = self.client.predict(image_list)
else:
layouts = super().__call__(image_list, thr, batch_size)
# save_results(image_list, layouts, self.labels, output_dir='output/', threshold=0.7)
assert len(image_list) == len(ocr_res)
# Tag layout type
@ -160,6 +165,7 @@ class LayoutRecognizer(Recognizer):
def forward(self, image_list, thr=0.7, batch_size=16):
return super().__call__(image_list, thr, batch_size)
class LayoutRecognizer4YOLOv10(LayoutRecognizer):
labels = [
"title",
@ -185,9 +191,9 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
def preprocess(self, image_list):
inputs = []
new_shape = self.input_shape # height, width
new_shape = self.input_shape # height, width
for img in image_list:
shape = img.shape[:2]# current shape [height, width]
shape = img.shape[:2] # current shape [height, width]
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
@ -242,4 +248,3 @@ class LayoutRecognizer4YOLOv10(LayoutRecognizer):
"bbox": [float(t) for t in boxes[i].tolist()],
"score": float(scores[i])
} for i in indices]

View File

@ -22,6 +22,7 @@ import os
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from rag.settings import PARALLEL_DEVICES
from .operators import * # noqa: F403
from . import operators
import math
@ -66,10 +67,12 @@ def create_operators(op_param_list, global_config=None):
return ops
def load_model(model_dir, nm):
def load_model(model_dir, nm, device_id: int | None = None):
model_file_path = os.path.join(model_dir, nm + ".onnx")
model_cached_tag = model_file_path + str(device_id) if device_id is not None else model_file_path
global loaded_models
loaded_model = loaded_models.get(model_file_path)
loaded_model = loaded_models.get(model_cached_tag)
if loaded_model:
logging.info(f"load_model {model_file_path} reuses cached model")
return loaded_model
@ -81,7 +84,7 @@ def load_model(model_dir, nm):
def cuda_is_available():
try:
import torch
if torch.cuda.is_available():
if torch.cuda.is_available() and torch.cuda.device_count() > device_id:
return True
except Exception:
return False
@ -98,7 +101,7 @@ def load_model(model_dir, nm):
run_options = ort.RunOptions()
if cuda_is_available():
cuda_provider_options = {
"device_id": 0, # Use specific GPU
"device_id": device_id, # Use specific GPU
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
}
@ -108,7 +111,7 @@ def load_model(model_dir, nm):
providers=['CUDAExecutionProvider'],
provider_options=[cuda_provider_options]
)
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(device_id))
logging.info(f"load_model {model_file_path} uses GPU")
else:
sess = ort.InferenceSession(
@ -118,12 +121,12 @@ def load_model(model_dir, nm):
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
logging.info(f"load_model {model_file_path} uses CPU")
loaded_model = (sess, run_options)
loaded_models[model_file_path] = loaded_model
loaded_models[model_cached_tag] = loaded_model
return loaded_model
class TextRecognizer:
def __init__(self, model_dir):
def __init__(self, model_dir, device_id: int | None = None):
self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")]
self.rec_batch_num = 16
postprocess_params = {
@ -132,7 +135,7 @@ class TextRecognizer:
"use_space_char": True
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.run_options = load_model(model_dir, 'rec')
self.predictor, self.run_options = load_model(model_dir, 'rec', device_id)
self.input_tensor = self.predictor.get_inputs()[0]
def resize_norm_img(self, img, max_wh_ratio):
@ -394,7 +397,7 @@ class TextRecognizer:
class TextDetector:
def __init__(self, model_dir):
def __init__(self, model_dir, device_id: int | None = None):
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': 960,
@ -418,7 +421,7 @@ class TextDetector:
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.run_options = load_model(model_dir, 'det')
self.predictor, self.run_options = load_model(model_dir, 'det', device_id)
self.input_tensor = self.predictor.get_inputs()[0]
img_h, img_w = self.input_tensor.shape[2:]
@ -524,14 +527,33 @@ class OCR:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
self.text_detector = TextDetector(model_dir)
self.text_recognizer = TextRecognizer(model_dir)
# Append muti-gpus task to the list
if PARALLEL_DEVICES is not None and PARALLEL_DEVICES > 0:
self.text_detector = []
self.text_recognizer = []
for device_id in range(PARALLEL_DEVICES):
self.text_detector.append(TextDetector(model_dir, device_id))
self.text_recognizer.append(TextRecognizer(model_dir, device_id))
else:
self.text_detector = [TextDetector(model_dir, 0)]
self.text_recognizer = [TextRecognizer(model_dir, 0)]
except Exception:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
self.text_detector = TextDetector(model_dir)
self.text_recognizer = TextRecognizer(model_dir)
if PARALLEL_DEVICES is not None:
assert PARALLEL_DEVICES > 0, "Number of devices must be >= 1"
self.text_detector = []
self.text_recognizer = []
for device_id in range(PARALLEL_DEVICES):
self.text_detector.append(TextDetector(model_dir, device_id))
self.text_recognizer.append(TextRecognizer(model_dir, device_id))
else:
self.text_detector = [TextDetector(model_dir, 0)]
self.text_recognizer = [TextRecognizer(model_dir, 0)]
self.drop_score = 0.5
self.crop_image_res_index = 0
@ -593,14 +615,17 @@ class OCR:
break
return _boxes
def detect(self, img):
def detect(self, img, device_id: int | None = None):
if device_id is None:
device_id = 0
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if img is None:
return None, None, time_dict
start = time.time()
dt_boxes, elapse = self.text_detector(img)
dt_boxes, elapse = self.text_detector[device_id](img)
time_dict['det'] = elapse
if dt_boxes is None:
@ -611,17 +636,22 @@ class OCR:
return zip(self.sorted_boxes(dt_boxes), [
("", 0) for _ in range(len(dt_boxes))])
def recognize(self, ori_im, box):
def recognize(self, ori_im, box, device_id: int | None = None):
if device_id is None:
device_id = 0
img_crop = self.get_rotate_crop_image(ori_im, box)
rec_res, elapse = self.text_recognizer([img_crop])
rec_res, elapse = self.text_recognizer[device_id]([img_crop])
text, score = rec_res[0]
if score < self.drop_score:
return ""
return text
def recognize_batch(self, img_list):
rec_res, elapse = self.text_recognizer(img_list)
def recognize_batch(self, img_list, device_id: int | None = None):
if device_id is None:
device_id = 0
rec_res, elapse = self.text_recognizer[device_id](img_list)
texts = []
for i in range(len(rec_res)):
text, score = rec_res[i]
@ -630,15 +660,17 @@ class OCR:
texts.append(text)
return texts
def __call__(self, img, cls=True):
def __call__(self, img, device_id = 0, cls=True):
time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
if device_id is None:
device_id = 0
if img is None:
return None, None, time_dict
start = time.time()
ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img)
dt_boxes, elapse = self.text_detector[device_id](img)
time_dict['det'] = elapse
if dt_boxes is None:
@ -655,7 +687,7 @@ class OCR:
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop)
rec_res, elapse = self.text_recognizer(img_crop_list)
rec_res, elapse = self.text_recognizer[device_id](img_crop_list)
time_dict['rec'] = elapse

View File

@ -195,9 +195,8 @@ class Recognizer:
(im_info[0]['scale_factor'],)).astype('float32')
return inputs
for e in im_info:
im_shape.append(np.array((e['im_shape'],)).astype('float32'))
scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
im_shape = np.array([info['im_shape'] for info in im_info], dtype='float32')
scale_factor = np.array([info['scale_factor'] for info in im_info], dtype='float32')
inputs['im_shape'] = np.concatenate(im_shape, axis=0)
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)

View File

@ -28,14 +28,24 @@ from deepdoc.vision.seeit import draw_box
from deepdoc.vision import OCR, init_in_out
import argparse
import numpy as np
import trio
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,2' #2 gpus, uncontinuous
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #1 gpu
# os.environ['CUDA_VISIBLE_DEVICES'] = '' #cpu
def main(args):
import torch.cuda
cuda_devices = torch.cuda.device_count()
limiter = [trio.CapacityLimiter(1) for _ in range(cuda_devices)] if cuda_devices > 1 else None
ocr = OCR()
images, outputs = init_in_out(args)
for i, img in enumerate(images):
bxs = ocr(np.array(img))
def __ocr(i, id, img):
print("Task {} start".format(i))
bxs = ocr(np.array(img), id)
bxs = [(line[0], line[1][0]) for line in bxs]
bxs = [{
"text": t,
@ -47,6 +57,30 @@ def main(args):
with open(outputs[i] + ".txt", "w+", encoding='utf-8') as f:
f.write("\n".join([o["text"] for o in bxs]))
print("Task {} done".format(i))
async def __ocr_thread(i, id, img, limiter = None):
if limiter:
async with limiter:
print("Task {} use device {}".format(i, id))
await trio.to_thread.run_sync(lambda: __ocr(i, id, img))
else:
__ocr(i, id, img)
async def __ocr_launcher():
if cuda_devices > 1:
async with trio.open_nursery() as nursery:
for i, img in enumerate(images):
nursery.start_soon(__ocr_thread, i, i % cuda_devices, img, limiter[i % cuda_devices])
await trio.sleep(0.1)
else:
for i, img in enumerate(images):
await __ocr_thread(i, 0, img)
trio.run(__ocr_launcher)
print("OCR tasks are all done")
if __name__ == "__main__":
parser = argparse.ArgumentParser()

View File

@ -133,7 +133,7 @@ class TableStructureRecognizer(Recognizer):
return "Ot"
@staticmethod
def construct_table(boxes, is_english=False, html=False):
def construct_table(boxes, is_english=False, html=True, **kwargs):
cap = ""
i = 0
while i < len(boxes):

View File

@ -80,28 +80,16 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
# Defaults to the v0.17.2-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2-slim
# Defaults to the v0.18.0-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.17.2
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.18.0
#
# The Docker image of the v0.17.2 edition includes:
# - Built-in embedding models:
# The Docker image of the v0.18.0 edition includes built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - BAAI/bge-reranker-v2-m3
# - maidalun1020/bce-embedding-base_v1
# - maidalun1020/bce-reranker-base_v1
# - Embedding models that will be downloaded once you select them in the RAGFlow UI:
# - BAAI/bge-base-en-v1.5
# - BAAI/bge-large-en-v1.5
# - BAAI/bge-small-en-v1.5
# - BAAI/bge-small-zh-v1.5
# - jinaai/jina-embeddings-v2-base-en
# - jinaai/jina-embeddings-v2-small-en
# - nomic-ai/nomic-embed-text-v1.5
# - sentence-transformers/all-MiniLM-L6-v2
#
#
@ -125,10 +113,12 @@ TIMEZONE='Asia/Shanghai'
# Uncomment the following line if your operating system is MacOS:
# MACOS=1
# The maximum file size for each uploaded file, in bytes.
# You can uncomment this line and update the value if you wish to change the 128M file size limit
# MAX_CONTENT_LENGTH=134217728
# After making the change, ensure you update `client_max_body_size` in nginx/nginx.conf correspondingly.
# The maximum file size limit (in bytes) for each upload to your knowledge base or File Management.
# To change the 1GB file size limit, uncomment the line below and update as needed.
# MAX_CONTENT_LENGTH=1073741824
# After updating, ensure `client_max_body_size` in nginx/nginx.conf is updated accordingly.
# Note that neither `MAX_CONTENT_LENGTH` nor `client_max_body_size` sets the maximum size for files uploaded to an agent.
# See https://ragflow.io/docs/dev/begin_component for details.
# The log level for the RAGFlow's owned packages and imported packages.
# Available level:
@ -146,3 +136,6 @@ TIMEZONE='Asia/Shanghai'
# ENDPOINT=http://oss-cn-hangzhou.aliyuncs.com
# REGION=cn-hangzhou
# BUCKET=ragflow65536
# user registration switch
REGISTER_ENABLED=1

