Compare commits

..

66 Commits

Author SHA1 Message Date
32dbed36e3 Fix: Unified terminology to "Pipeline" and optimized related component logic. #9869 (#10394)
### What problem does this PR solve?

Fix: Unified terminology to "Pipeline" and optimized related component
logic. #9869

- Added logic to clear pipeline_id when parseType changes in the chunk
method dialog.
- Fixed an issue in the Tooltip form component that prevented clicks
from triggering saves.
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 19:53:15 +08:00
7f62ab8eb3 Feat: View data flow test results #9869 (#10392)
### What problem does this PR solve?

Feat: View data flow test results #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-30 18:55:55 +08:00
e87987785c fix(web): add data stream selection component (#10387)
### What problem does this PR solve?

fix(web): add data stream selection component

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 17:35:06 +08:00
b3b0be832a Fix: input (#10386)
### What problem does this PR solve?

Fix input of some parser.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 15:39:09 +08:00
20b577a72c Fix: Merge main branch (#10377)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

---------

Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: jinhai <haijin.chn@gmail.com>
Signed-off-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: Lynn <lynn_inf@hotmail.com>
Co-authored-by: chanx <1243304602@qq.com>
Co-authored-by: balibabu <cike8899@users.noreply.github.com>
Co-authored-by: 纷繁下的无奈 <zhileihuang@126.com>
Co-authored-by: huangzl <huangzl@shinemo.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
Co-authored-by: Wilmer <33392318@qq.com>
Co-authored-by: Adrian Weidig <adrianweidig@gmx.net>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: Liu An <asiro@qq.com>
Co-authored-by: buua436 <66937541+buua436@users.noreply.github.com>
Co-authored-by: BadwomanCraZY <511528396@qq.com>
Co-authored-by: cucusenok <31804608+cucusenok@users.noreply.github.com>
Co-authored-by: Russell Valentine <russ@coldstonelabs.org>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Billy Bao <newyorkupperbay@gmail.com>
Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
Co-authored-by: TensorNull <129579691+TensorNull@users.noreply.github.com>
Co-authored-by: TensorNull <tensor.null@gmail.com>
Co-authored-by: Ajay <160579663+aybanda@users.noreply.github.com>
Co-authored-by: AB <aj@Ajays