View File

@ -78,22 +78,12 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.17.2-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.17.2`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`
- `maidalun1020/bce-embedding-base_v1`
- `maidalun1020/bce-reranker-base_v1`
- Embedding models that will be downloaded once you select them in the RAGFlow UI:
- `BAAI/bge-base-en-v1.5`
- `BAAI/bge-large-en-v1.5`
- `BAAI/bge-small-en-v1.5`
- `BAAI/bge-small-zh-v1.5`
- `jinaai/jina-embeddings-v2-base-en`
- `jinaai/jina-embeddings-v2-small-en`
- `nomic-ai/nomic-embed-text-v1.5`
- `sentence-transformers/all-MiniLM-L6-v2`
> [!TIP]
> If you cannot download the RAGFlow Docker image, try the following mirrors.
@ -146,6 +136,24 @@ The [.env](./.env) file contains important environment variables for Docker.
- `password`: The password for MinIO.
- `host`: The MinIO serving IP *and* port inside the Docker container. Defaults to `minio:9000`.
- `oss`
- `access_key`: The access key ID used to authenticate requests to the OSS service.
- `secret_key`: The secret access key used to authenticate requests to the OSS service.
- `endpoint_url`: The URL of the OSS service endpoint.
- `region`: The OSS region where the bucket is located.
- `bucket`: The name of the OSS bucket where files will be stored. When you want to store all files in a specified bucket, you need this configuration item.
- `prefix_path`: Optional. A prefix path to prepend to file names in the OSS bucket, which can help organize files within the bucket.
- `s3`:
- `access_key`: The access key ID used to authenticate requests to the S3 service.
- `secret_key`: The secret access key used to authenticate requests to the S3 service.
- `endpoint_url`: The URL of the S3-compatible service endpoint. This is necessary when using an S3-compatible protocol instead of the default AWS S3 endpoint.
- `bucket`: The name of the S3 bucket where files will be stored. When you want to store all files in a specified bucket, you need this configuration item.
- `region`: The AWS region where the S3 bucket is located. This is important for directing requests to the correct data center.
- `signature_version`: Optional. The version of the signature to use for authenticating requests. Common versions include `v4`.
- `addressing_style`: Optional. The style of addressing to use for the S3 endpoint. This can be `path` or `virtual`.
- `prefix_path`: Optional. A prefix path to prepend to file names in the S3 bucket, which can help organize files within the bucket.
- `oauth`
The OAuth configuration for signing up or signing in to RAGFlow using a third-party account. It is disabled by default. To enable this feature, uncomment the corresponding lines in **service_conf.yaml.template**.
- `github`: The GitHub authentication settings for your application. Visit the [Github Developer Settings page](https://github.com/settings/developers) to obtain your client_id and secret_key.

View File

@ -81,6 +81,7 @@ services:
--default-authentication-plugin=mysql_native_password
--tls_version="TLSv1.2,TLSv1.3"
--init-file /data/application/init.sql
--binlog_expire_logs_seconds=604800
ports:
- ${MYSQL_PORT}:3306
volumes:

View File

@ -1,22 +1,38 @@
include:
- ./docker-compose-base.yml
# To ensure that the container processes the locally modified `service_conf.yaml.template` instead of the one included in its image, you need to mount the local `service_conf.yaml.template` to the container.
services:
ragflow:
depends_on:
mysql:
condition: service_healthy
image: ${RAGFLOW_IMAGE}
# example to setup MCP server
# command:
# - --enable-mcpserver
# - --mcp-host=0.0.0.0
# - --mcp-port=9382
# - --mcp-base-url=http://127.0.0.1:9380
# - --mcp-script-path=/ragflow/mcp/server/server.py
# - --mcp-mode=self-host
# - --mcp--host-api-key="ragflow-xxxxxxx"
container_name: ragflow-server
ports:
- ${SVR_HTTP_PORT}:9380
- 80:80
- 443:443
- 5678:5678
- 5679:5679
- 9382:9382 # entry for MCP (host_port:docker_port). The docker_port should match with the value you set for `mcp-port` above
volumes:
- ./ragflow-logs:/ragflow/logs
- ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
- ./nginx/proxy.conf:/etc/nginx/proxy.conf
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
- ../history_data_agent:/ragflow/history_data_agent
- ./service_conf.yaml.template:/ragflow/conf/service_conf.yaml.template
env_file: .env
environment:
- TZ=${TIMEZONE}

View File

@ -1,29 +0,0 @@
#!/bin/bash
# replace env variables in the service_conf.yaml file
rm -rf /ragflow/conf/service_conf.yaml
while IFS= read -r line || [[ -n "$line" ]]; do
# Use eval to interpret the variable with default values
eval "echo \"$line\"" >> /ragflow/conf/service_conf.yaml
done < /ragflow/conf/service_conf.yaml.template
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/
PY=python3
CONSUMER_NO_BEG=$1
CONSUMER_NO_END=$2
function task_exe(){
JEMALLOC_PATH=$(pkg-config --variable=libdir jemalloc)/libjemalloc.so
while [ 1 -eq 1 ]; do
LD_PRELOAD=$JEMALLOC_PATH $PY rag/svr/task_executor.py $1;
done
}
for ((i=CONSUMER_NO_BEG; i<CONSUMER_NO_END; i++))
do
task_exe $i &
done
wait;

205
docker/entrypoint.sh Executable file → Normal file
View File

@ -1,35 +1,192 @@
#!/bin/bash
#!/usr/bin/env bash
# replace env variables in the service_conf.yaml file
rm -rf /ragflow/conf/service_conf.yaml
while IFS= read -r line || [[ -n "$line" ]]; do
# Use eval to interpret the variable with default values
eval "echo \"$line\"" >> /ragflow/conf/service_conf.yaml
done < /ragflow/conf/service_conf.yaml.template
set -e
/usr/sbin/nginx
# -----------------------------------------------------------------------------
# Usage and command-line argument parsing
# -----------------------------------------------------------------------------
function usage() {
echo "Usage: $0 [--disable-webserver] [--disable-taskexecutor] [--consumer-no-beg=<num>] [--consumer-no-end=<num>] [--workers=<num>] [--host-id=<string>]"
echo
echo " --disable-webserver Disables the web server (nginx + ragflow_server)."
echo " --disable-taskexecutor Disables task executor workers."
echo " --enable-mcpserver Enables the MCP server."
echo " --consumer-no-beg=<num> Start range for consumers (if using range-based)."
echo " --consumer-no-end=<num> End range for consumers (if using range-based)."
echo " --workers=<num> Number of task executors to run (if range is not used)."
echo " --host-id=<string> Unique ID for the host (defaults to \`hostname\`)."
echo
echo "Examples:"
echo " $0 --disable-taskexecutor"
echo " $0 --disable-webserver --consumer-no-beg=0 --consumer-no-end=5"
echo " $0 --disable-webserver --workers=2 --host-id=myhost123"
echo " $0 --enable-mcpserver"
exit 1
}
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/
ENABLE_WEBSERVER=1 # Default to enable web server
ENABLE_TASKEXECUTOR=1 # Default to enable task executor
ENABLE_MCP_SERVER=0
CONSUMER_NO_BEG=0
CONSUMER_NO_END=0
WORKERS=1
PY=python3
if [[ -z "$WS" || $WS -lt 1 ]]; then
WS=1
MCP_HOST="127.0.0.1"
MCP_PORT=9382
MCP_BASE_URL="http://127.0.0.1:9380"
MCP_SCRIPT_PATH="/ragflow/mcp/server/server.py"
MCP_MODE="self-host"
MCP_HOST_API_KEY=""
# -----------------------------------------------------------------------------
# Host ID logic:
# 1. By default, use the system hostname if length <= 32
# 2. Otherwise, use the full MD5 hash of the hostname (32 hex chars)
# -----------------------------------------------------------------------------
CURRENT_HOSTNAME="$(hostname)"
if [ ${#CURRENT_HOSTNAME} -le 32 ]; then
DEFAULT_HOST_ID="$CURRENT_HOSTNAME"
else
DEFAULT_HOST_ID="$(echo -n "$CURRENT_HOSTNAME" | md5sum | cut -d ' ' -f 1)"
fi
function task_exe(){
JEMALLOC_PATH=$(pkg-config --variable=libdir jemalloc)/libjemalloc.so
while [ 1 -eq 1 ];do
LD_PRELOAD=$JEMALLOC_PATH $PY rag/svr/task_executor.py $1;
HOST_ID="$DEFAULT_HOST_ID"
# Parse arguments
for arg in "$@"; do
case $arg in
--disable-webserver)
ENABLE_WEBSERVER=0
shift
;;
--disable-taskexecutor)
ENABLE_TASKEXECUTOR=0
shift
;;
--enable-mcpserver)
ENABLE_MCP_SERVER=1
shift
;;
--mcp-host=*)
MCP_HOST="${arg#*=}"
shift
;;
--mcp-port=*)
MCP_PORT="${arg#*=}"
shift
;;
--mcp-base-url=*)
MCP_BASE_URL="${arg#*=}"
shift
;;
--mcp-mode=*)
MCP_MODE="${arg#*=}"
shift
;;
--mcp-host-api-key=*)
MCP_HOST_API_KEY="${arg#*=}"
shift
;;
--mcp-script-path=*)
MCP_SCRIPT_PATH="${arg#*=}"
shift
;;
--consumer-no-beg=*)
CONSUMER_NO_BEG="${arg#*=}"
shift
;;
--consumer-no-end=*)
CONSUMER_NO_END="${arg#*=}"
shift
;;
--workers=*)
WORKERS="${arg#*=}"
shift
;;
--host-id=*)
HOST_ID="${arg#*=}"
shift
;;
*)
usage
;;
esac
done
# -----------------------------------------------------------------------------
# Replace env variables in the service_conf.yaml file
# -----------------------------------------------------------------------------
CONF_DIR="/ragflow/conf"
TEMPLATE_FILE="${CONF_DIR}/service_conf.yaml.template"
CONF_FILE="${CONF_DIR}/service_conf.yaml"
rm -f "${CONF_FILE}"
while IFS= read -r line || [[ -n "$line" ]]; do
eval "echo \"$line\"" >> "${CONF_FILE}"
done < "${TEMPLATE_FILE}"
export LD_LIBRARY_PATH="/usr/lib/x86_64-linux-gnu/"
PY=python3
# -----------------------------------------------------------------------------
# Function(s)
# -----------------------------------------------------------------------------
function task_exe() {
local consumer_id="$1"
local host_id="$2"
JEMALLOC_PATH="$(pkg-config --variable=libdir jemalloc)/libjemalloc.so"
while true; do
LD_PRELOAD="$JEMALLOC_PATH" \
"$PY" rag/svr/task_executor.py "${host_id}_${consumer_id}"
done
}
for ((i=0;i<WS;i++))
do
task_exe $i &
done
function start_mcp_server() {
echo "Starting MCP Server on ${MCP_HOST}:${MCP_PORT} with base URL ${MCP_BASE_URL}..."
"$PY" "${MCP_SCRIPT_PATH}" \
--host="${MCP_HOST}" \
--port="${MCP_PORT}" \
--base_url="${MCP_BASE_URL}" \
--mode="${MCP_MODE}" \
--api_key="${MCP_HOST_API_KEY}" \ &
}
while [ 1 -eq 1 ];do
$PY api/ragflow_server.py
done
# -----------------------------------------------------------------------------
# Start components based on flags
# -----------------------------------------------------------------------------
wait;
if [[ "${ENABLE_WEBSERVER}" -eq 1 ]]; then
echo "Starting nginx..."
/usr/sbin/nginx
echo "Starting ragflow_server..."
while true; do
"$PY" api/ragflow_server.py
done &
fi
if [[ "${ENABLE_MCP_SERVER}" -eq 1 ]]; then
start_mcp_server
fi
if [[ "${ENABLE_TASKEXECUTOR}" -eq 1 ]]; then
if [[ "${CONSUMER_NO_END}" -gt "${CONSUMER_NO_BEG}" ]]; then
echo "Starting task executors on host '${HOST_ID}' for IDs in [${CONSUMER_NO_BEG}, ${CONSUMER_NO_END})..."
for (( i=CONSUMER_NO_BEG; i<CONSUMER_NO_END; i++ ))
do
task_exe "${i}" "${HOST_ID}" &
done
else
# Otherwise, start a fixed number of workers
echo "Starting ${WORKERS} task executor(s) on host '${HOST_ID}'..."
for (( i=0; i<WORKERS; i++ ))
do
task_exe "${i}" "${HOST_ID}" &
done
fi
fi
wait

View File

@ -3,6 +3,27 @@
# Exit immediately if a command exits with a non-zero status
set -e
# Function to load environment variables from .env file
load_env_file() {
# Get the directory of the current script
local script_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
local env_file="$script_dir/.env"
# Check if .env file exists
if [ -f "$env_file" ]; then
echo "Loading environment variables from: $env_file"
# Source the .env file
set -a
source "$env_file"
set +a
else
echo "Warning: .env file not found at: $env_file"
fi
}
# Load environment variables
load_env_file
# Unset HTTP proxies that might be set by Docker daemon
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export PYTHONPATH=$(pwd)

View File

@ -26,7 +26,7 @@ http {
keepalive_timeout 65;
#gzip on;
client_max_body_size 128M;
client_max_body_size 1024M;
include /etc/nginx/conf.d/ragflow.conf;
}

View File

@ -37,6 +37,11 @@ redis:
# access_key: 'access_key'
# secret_key: 'secret_key'
# region: 'region'
# endpoint_url: 'endpoint_url'
# bucket: 'bucket'
# prefix_path: 'prefix_path'
# signature_version: 'v4'
# addressing_style: 'path'
# oss:
# access_key: '${ACCESS_KEY}'
# secret_key: '${SECRET_KEY}'

View File

@ -74,6 +74,8 @@ The [.env](https://github.com/infiniflow/ragflow/blob/main/docker/.env) file con
### MinIO
RAGFlow utilizes MinIO as its object storage solution, leveraging its scalability to store and manage all uploaded files.
- `MINIO_CONSOLE_PORT`
The port used to expose the MinIO console interface to the host machine, allowing **external** access to the web-based console running inside the Docker container. Defaults to `9001`
- `MINIO_PORT`
@ -97,22 +99,12 @@ The [.env](https://github.com/infiniflow/ragflow/blob/main/docker/.env) file con
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.17.2-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.17.2`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`
- `maidalun1020/bce-embedding-base_v1`
- `maidalun1020/bce-reranker-base_v1`
- Embedding models that will be downloaded once you select them in the RAGFlow UI:
- `BAAI/bge-base-en-v1.5`
- `BAAI/bge-large-en-v1.5`
- `BAAI/bge-small-en-v1.5`
- `BAAI/bge-small-zh-v1.5`
- `jinaai/jina-embeddings-v2-base-en`
- `jinaai/jina-embeddings-v2-small-en`
- `nomic-ai/nomic-embed-text-v1.5`
- `sentence-transformers/all-MiniLM-L6-v2`
:::tip NOTE
If you cannot download the RAGFlow Docker image, try the following mirrors.

View File

@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.17.2-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.18.0-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
2. Launch the Service

View File

@ -91,10 +91,16 @@ docker compose -f docker/docker-compose-base.yml up -d
export HF_ENDPOINT=https://hf-mirror.com
```
4. Run the **entrypoint.sh** script to launch the backend service:
4. Check the configuration in **conf/service_conf.yaml**, ensuring all hosts and ports are correctly set.
5. Run the **entrypoint.sh** script to launch the backend service:
```shell
JEMALLOC_PATH=$(pkg-config --variable=libdir jemalloc)/libjemalloc.so;
LD_PRELOAD=$JEMALLOC_PATH python rag/svr/task_executor.py 1;
```
bash docker/entrypoint.sh
```shell
python api/ragflow_server.py;
```
### Launch the RAGFlow frontend service

195
docs/develop/mcp.md Normal file
View File

@ -0,0 +1,195 @@
---
sidebar_position: 4
slug: /mcp_server
---
# RAGFlow MCP server overview
The RAGFlow Model Context Protocol (MCP) server operates as an independent component that complements the RAGFlow server. However, it requires a RAGFlow server to work functionally well, meaning, the MCP client and server communicate with each other in MCP HTTP+SSE mode (once the connection is established, server pushes messages to client only), and responses are expected from RAGFlow server.
The MCP server currently offers a specific tool to assist users in searching for relevant information powered by RAGFlow DeepDoc technology:
- **retrieve**: Fetches relevant chunks from specified `dataset_ids` and optional `document_ids` using the RAGFlow retrieve interface, based on a given question. Details of all available datasets, namely, `id` and `description`, are provided within the tool description for each individual dataset.
## Launching the MCP Server
Similar to launching the RAGFlow server, the MCP server can be started either from source code or via Docker.
### Launch Modes
The MCP server supports two launch modes:
1. **Self-Host Mode**:
- In this mode, the MCP server is launched to access a specific tenant's datasets.
- This is the default mode.
- The `--api_key` argument is **required** to authenticate the server with the RAGFlow server.
- Example:
```bash
uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 --mode=self-host --api_key=ragflow-xxxxx
```
1. **Host Mode**:
- In this mode, the MCP server allows each user to access their own datasets.
- To ensure secure access, a valid API key must be included in the request headers to identify the user.
- The `--api_key` argument is **not required** during server launch but must be provided in the headers on each client request for user authentication.
- Example:
```bash
uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 --mode=host
```
### Launching from Source Code
All you need to do is stand on the right place and strike out command, assuming you are on the project working directory.
```bash
uv run mcp/server/server.py --host=127.0.0.1 --port=9382 --base_url=http://127.0.0.1:9380 --api_key=ragflow-xxxxx
```
For testing purposes, there is an [MCP client example](#example_mcp_client) provided, free to take!
#### Required Arguments
- **`host`**: Specifies the server's host address.
- **`port`**: Defines the server's listening port.
- **`base_url`**: The address of the RAGFlow server that is already running and ready to handle tasks.
- **`mode`**: Launch mode, only accept `self-host` or `host`.
- **`api_key`**: Required when `mode` is `self-host` to authenticate the MCP server with the RAGFlow server.
Here are three augments required, the first two,`host` and `port`, are self-explained. The`base_url` is the address of the ready-to-serve RAGFlow server to actually perform the task.
### Launching from Docker
Building a standalone MCP server image is straightforward and easy, so we just proposed a way to launch it with RAGFlow server here.
#### Alongside RAGFlow
As MCP server is an extra and optional component of RAGFlow server, we consume that not everybody going to use it. Thus, it is disable by default.
To enable it, simply find `docker/docker-compose.yml` to uncomment `services.ragflow.command` section.
```yaml
services:
ragflow:
...
image: ${RAGFLOW_IMAGE}
# example to setup MCP server
command:
- --enable-mcpserver
- --mcp-host=0.0.0.0
- --mcp-port=9382
- --mcp-base-url=http://127.0.0.1:9380
- --mcp-script-path=/ragflow/mcp/server/server.py
- --mcp-mode=self-host # `self-host` or `host`
- --mcp--host-api-key="ragflow-xxxxxxx" # only need to privide when mode is `self-host`
```
Then launch it normally `docker compose -f docker-compose.yml`.
```bash
ragflow-server | Starting MCP Server on 0.0.0.0:9382 with base URL http://127.0.0.1:9380...
ragflow-server | Starting 1 task executor(s) on host 'dd0b5e07e76f'...
ragflow-server | 2025-04-18 15:41:18,816 INFO 27 ragflow_server log path: /ragflow/logs/ragflow_server.log, log levels: {'peewee': 'WARNING', 'pdfminer': 'WARNING', 'root': 'INFO'}
ragflow-server |
ragflow-server | __ __ ____ ____ ____ _____ ______ _______ ____
ragflow-server | | \/ |/ ___| _ \ / ___|| ____| _ \ \ / / ____| _ \
ragflow-server | | |\/| | | | |_) | \___ \| _| | |_) \ \ / /| _| | |_) |
ragflow-server | | | | | |___| __/ ___) | |___| _ < \ V / | |___| _ <
ragflow-server | |_| |_|\____|_| |____/|_____|_| \_\ \_/ |_____|_| \_\
ragflow-server |
ragflow-server | MCP launch mode: self-host
ragflow-server | MCP host: 0.0.0.0
ragflow-server | MCP port: 9382
ragflow-server | MCP base_url: http://127.0.0.1:9380
ragflow-server | INFO: Started server process [26]
ragflow-server | INFO: Waiting for application startup.
ragflow-server | INFO: Application startup complete.
ragflow-server | INFO: Uvicorn running on http://0.0.0.0:9382 (Press CTRL+C to quit)
ragflow-server | 2025-04-18 15:41:20,469 INFO 27 found 0 gpus
ragflow-server | 2025-04-18 15:41:23,263 INFO 27 init database on cluster mode successfully
ragflow-server | 2025-04-18 15:41:25,318 INFO 27 load_model /ragflow/rag/res/deepdoc/det.onnx uses CPU
ragflow-server | 2025-04-18 15:41:25,367 INFO 27 load_model /ragflow/rag/res/deepdoc/rec.onnx uses CPU
ragflow-server | ____ ___ ______ ______ __
ragflow-server | / __ \ / | / ____// ____// /____ _ __
ragflow-server | / /_/ // /| | / / __ / /_ / // __ \| | /| / /
ragflow-server | / _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
ragflow-server | /_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
ragflow-server |
ragflow-server |
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 RAGFlow version: v0.18.0-285-gb2c299fa full
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 project base: /ragflow
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 Current configs, from /ragflow/conf/service_conf.yaml:
ragflow-server | ragflow: {'host': '0.0.0.0', 'http_port': 9380}
...
ragflow-server | * Running on all addresses (0.0.0.0)
ragflow-server | * Running on http://127.0.0.1:9380
ragflow-server | * Running on http://172.19.0.6:9380
ragflow-server | ______ __ ______ __
ragflow-server | /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
ragflow-server | / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
ragflow-server | / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
ragflow-server | /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
ragflow-server |
ragflow-server | 2025-04-18 15:41:34,501 INFO 32 TaskExecutor: RAGFlow version: v0.18.0-285-gb2c299fa full
ragflow-server | 2025-04-18 15:41:34,501 INFO 32 Use Elasticsearch http://es01:9200 as the doc engine.
...
```
You are ready to brew🍺!
## Testing and Usage
Typically, there are various ways to utilize an MCP server. You can integrate it with LLMs or use it as a standalone tool. You find the way.
### Example MCP Client {#example_mcp_client}
```python
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mcp.client.session import ClientSession
from mcp.client.sse import sse_client
async def main():
try:
# To access RAGFlow server in `host` mode, you need to attach `api_key` for each request to indicate identification.
# async with sse_client("http://localhost:9382/sse", headers={"api_key": "ragflow-IyMGI1ZDhjMTA2ZTExZjBiYTMyMGQ4Zm"}) as streams:
async with sse_client("http://localhost:9382/sse") as streams:
async with ClientSession(
streams[0],
streams[1],
) as session:
await session.initialize()
tools = await session.list_tools()
print(f"{tools.tools=}")
response = await session.call_tool(name="ragflow_retrieval", arguments={"dataset_ids": ["ce3bb17cf27a11efa69751e139332ced"], "document_ids": [], "question": "How to install neovim?"})
print(f"Tool response: {response.model_dump()}")
except Exception as e:
print(e)
if __name__ == "__main__":
from anyio import run
run(main)
```
## Security and Concerns
Since MCP technology is still in booming age and there are still no official Authentication and Authorization best practices to follow, RAGFlow uses `api_key` to validate the identification, and it is required to perform any operations mentioned in the preview section. Obviously, this is not a premium solution to do so, thus this RAGFlow MCP server is not expected to exposed to public use as it could be highly venerable to be attacked. For local SSE server, bind only to localhost (127.0.0.1) instead of all interfaces (0.0.0.0). For additional guidance, you can refer to [MCP official website](https://modelcontextprotocol.io/docs/concepts/transports#security-considerations).

View File

@ -9,6 +9,10 @@ Answers to questions about general features, troubleshooting, usage, and more.
---
import TOCInline from '@theme/TOCInline';
<TOCInline toc={toc} />
## General features
---
@ -71,10 +75,10 @@ We officially support x86 CPU and nvidia GPU. While we also test RAGFlow on ARM6
### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.17.2-slim` and `v0.17.2`:
RAGFlow offers two Docker image editions, `v0.18.0-slim` and `v0.18.0`:
- `infiniflow/ragflow:v0.17.2-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.17.2`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.18.0-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.18.0`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `BAAI/bge-reranker-v2-m3`
@ -104,7 +108,7 @@ Yes, we do.
---
### Is it possible to share dialogue through URL?
### Do you support sharing dialogue through URL?
No, this feature is not supported.
@ -115,30 +119,29 @@ No, this feature is not supported.
Yes, we support enhancing user queries based on existing context of an ongoing conversation:
1. On the **Chat** page, hover over the desired assistant and select **Edit**.
2. In the **Chat Configuration** popup, click the **Prompt Engine** tab.
2. In the **Chat Configuration** popup, click the **Prompt engine** tab.
3. Switch on **Multi-turn optimization** to enable this feature.
---
### Key differences between AI search and chat?
- **AI search**: This is a single-turn AI conversation using a predefined retrieval strategy (a hybrid search of weighted keyword similarity and weighted vector similarity) and the system's default chat model. It does not involve advanced RAG strategies like knowledge graph, auto-keyword, or auto-question. Retrieved chunks will be listed below the chat model's response.
- **AI chat**: This is a multi-turn AI conversation where you can define your retrieval strategy (a weighted reranking score can be used to replace the weighted vector similarity in a hybrid search) and choose your chat model. In an AI chat, you can configure advanced RAG strategies, such as knowledge graphs, auto-keyword, and auto-question, for your specific case. Retrieved chunks are not displayed along with the answer.
When debugging your chat assistant, you can use AI search as a reference to verify your model settings and retrieval strategy.
---
## Troubleshooting
---
### Issues with Docker images
---
#### How to build the RAGFlow image from scratch?
### How to build the RAGFlow image from scratch?
See [Build a RAGFlow Docker image](./develop/build_docker_image.mdx).
---
### Issues with huggingface models
---
#### Cannot access https://huggingface.co
### Cannot access https://huggingface.co
A locally deployed RAGflow downloads OCR and embedding modules from [Huggingface website](https://huggingface.co) by default. If your machine is unable to access this site, the following error occurs and PDF parsing fails:
@ -169,7 +172,7 @@ To fix this issue, use https://hf-mirror.com instead:
---
#### `MaxRetryError: HTTPSConnectionPool(host='hf-mirror.com', port=443)`
### `MaxRetryError: HTTPSConnectionPool(host='hf-mirror.com', port=443)`
This error suggests that you do not have Internet access or are unable to connect to hf-mirror.com. Try the following:
@ -182,17 +185,13 @@ This error suggests that you do not have Internet access or are unable to connec
---
### Issues with RAGFlow servers
---
#### `WARNING: can't find /raglof/rag/res/borker.tm`
### `WARNING: can't find /raglof/rag/res/borker.tm`
Ignore this warning and continue. All system warnings can be ignored.
---
#### `network anomaly There is an abnormality in your network and you cannot connect to the server.`
### `network anomaly There is an abnormality in your network and you cannot connect to the server.`
![anomaly](https://github.com/infiniflow/ragflow/assets/93570324/beb7ad10-92e4-4a58-8886-bfb7cbd09e5d)
@ -215,11 +214,7 @@ You will not log in to RAGFlow unless the server is fully initialized. Run `dock
---
### Issues with RAGFlow backend services
---
#### `Realtime synonym is disabled, since no redis connection`
### `Realtime synonym is disabled, since no redis connection`
Ignore this warning and continue. All system warnings can be ignored.
@ -227,7 +222,7 @@ Ignore this warning and continue. All system warnings can be ignored.
---
#### Why does my document parsing stall at under one percent?
### Why does my document parsing stall at under one percent?
![stall](https://github.com/infiniflow/ragflow/assets/93570324/3589cc25-c733-47d5-bbfc-fedb74a3da50)
@ -244,7 +239,7 @@ Click the red cross beside the 'parsing status' bar, then restart the parsing pr
---
#### Why does my pdf parsing stall near completion, while the log does not show any error?
### Why does my pdf parsing stall near completion, while the log does not show any error?
Click the red cross beside the 'parsing status' bar, then restart the parsing process to see if the issue remains. If the issue persists and your RAGFlow is deployed locally, the parsing process is likely killed due to insufficient RAM. Try increasing your memory allocation by increasing the `MEM_LIMIT` value in **docker/.env**.
@ -265,13 +260,13 @@ docker compose up -d
---
#### `Index failure`
### `Index failure`
An index failure usually indicates an unavailable Elasticsearch service.
---
#### How to check the log of RAGFlow?
### How to check the log of RAGFlow?
```bash
tail -f ragflow/docker/ragflow-logs/*.log
@ -279,7 +274,7 @@ tail -f ragflow/docker/ragflow-logs/*.log
---
#### How to check the status of each component in RAGFlow?
### How to check the status of each component in RAGFlow?
1. Check the status of the Elasticsearch Docker container:
@ -304,7 +299,7 @@ The status of a Docker container status does not necessarily reflect the status
---
#### `Exception: Can't connect to ES cluster`
### `Exception: Can't connect to ES cluster`
1. Check the status of the Elasticsearch Docker container:
@ -328,19 +323,19 @@ The status of a Docker container status does not necessarily reflect the status
---
#### Can't start ES container and get `Elasticsearch did not exit normally`
### Can't start ES container and get `Elasticsearch did not exit normally`
This is because you forgot to update the `vm.max_map_count` value in **/etc/sysctl.conf** and your change to this value was reset after a system reboot.
---
#### `{"data":null,"code":100,"message":"<NotFound '404: Not Found'>"}`
### `{"data":null,"code":100,"message":"<NotFound '404: Not Found'>"}`
Your IP address or port number may be incorrect. If you are using the default configurations, enter `http://<IP_OF_YOUR_MACHINE>` (**NOT 9380, AND NO PORT NUMBER REQUIRED!**) in your browser. This should work.
---
#### `Ollama - Mistral instance running at 127.0.0.1:11434 but cannot add Ollama as model in RagFlow`
### `Ollama - Mistral instance running at 127.0.0.1:11434 but cannot add Ollama as model in RagFlow`
A correct Ollama IP address and port is crucial to adding models to Ollama:
@ -351,37 +346,13 @@ See [Deploy a local LLM](./guides/models/deploy_local_llm.mdx) for more informat
---
#### Do you offer examples of using DeepDoc to parse PDF or other files?
### Do you offer examples of using DeepDoc to parse PDF or other files?
Yes, we do. See the Python files under the **rag/app** folder.
---
#### Why did I fail to upload a 128MB+ file to my locally deployed RAGFlow?
Ensure that you update the **MAX_CONTENT_LENGTH** environment variable:
1. In **ragflow/docker/.env**, uncomment environment variable `MAX_CONTENT_LENGTH`:
```
MAX_CONTENT_LENGTH=176160768 # 168MB
```
2. Update **ragflow/docker/nginx/nginx.conf**:
```
client_max_body_size 168M
```
3. Restart the RAGFlow server:
```
docker compose up ragflow -d
```
---
#### `FileNotFoundError: [Errno 2] No such file or directory`
### `FileNotFoundError: [Errno 2] No such file or directory`
1. Check the status of the MinIO Docker container:
@ -407,21 +378,13 @@ The status of a Docker container status does not necessarily reflect the status
---
### How to increase the length of RAGFlow responses?
1. Right-click the desired dialog to display the **Chat Configuration** window.
2. Switch to the **Model Setting** tab and adjust the **Max Tokens** slider to get the desired length.
3. Click **OK** to confirm your change.
---
### How to run RAGFlow with a locally deployed LLM?
You can use Ollama or Xinference to deploy local LLM. See [here](./guides/models/deploy_local_llm.mdx) for more information.
---
### Is it possible to add an LLM that is not supported?
### How to add an LLM that is not supported?
If your model is not currently supported but has APIs compatible with those of OpenAI, click **OpenAI-API-Compatible** on the **Model providers** page to configure your model:
@ -429,7 +392,7 @@ If your model is not currently supported but has APIs compatible with those of O
---
### How to interconnect RAGFlow with Ollama?
### How to integrate RAGFlow with Ollama?
- If RAGFlow is locally deployed, ensure that your RAGFlow and Ollama are in the same LAN.
- If you are using our online demo, ensure that the IP address of your Ollama server is public and accessible.
@ -438,12 +401,25 @@ See [here](./guides/models/deploy_local_llm.mdx) for more information.
---
### How to change the file size limit?
For a locally deployed RAGFlow: the total file size limit per upload is 1GB, with a batch upload limit of 32 files. There is no cap on the total number of files per account. To update this 1GB file size limit:
- In **docker/.env**, upcomment `# MAX_CONTENT_LENGTH=1073741824`, adjust the value as needed, and note that `1073741824` represents 1GB in bytes.
- If you update the value of `MAX_CONTENT_LENGTH` in **docker/.env**, ensure that you update `client_max_body_size` in **nginx/nginx.conf** accordingly.
:::tip NOTE
It is not recommended to manually change the 32-file batch upload limit. However, if you use RAGFlow's HTTP API or Python SDK to upload files, the 32-file batch upload limit is automatically removed.
:::
---
### `Error: Range of input length should be [1, 30000]`
This error occurs because there are too many chunks matching your search criteria. Try reducing the **TopN** and increasing **Similarity threshold** to fix this issue:
1. Click **Chat** in the middle top of the page.
2. Right-click the desired conversation > **Edit** > **Prompt Engine**
2. Right-click the desired conversation > **Edit** > **Prompt engine**
3. Reduce the **TopN** and/or raise **Similarity threshold**.
4. Click **OK** to confirm your changes.
@ -462,3 +438,31 @@ See [Acquire a RAGFlow API key](./develop/acquire_ragflow_api_key.md).
See [Upgrade RAGFlow](./guides/upgrade_ragflow.mdx) for more information.
---
### How to switch the document engine to Infinity?
To switch your document engine from Elasticsearch to [Infinity](https://github.com/infiniflow/infinity):
1. Stop all running containers:
```bash
$ docker compose -f docker/docker-compose.yml down -v
```
:::caution WARNING
`-v` will delete all Docker container volumes, and the existing data will be cleared.
:::
2. In **docker/.env**, set `DOC_ENGINE=${DOC_ENGINE:-infinity}`
3. Restart your Docker image:
```bash
$ docker compose -f docker-compose.yml up -d
```
---
### Where are my uploaded files stored in RAGFlow's image?
All uploaded files are stored in Minio, RAGFlow's object storage solution. For instance, if you upload your file directly to a knowledge base, it is located at `<knowledgebase_id>/filename`.
---

View File

@ -46,6 +46,17 @@ You can set global variables within the **Begin** component, which can be either
- **boolean**: Requires the user to toggle between on and off.
- **Optional**: A toggle indicating whether the variable is optional.
:::tip NOTE
To pass in parameters from a client, call:
- HTTP method [Converse with agent](../../../references/http_api_reference.md#converse-with-agent), or
- Python method [Converse with agent](../../../references/python_api_reference.md#converse-with-agent).
:::
:::danger IMPORTANT
- If you set the key type as **file**, ensure the token count of the uploaded file does not exceed your model provider's maximum token limit; otherwise, the plain text in your file will be truncated and incomplete.
- If your agent's **Begin** component takes a variable, you *cannot* embed it into a webpage.
:::
## Examples
As mentioned earlier, the **Begin** component is indispensable for an agent. Still, you can take a look at our three-step interpreter agent template, where the **Begin** component takes two global variables:
@ -60,7 +71,7 @@ As mentioned earlier, the **Begin** component is indispensable for an agent. Sti
### Is the uploaded file in a knowledge base?
No. Files uploaded to an agent as input are not stored in a knowledge base and will not be chunked using RAGFlow's built-in chunk methods. However, RAGFlow's built-in OSR, DLR, and TSR models will still be applied to process the document.
No. Files uploaded to an agent as input are not stored in a knowledge base and hence will not be processed using RAGFlow's built-in OCR, DLR or TSR models, or chunked using RAGFlow's built-in chunk methods.
### How to upload a webpage or file from a URL?
@ -70,5 +81,8 @@ If you set the type of a variable as **file**, your users will be able to upload
### File size limit for an uploaded file
The maximum file size for each uploaded file is determined by the variable `MAX_CONTENT_LENGTH` in `/docker/.env`. It defaults to 128 MB. If you change the default file size, ensure you also update the value of `client_max_body_size` in `/docker/nginx/nginx.conf` accordingly.
There is no *specific* file size limit for a file uploaded to an agent. However, note that model providers typically have a default or explicit maximum token setting, which can range from 8196 to 128k: The plain text part of the uploaded file will be passed in as the key value, but if the file's token count exceeds this limit, the string will be truncated and incomplete.
:::tip NOTE
The variables `MAX_CONTENT_LENGTH` in `/docker/.env` and `client_max_body_size` in `/docker/nginx/nginx.conf` set the file size limit for each upload to a knowledge base or **File Management**. These settings DO NOT apply in this scenario.
:::

View File

@ -33,7 +33,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Model**: The chat model to use.
- Ensure you set the chat model correctly on the **Model providers** page.
- You can use different models for different components to increase flexibility or improve overall performance.
- **Preset configurations**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
@ -52,9 +52,6 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Frequency penalty**: Discourages the model from repeating the same words or phrases too frequently in the generated text.
- A higher **frequency penalty** value results in the model being more conservative in its use of repeated tokens.
- Defaults to 0.7.
- **Max tokens**: Sets the maximum length of the model's output, measured in the number of tokens.
- Defaults to 512.
- If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.
:::tip NOTE
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.

View File

@ -24,7 +24,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Model**: The chat model to use.
- Ensure you set the chat model correctly on the **Model providers** page.
- You can use different models for different components to increase flexibility or improve overall performance.
- **Preset configurations**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
@ -43,9 +43,6 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Frequency penalty**: Discourages the model from repeating the same words or phrases too frequently in the generated text.
- A higher **frequency penalty** value results in the model being more conservative in its use of repeated tokens.
- Defaults to 0.7.
- **Max tokens**: Sets the maximum length of the model's output, measured in the number of tokens.
- Defaults to 512.
- If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.
:::tip NOTE
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.
@ -56,7 +53,11 @@ Click the dropdown menu of **Model** to show the model configuration window.
Typically, you use the system prompt to describe the task for the LLM, specify how it should respond, and outline other miscellaneous requirements. We do not plan to elaborate on this topic, as it can be as extensive as prompt engineering. However, please be aware that the system prompt is often used in conjunction with keys (variables), which serve as various data inputs for the LLM.
Keys in a system prompt should be enclosed in curly braces. Below is a prompt excerpt of a **Generate** component from the **Interpreter** template (component ID: **Reflect**):
:::danger IMPORTANT
A **Generate** component relies on keys (variables) to specify its data inputs. Its immediate upstream component is *not* necessarily its data input, and the arrows in the workflow indicate *only* the processing sequence. Keys in a **Generate** component are used in conjunction with the system prompt to specify data inputs for the LLM. Use a forward slash `/` or the **(x)** button to show the keys to use.
:::
Below is a prompt excerpt of a **Generate** component from the **Interpreter** template (component ID: **Reflect**):
```text
Your task is to read a source text and a translation to {target_lang}, and give constructive suggestions to improve the translation. The source text and initial translation, delimited by XML tags <SOURCE_TEXT></SOURCE_TEXT> and <TRANSLATION></TRANSLATION>, are as follows:
@ -76,11 +77,6 @@ When writing suggestions, pay attention to whether there are ways to improve the
Where `{source_text}` and `{target_lang}` are global variables defined by the **Begin** component, while `{translation_1}` is the output of another **Generate** component with the component ID **Translate directly**.
:::danger IMPORTANT
A **Generate** component relies on keys (variables) to specify its data inputs. Its immediate upstream component is *not* necessarily its data input, and the arrows in the workflow indicate *only* the processing sequence. Keys in a **Generate** component are used in conjunction with the system prompt to specify data inputs for the LLM. Use a forward slash `/` to show the keys to use.
:::
### Cite
This toggle sets whether to cite the original text as reference.

View File

@ -34,7 +34,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Model**: The chat model to use.
- Ensure you set the chat model correctly on the **Model providers** page.
- You can use different models for different components to increase flexibility or improve overall performance.
- **Preset configurations**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
@ -53,9 +53,6 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Frequency penalty**: Discourages the model from repeating the same words or phrases too frequently in the generated text.
- A higher **frequency penalty** value results in the model being more conservative in its use of repeated tokens.
- Defaults to 0.7.
- **Max tokens**: Sets the maximum length of the model's output, measured in the number of tokens.
- Defaults to 512.
- If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.
:::tip NOTE
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.

View File

@ -51,19 +51,34 @@ If a rerank model is selected, a combination of weighted keyword similarity and
Using a rerank model will *significantly* increase the system's response time.
:::
### Tavily API key
*Optional*
Enter your Tavily API key here to enable Tavily web search during retrieval. See [here](https://app.tavily.com/home) for instructions on getting a Tavily API key.
### Use knowledge graph
Whether to use knowledge graph(s) in the specified knowledge base(s) during retrieval for multi-hop question answering. When enabled, this would involve iterative searches across entity, relationship, and community report chunks, greatly increasing retrieval time.
### Knowledge bases
*Required*
*Optional*
You are required to select the knowledge base(s) to retrieve data from.
Select the knowledge base(s) to retrieve data from.
:::danger IMPORTANT
If you select multiple knowledge bases, you must ensure that the knowledge bases (datasets) you select use the same embedding model; otherwise, an error message would occur.
- If no knowledge base is selected, meaning conversations with the agent will not be based on any knowledge base, ensure that the **Empty response** field is left blank to avoid an error.
- If you select multiple knowledge bases, you must ensure that the knowledge bases (datasets) you select use the same embedding model; otherwise, an error message would occur.
### Empty response
- Set this as a response if no results are retrieved from the knowledge base(s) for your query, or
- Leave this field blank to allow the chat model to improvise when nothing is found.
:::caution WARNING
If you do not specify a knowledge base, you must leave this field blank; otherwise, an error would occur.
:::
## Examples
Explore our customer service agent template, where the **Retrieval** component (component ID: **Search product info**) is used to search the dataset and send the Top N results to the LLM:

View File

@ -32,7 +32,7 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Model**: The chat model to use.
- Ensure you set the chat model correctly on the **Model providers** page.
- You can use different models for different components to increase flexibility or improve overall performance.
- **Preset configurations**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
@ -51,9 +51,6 @@ Click the dropdown menu of **Model** to show the model configuration window.
- **Frequency penalty**: Discourages the model from repeating the same words or phrases too frequently in the generated text.
- A higher **frequency penalty** value results in the model being more conservative in its use of repeated tokens.
- Defaults to 0.7.
- **Max tokens**: Sets the maximum length of the model's output, measured in the number of tokens.
- Defaults to 512.
- If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.
:::tip NOTE
- It is not necessary to stick with the same model for all components. If a specific model is not performing well for a particular task, consider using a different one.

View File

@ -8,7 +8,7 @@ slug: /embed_agent_into_webpage
You can use iframe to embed an agent into a third-party webpage.
:::caution WARNING
If your agent's **Begin** component takes a key of **file** type (a **file** type variable), you *cannot* embed it into a webpage.
If your agent's **Begin** component takes a variable, you *cannot* embed it into a webpage.
:::
1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear.

View File

@ -12,9 +12,15 @@ A checklist to speed up question answering.
Please note that some of your settings may consume a significant amount of time. If you often find that your question answering is time-consuming, here is a checklist to consider:
- In the **Prompt Engine** tab of your **Chat Configuration** dialogue, disabling **Multi-turn optimization** will reduce the time required to get an answer from the LLM.
- In the **Prompt Engine** tab of your **Chat Configuration** dialogue, leaving the **Rerank model** field empty will significantly decrease retrieval time.
- In the **Assistant Setting** tab of your **Chat Configuration** dialogue, disabling **Keyword analysis** will reduce the time to receive an answer from the LLM.
- In the **Prompt engine** tab of your **Chat Configuration** dialogue, disabling **Multi-turn optimization** will reduce the time required to get an answer from the LLM.
- In the **Prompt engine** tab of your **Chat Configuration** dialogue, leaving the **Rerank model** field empty will significantly decrease retrieval time.
- When using a rerank model, ensure you have a GPU for acceleration; otherwise, the reranking process will be *prohibitively* slow.
:::tip NOTE
Please note that rerank models are essential in certain scenarios. There is always a trade-off between speed and performance; you must weigh the pros against cons for your specific case.
:::
- In the **Assistant settings** tab of your **Chat Configuration** dialogue, disabling **Keyword analysis** will reduce the time to receive an answer from the LLM.
- When chatting with your chat assistant, click the light bulb icon above the *current* dialogue and scroll down the popup window to view the time taken for each task:
![enlighten](https://github.com/user-attachments/assets/fedfa2ee-21a7-451b-be66-20125619923c)

View File

@ -15,11 +15,11 @@ From v0.17.0 onward, RAGFlow supports integrating agentic reasoning in an AI cha
To activate this feature:
1. Enable the **Reasoning** toggle under the **Prompt Engine** tab of your chat assistant dialogue.
1. Enable the **Reasoning** toggle under the **Prompt engine** tab of your chat assistant dialogue.
![Image](https://github.com/user-attachments/assets/4a1968d0-0128-4371-879f-77f3a70197f5)
2. Enter the correct Tavily API key under the **Assistant Setting** tab of your chat assistant dialogue to leverage Tavily-based web search
2. Enter the correct Tavily API key under the **Assistant settings** tab of your chat assistant dialogue to leverage Tavily-based web search
![Image](https://github.com/user-attachments/assets/e8787532-7e72-49ef-8951-169ae544512f)

View File

@ -0,0 +1,114 @@
---
sidebar_position: 4
slug: /set_chat_variables
---
# Set variables
Set variables to be used together with the system prompt for your LLM.
---
When configuring the system prompt for a chat model, variables play an important role in enhancing flexibility and reusability. With variables, you can dynamically adjust the system prompt to be sent to your model. In the context of RAGFlow, if you have defined variables in the **Chat Configuration** dialogue, except for the system's reserved variable `{knowledge}`, you are required to pass in values for them from RAGFlow's [HTTP API](../../references/http_api_reference.md#converse-with-chat-assistant) or through its [Python SDK](../../references/python_api_reference.md#converse-with-chat-assistant).
:::danger IMPORTANT
In RAGFlow, variables are closely linked with the system prompt. When you add a variable in the **Variable** section, include it in the system prompt. Conversely, when deleting a variable, ensure it is removed from the system prompt; otherwise, an error would occur.
:::
## Where to set variables
Hover your mouse over your chat assistant, click **Edit** to open its **Chat Configuration** dialogue, then click the **Prompt engine** tab. Here, you can work on your variables in the **System prompt** field and the **Variable** section:
![set_variables](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/prompt_engine.jpg)
## 1. Manage variables
In the **Variable** section, you add, remove, or update variables.
### `{knowledge}` - a reserved variable
`{knowledge}` is the system's reserved variable, representing the chunks retrieved from the knowledge base(s) specified by **Knowledge bases** under the **Assistant settings** tab. If your chat assistant is associated with certain knowledge bases, you can keep it as is.
:::info NOTE
It does not currently make a difference whether you set `{knowledge}` to optional or mandatory, but note that this design will be updated at a later point.
:::
From v0.17.0 onward, you can start an AI chat without specifying knowledge bases. In this case, we recommend removing the `{knowledge}` variable to prevent unnecessary reference and keeping the **Empty response** field empty to avoid errors.
### Custom variables
Besides `{knowledge}`, you can also define your own variables to pair with the system prompt. To use these custom variables, you must pass in their values through RAGFlow's official APIs. The **Optional** toggle determines whether these variables are required in the corresponding APIs:
- **Disabled** (Default): The variable is mandatory and must be provided.
- **Enabled**: The variable is optional and can be omitted if not needed.
## 2. Update system prompt
After you add or remove variables in the **Variable** section, ensure your changes are reflected in the system prompt to avoid inconsistencies or errors. Here's an example:
```
You are an intelligent assistant. Please answer the question by summarizing chunks from the specified knowledge base(s)...
Your answers should follow a professional and {style} style.
...
Here is the knowledge base:
{knowledge}
The above is the knowledge base.
```
:::tip NOTE
If you have removed `{knowledge}`, ensure that you thoroughly review and update the entire system prompt to achieve optimal results.
:::
## APIs
The *only* way to pass in values for the custom variables defined in the **Chat Configuration** dialogue is to call RAGFlow's [HTTP API](../../references/http_api_reference.md#converse-with-chat-assistant) or through its [Python SDK](../../references/python_api_reference.md#converse-with-chat-assistant).
### HTTP API
See [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant). Here's an example:
```json {9}
curl --request POST \
--url http://{address}/api/v1/chats/{chat_id}/completions \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <YOUR_API_KEY>' \
--data-binary '
{
"question": "xxxxxxxxx",
"stream": true,
"style":"hilarious"
}'
```
### Python API
See [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant). Here's an example:
```python {18}
from ragflow_sdk import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
print("\n==================== Miss R =====================\n")
print("Hello. What can I do for you?")
while True:
question = input("\n==================== User =====================\n> ")
style = input("Please enter your preferred style (e.g., formal, informal, hilarious): ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in session.ask(question, stream=True, style=style):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content
```

View File

@ -19,7 +19,7 @@ You start an AI conversation by creating an assistant.
> RAGFlow offers you the flexibility of choosing a different chat model for each dialogue, while allowing you to set the default models in **System Model Settings**.
2. Update **Assistant Setting**:
2. Update **Assistant settings**:
- **Assistant name** is the name of your chat assistant. Each assistant corresponds to a dialogue with a unique combination of knowledge bases, prompts, hybrid search configurations, and large model settings.
- **Empty response**:
@ -28,7 +28,7 @@ You start an AI conversation by creating an assistant.
- **Show quote**: This is a key feature of RAGFlow and enabled by default. RAGFlow does not work like a black box. Instead, it clearly shows the sources of information that its responses are based on.
- Select the corresponding knowledge bases. You can select one or multiple knowledge bases, but ensure that they use the same embedding model, otherwise an error would occur.
3. Update **Prompt Engine**:
3. Update **Prompt engine**:
- In **System**, you fill in the prompts for your LLM, you can also leave the default prompt as-is for the beginning.
- **Similarity threshold** sets the similarity "bar" for each chunk of text. The default is 0.2. Text chunks with lower similarity scores are filtered out of the final response.
@ -37,19 +37,39 @@ You start an AI conversation by creating an assistant.
- If **Rerank model** is selected, the hybrid score system uses keyword similarity and reranker score, and the default weight assigned to the reranker score is 1-0.7=0.3.
- **Top N** determines the *maximum* number of chunks to feed to the LLM. In other words, even if more chunks are retrieved, only the top N chunks are provided as input.
- **Multi-turn optimization** enhances user queries using existing context in a multi-round conversation. It is enabled by default. When enabled, it will consume additional LLM tokens and significantly increase the time to generate answers.
- **Use knowledge graph** indicates whether to use knowledge graph(s) in the specified knowledge base(s) during retrieval for multi-hop question answering. When enabled, this would involve iterative searches across entity, relationship, and community report chunks, greatly increasing retrieval time.
- **Reasoning** indicates whether to generate answers through reasoning processes like Deepseek-R1/OpenAI o1. Once enabled, the chat model autonomously integrates Deep Research during question answering when encountering an unknown topic. This involves the chat model dynamically searching external knowledge and generating final answers through reasoning.
- **Rerank model** sets the reranker model to use. It is left empty by default.
- If **Rerank model** is left empty, the hybrid score system uses keyword similarity and vector similarity, and the default weight assigned to the vector similarity component is 1-0.7=0.3.
- If **Rerank model** is selected, the hybrid score system uses keyword similarity and reranker score, and the default weight assigned to the reranker score is 1-0.7=0.3.
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.
- As of v0.18.0, if you add custom variables here, the only way you can pass in their values is to call:
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).
4. Update **Model Setting**:
- In **Model**: you select the chat model. Though you have selected the default chat model in **System Model Settings**, RAGFlow allows you to choose an alternative chat model for your dialogue.
- **Preset configurations** refers to the level that the LLM improvises. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
- **Temperature**: Level of the prediction randomness of the LLM. The higher the value, the more creative the LLM is.
- **Top P** is also known as "nucleus sampling". See [here](https://en.wikipedia.org/wiki/Top-p_sampling) for more information.
- **Max Tokens**: The maximum length of the LLM's responses. Note that the responses may be curtailed if this value is set too low.
- **Freedom**: A shortcut to **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty** settings, indicating the freedom level of the model. From **Improvise**, **Precise**, to **Balance**, each preset configuration corresponds to a unique combination of **Temperature**, **Top P**, **Presence penalty**, and **Frequency penalty**.
This parameter has three options:
- **Improvise**: Produces more creative responses.
- **Precise**: (Default) Produces more conservative responses.
- **Balance**: A middle ground between **Improvise** and **Precise**.
- **Temperature**: The randomness level of the model's output.
Defaults to 0.1.
- Lower values lead to more deterministic and predictable outputs.
- Higher values lead to more creative and varied outputs.
- A temperature of zero results in the same output for the same prompt.
- **Top P**: Nucleus sampling.
- Reduces the likelihood of generating repetitive or unnatural text by setting a threshold *P* and restricting the sampling to tokens with a cumulative probability exceeding *P*.
- Defaults to 0.3.
- **Presence penalty**: Encourages the model to include a more diverse range of tokens in the response.
- A higher **presence penalty** value results in the model being more likely to generate tokens not yet been included in the generated text.
- Defaults to 0.4.
- **Frequency penalty**: Discourages the model from repeating the same words or phrases too frequently in the generated text.
- A higher **frequency penalty** value results in the model being more conservative in its use of repeated tokens.
- Defaults to 0.7.
5. Now, let's start the show:

View File

@ -15,5 +15,5 @@ Please note that some of your settings may consume a significant amount of time.
- Use GPU to reduce embedding time.
- On the configuration page of your knowledge base, switch off **Use RAPTOR to enhance retrieval**.
- Extracting knowledge graph (GraphRAG) is time-consuming.
- Disable **Auto-keyword** and **Auto-question** on the configuration page of yor knowledge base, as both depend on the LLM.
- **v0.17.0:** If your document is plain text PDF and does not require GPU-intensive processes like OCR (Optical Character Recognition), TSR (Table Structure Recognition), or DLA (Document Layout Analysis), you can choose **Naive** over **DeepDoc** or other time-consuming large model options in the **Document parser** dropdown. This will substantially reduce document parsing time.
- Disable **Auto-keyword** and **Auto-question** on the configuration page of your knowledge base, as both depend on the LLM.
- **v0.17.0+:** If your document is plain text PDF and does not require GPU-intensive processes like OCR (Optical Character Recognition), TSR (Table Structure Recognition), or DLA (Document Layout Analysis), you can choose **Naive** over **DeepDoc** or other time-consuming large model options in the **Document parser** dropdown. This will substantially reduce document parsing time.

View File

@ -39,18 +39,20 @@ This section covers the following topics:
RAGFlow offers multiple chunking template to facilitate chunking files of different layouts and ensure semantic integrity. In **Chunk method**, you can choose the default template that suits the layouts and formats of your files. The following table shows the descriptions and the compatible file formats of each supported chunk template:
| **Template** | Description | File format |
|--------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|
| General | Files are consecutively chunked based on a preset chunk token number. | DOCX, XLSX, XLS (Excel97~2003), PPT, PDF, TXT, JPEG, JPG, PNG, TIF, GIF, CSV |
| Q&A | | XLSX, XLS (Excel97~2003), CSV/TXT |
| Manual | | PDF |
| Table | | XLSX, XLS (Excel97~2003), CSV/TXT |
| Paper | | PDF |
| Book | | DOCX, PDF, TXT |
| Laws | | DOCX, PDF, TXT |
| Presentation | | PDF, PPTX |
| Picture | | JPEG, JPG, PNG, TIF, GIF |
| One | The entire document is chunked as one. | DOCX, XLSX, XLS (Excel97~2003), PDF, TXT |
| **Template** | Description | File format |
|--------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| General | Files are consecutively chunked based on a preset chunk token number. | DOCX, XLSX, XLS (Excel97~2003), PPT, PDF, TXT, JPEG, JPG, PNG, TIF, GIF, CSV, JSON, EML, HTML |
| Q&A | | XLSX, XLS (Excel97~2003), CSV/TXT |
| Resume | Enterprise edition only. You can also try it out on demo.ragflow.io. | DOCX, PDF, TXT |
| Manual | | PDF |
| Table | | XLSX, XLS (Excel97~2003), CSV/TXT |
| Paper | | PDF |
| Book | | DOCX, PDF, TXT |
| Laws | | DOCX, PDF, TXT |
| Presentation | | PDF, PPTX |
| Picture | | JPEG, JPG, PNG, TIF, GIF |
| One | Each document is chunked in its entirety (as one). | DOCX, XLSX, XLS (Excel97~2003), PDF, TXT |
| Tag | The knowledge base functions as a tag set for the others. | XLSX, CSV/TXT |
You can also change a file's chunk method on the **Datasets** page.
@ -63,14 +65,6 @@ An embedding model converts chunks into embeddings. It cannot be changed once th
The following embedding models can be deployed locally:
- BAAI/bge-large-zh-v1.5
- BAAI/bge-base-en-v1.5
- BAAI/bge-large-en-v1.5
- BAAI/bge-small-en-v1.5
- BAAI/bge-small-zh-v1.5
- jinaai/jina-embeddings-v2-base-en
- jinaai/jina-embeddings-v2-small-en
- nomic-ai/nomic-embed-text-v1.5
- sentence-transformers/all-MiniLM-L6-v2
- maidalun1020/bce-embedding-base_v1
### Upload file
@ -130,7 +124,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for knowledge base
As of RAGFlow v0.17.2, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.18.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)

View File

@ -1,5 +1,5 @@
---
sidebar_position: 2
sidebar_position: 8
slug: /construct_knowledge_graph
---
@ -23,6 +23,10 @@ Constructing a knowledge graph requires significant memory, computational resour
Knowledge graphs are especially useful for multi-hop question-answering involving *nested* logic. They outperform traditional extraction approaches when you are performing question answering on books or works with complex entities and relationships.
:::tip NOTE
RAPTOR (Recursive Abstractive Processing for Tree Organized Retrieval) can also be used for multi-hop question-answering tasks. See [Enable RAPTOR](./enable_raptor.md) for details. You may use either approach or both, but ensure you understand the memory, computational, and token costs involved.
:::
## Prerequisites
The system's default chat model is used to generate knowledge graph. Before proceeding, ensure that you have a chat model properly configured:
@ -68,6 +72,10 @@ In a knowledge graph, a community is a cluster of entities linked by relationshi
_A **Knowledge graph** entry appears under **Configuration** once a knowledge graph is created._
3. Click **Knowledge graph** to view the details of the generated graph.
4. To use the created knowledge graph, do either of the following:
- In your **Chat Configuration** dialogue, click the **Assistant settings** tab to add the corresponding knowledge base(s) and click the **Prompt engine** tab to switch on the **Use knowledge graph** toggle.
- If you are using an agent, click the **Retrieval** agent component to specify the knowledge base(s) and switch on the **Use knowledge graph** toggle.
## Frequently asked questions

View File

@ -0,0 +1,74 @@
---
sidebar_position: 7
slug: /enable_raptor
---
# Enable RAPTOR
A recursive abstractive method used in long-context knowledge retrieval and summarization, balancing broad semantic understanding with fine details.
---
RAPTOR (Recursive Abstractive Processing for Tree Organized Retrieval) is an enhanced document preprocessing technique introduced in a [2024 paper](https://arxiv.org/html/2401.18059v1). Designed to tackle multi-hop question-answering issues, RAPTOR performs recursive clustering and summarization of document chunks to build a hierarchical tree structure. This enables more context-aware retrieval across lengthy documents. RAGFlow v0.6.0 integrates RAPTOR for document clustering as part of its data preprocessing pipeline between data extraction and indexing, as illustrated below.
![document_clustering](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/document_clustering_as_preprocessing.jpg)
Our tests with this new approach demonstrate state-of-the-art (SOTA) results on question-answering tasks requiring complex, multi-step reasoning. By combining RAPTOR retrieval with our built-in chunking methods and/or other retrieval-augmented generation (RAG) approaches, you can further improve your question-answering accuracy.
:::danger WARNING
Enabling RAPTOR requires significant memory, computational resources, and tokens.
:::
## Basic principles
After the original documents are divided into chunks, the chunks are clustered by semantic similarity rather than by their original order in the text. Clusters are then summarized into higher-level chunks by your system's default chat model. This process is applied recursively, forming a tree structure with various levels of summarization from the bottom up. As illustrated in the figure below, the initial chunks form the leaf nodes (shown in blue) and are progressively summarized into a root node (shown in orange).
![raptor](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/clustering_and_summarizing.jpg)
The recursive clustering and summarization capture a broad understanding (by the root node) as well as fine details (by the leaf nodes) necessary for multi-hop question-answering.
## Scenarios
For multi-hop question-answering tasks involving complex, multi-step reasoning, a semantic gap often exists between the question and its answer. As a result, searching with the question often fails to retrieve the relevant chunks that contribute to the correct answer. RAPTOR addresses this challenge by providing the chat model with richer and more context-aware and relevant chunks to summarize, enabling a holistic understanding without losing granular details.
:::tip NOTE
Knowledge graphs can also be used for multi-hop question-answering tasks. See [Construct knowledge graph](./construct_knowledge_graph.md) for details. You may use either approach or both, but ensure you understand the memory, computational, and token costs involved.
:::
## Prerequisites
The system's default chat model is used to summarize clustered content. Before proceeding, ensure that you have a chat model properly configured:
![Image](https://github.com/user-attachments/assets/6bc34279-68c3-4d99-8d20-b7bd1dafc1c1)
## Configurations
The RAPTOR feature is disabled by default. To enable it, manually switch on the **Use RAPTOR to enhance retrieval** toggle on your knowledge base's **Configuration** page.
### Prompt
The following prompt will be applied recursively for cluster summarization, with `{cluster_content}` serving as an internal parameter. We recommend that you keep it as-is for now. The design will be updated at a later point.
```
Please summarize the following paragraphs... Paragraphs as following:
{cluster_content}
The above is the content you need to summarize.
```
### Max token
The maximum number of tokens per generated summary chunk. Defaults to 256, with a maximum limit of 2048.
### Threshold
In RAPTOR, chunks are clustered by their semantic similarity. The **Threshold** parameter sets the minimum similarity required for chunks to be grouped together.
It defaults to 0.1, with a maximum limit of 1. A higher **Threshold** means fewer chunks in each cluster, while a lower one means more.
### Max cluster
The maximum number of clusters to create. Defaults to 108, with a maximum limit of 1024.
### Random seed
A random seed. Click the **+** button to change the seed value.

View File

@ -27,7 +27,7 @@ In contrast, chunks created from [knowledge graph construction](./construct_know
### Similarity threshold
This sets the bar for retrieving chunks: chunks with similarities below the threshold will be filtered out. By default, the threshold is set to 0.2.
This sets the bar for retrieving chunks: chunks with similarities below the threshold will be filtered out. By default, the threshold is set to 0.2. This means that only chunks with hybrid similarity score of 20 or higher will be retrieved.
### Keyword similarity weight

View File

@ -0,0 +1,39 @@
---
sidebar_position: 3
slug: /set_page_rank
---
# Set page rank
Create a step-retrieval strategy using page rank.
---
## Scenario
In an AI-powered chat, you can configure a chat assistant or an agent to respond using knowledge retrieved from multiple specified knowledge bases (datasets), provided that they employ the same embedding model. In situations where you prefer information from certain knowledge base(s) to take precedence or to be retrieved first, you can use RAGFlow's page rank feature to increase the ranking of chunks from these knowledge bases. For example, if you have configured a chat assistant to draw from two knowledge bases, knowledge base A for 2024 news and knowledge base B for 2023 news, but wish to prioritize news from year 2024, this feature is particularly useful.
:::info NOTE
It is important to note that this 'page rank' feature operates at the level of the entire knowledge base rather than on individual files or documents.
:::
## Configuration
On the **Configuration** page of your knowledge base, drag the slider under **Page rank** to set the page rank value for your knowledge base. You are also allowed to input the intended page rank value in the field next to the slider.
:::info NOTE
The page rank value must be an integer. Range: [0,100]
- 0: Disabled (Default)
- A specific value: enabled
:::
:::tip NOTE
If you set the page rank value to a non-integer, say 1.7, it will be rounded down to the nearest integer, which in this case is 1.
:::
## Mechanism
If you configure a chat assistant's **similarity threshold** to 0.2, only chunks with a hybrid score greater than 0.2 x 100 = 20 will be retrieved and sent to the chat model for content generation. This initial filtering step is crucial for narrowing down relevant information.
If you have assigned a page rank of 1 to knowledge base A (2024 news) and 0 to knowledge base B (2023 news), the final hybrid scores of the retrieved chunks will be adjusted accordingly. A chunk retrieved from knowledge base A with an initial score of 50 will receive a boost of 1 x 100 = 100 points, resulting in a final score of 50 + 1 x 100 = 150. In this way, chunks retrieved from knowledge base A will always precede chunks from knowledge base B.

View File

@ -11,11 +11,15 @@ Use a tag set to tag chunks in your datasets.
Retrieval accuracy is the touchstone for a production-ready RAG framework. In addition to retrieval-enhancing approaches like auto-keyword, auto-question, and knowledge graph, RAGFlow introduces an auto-tagging feature to address semantic gaps. The auto-tagging feature automatically maps tags in the user-defined tag sets to relevant chunks within your knowledge base based on similarity with each chunk. This automation mechanism allows you to apply an additional "layer" of domain-specific knowledge to existing datasets, which is particularly useful when dealing with a large number of chunks.
To use this feature, ensure you have at least one properly configured tag set, specify the tag set(s) on the **Configuration** page of your knowledge base (dataset), and then re-parse your documents to initiate the auto-tag process. During this process, each chunk in your dataset is compared with every entry in the specified tag set(s), and tags are automatically applied based on similarity.
To use this feature, ensure you have at least one properly configured tag set, specify the tag set(s) on the **Configuration** page of your knowledge base (dataset), and then re-parse your documents to initiate the auto-tagging process. During this process, each chunk in your dataset is compared with every entry in the specified tag set(s), and tags are automatically applied based on similarity.
:::caution NOTE
The auto-tagging feature is *unavailable* on the [Infinity](https://github.com/infiniflow/infinity) document engine.
:::
## Scenarios
Auto-tagging applies in situations where chunks are so similar to each other that the intended chunks cannot be distinguished from the rest. For example, when you have a few chunks about iPhone and a majority about iPhone case or iPhone accessaries, it becomes difficult to retrieve the iPhone-specific chunks without additional information.
Auto-tagging applies in situations where chunks are so similar to each other that the intended chunks cannot be distinguished from the rest. For example, when you have a few chunks about iPhone and a majority about iPhone case or iPhone accessaries, it becomes difficult to retrieve those chunks about iPhone without additional information.
## Create tag set

View File

@ -1,5 +1,5 @@
---
sidebar_position: 5
sidebar_position: 6
slug: /manage_files
---
@ -7,7 +7,7 @@ slug: /manage_files
Knowledge base, hallucination-free chat, and file management are the three pillars of RAGFlow. RAGFlow's file management allows you to upload files individually or in bulk. You can then link an uploaded file to multiple target knowledge bases. This guide showcases some basic usages of the file management feature.
:::danger IMPORTANT
:::info IMPORTANT
Compared to uploading files directly to various knowledge bases, uploading them to RAGFlow's file management and then linking them to different knowledge bases is *not* an unnecessary step, particularly when you want to delete some parsed files or an entire knowledge base but retain the original files.
:::
@ -17,7 +17,9 @@ RAGFlow's file management allows you to establish your file system with nested f
![create new folder](https://github.com/infiniflow/ragflow/assets/93570324/3a37a5f4-43a6-426d-a62a-e5cd2ff7a533)
> Each knowledge base in RAGFlow has a corresponding folder under the **root/.knowledgebase** directory. You are not allowed to create a subfolder within it.
:::caution NOTE
Each knowledge base in RAGFlow has a corresponding folder under the **root/.knowledgebase** directory. You are not allowed to create a subfolder within it.
:::
## Upload file
@ -85,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.17.2, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.18.0, bulk download is not supported, nor can you download an entire folder.

View File

@ -1,41 +0,0 @@
---
sidebar_position: 4
slug: /manage_team_members
---
# Team
Invite or remove team members, join or leave a team.
---
By default, each RAGFlow user is assigned a single team named after their name. RAGFlow allows you to invite RAGFlow users to your team. Your team members can help you:
- Upload documents to your datasets (knowledge bases).
- Update document configurations in your datasets.
- Update the default configurations for your datasets.
- Parse documents in your datasets.
:::tip NOTE
Team members are currently *not* allowed to invite users to your team, and only you, the team owner, is permitted to do so.
:::
To enter the **Team** page, click on your avatar in the top right corner of the page **>** Team:
![team](https://github.com/user-attachments/assets/0eac2503-26bc-4568-b3f2-bcd84069a07a)
_On the **Team** page, you can view the information about members of your team and the teams you have joined._
## Invite team members
You are, by default, the owner of your own team and the only person permitted to invite users to join your team or remove team members.
![invite_team_member](https://github.com/user-attachments/assets/d85b55c3-7e86-4f04-a414-ca18a9ee8963)
## Remove team members
![remove_members](https://github.com/user-attachments/assets/5c1a6ab5-8862-47a0-ad09-77fe88866508)
## Accept or decline team invite
![accept_or_decline_team_invite](https://github.com/user-attachments/assets/6a2cb61f-03d5-4423-9ed1-71df97ff4114)

View File

@ -3,11 +3,11 @@ sidebar_position: 2
slug: /deploy_local_llm
---
# Deploy LLM locally
# Deploy local models
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
Run models locally using Ollama, Xinference, or other frameworks.
Deploy and run local models using Ollama, Xinference, or other frameworks.
---
@ -28,7 +28,7 @@ This user guide does not intend to cover much of the installation or configurati
- For a complete list of supported models and variants, see the [Ollama model library](https://ollama.com/library).
:::
### 1. Deploy ollama using docker
### 1. Deploy Ollama using Docker
```bash
sudo docker run --name ollama -p 11434:11434 ollama/ollama
@ -36,14 +36,14 @@ time=2024-12-02T02:20:21.360Z level=INFO source=routes.go:1248 msg="Listening on
time=2024-12-02T02:20:21.360Z level=INFO source=common.go:49 msg="Dynamic LLM libraries" runners="[cpu cpu_avx cpu_avx2 cuda_v11 cuda_v12]"
```
Ensure ollama is listening on all IP address:
Ensure Ollama is listening on all IP address:
```bash
sudo ss -tunlp | grep 11434
tcp LISTEN 0 4096 0.0.0.0:11434 0.0.0.0:* users:(("docker-proxy",pid=794507,fd=4))
tcp LISTEN 0 4096 [::]:11434 [::]:* users:(("docker-proxy",pid=794513,fd=4))
```
Pull models as you need. It's recommended to start with `llama3.2` (a 3B chat model) and `bge-m3` (a 567M embedding model):
Pull models as you need. We recommend that you start with `llama3.2` (a 3B chat model) and `bge-m3` (a 567M embedding model):
```bash
sudo docker exec ollama ollama pull llama3.2
pulling dde5aa3fc5ff... 100% ▕████████████████▏ 2.0 GB
@ -58,20 +58,20 @@ success
### 2. Ensure Ollama is accessible
If RAGFlow runs in Docker and Ollama runs on the same host machine, check if ollama is accessible from inside the RAGFlow container:
- If RAGFlow runs in Docker and Ollama runs on the same host machine, check if Ollama is accessible from inside the RAGFlow container:
```bash
sudo docker exec -it ragflow-server bash
root@8136b8c3e914:/ragflow# curl http://host.docker.internal:11434/
curl http://host.docker.internal:11434/
Ollama is running
```
If RAGFlow runs from source code and Ollama runs on the same host machine, check if ollama is accessible from RAGFlow host machine:
- If RAGFlow is launched from source code and Ollama runs on the same host machine as RAGFlow, check if Ollama is accessible from RAGFlow's host machine:
```bash
curl http://localhost:11434/
Ollama is running
```
If RAGFlow and Ollama run on different machines, check if ollama is accessible from RAGFlow host machine:
- If RAGFlow and Ollama run on different machines, check if Ollama is accessible from RAGFlow's host machine:
```bash
curl http://${IP_OF_OLLAMA_MACHINE}:11434/
Ollama is running
@ -88,8 +88,8 @@ In RAGFlow, click on your logo on the top right of the page **>** **Model provid
In the popup window, complete basic settings for Ollama:
1. Ensure model name and type match those been pulled at step 1, For example, (`llama3.2`, `chat`), (`bge-m3`, `embedding`).
2. Ensure that the base URL match which been determined at step 2.
1. Ensure that your model name and type match those been pulled at step 1 (Deploy Ollama using Docker). For example, (`llama3.2` and `chat`) or (`bge-m3` and `embedding`).
2. Ensure that the base URL match the URL determined at step 2 (Ensure Ollama is accessible).
3. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.
@ -104,15 +104,12 @@ Max retries exceeded with url: /api/chat (Caused by NewConnectionError('<urllib3
Click on your logo **>** **Model providers** **>** **System Model Settings** to update your model:
*You should now be able to find **llama3.2** from the dropdown list under **Chat model**, and **bge-m3** from the dropdown list under **Embedding model**.*
> If your local model is an embedding model, you should find your local model under **Embedding model**.
- *You should now be able to find **llama3.2** from the dropdown list under **Chat model**, and **bge-m3** from the dropdown list under **Embedding model**.*
- _If your local model is an embedding model, you should find it under **Embedding model**._
### 7. Update Chat Configuration
Update your chat model accordingly in **Chat Configuration**:
> If your local model is an embedding model, update it on the configuration page of your knowledge base.
Update your model(s) accordingly in **Chat Configuration**.
## Deploy a local model using Xinference

Some files were not shown because too many files have changed in this diff Show More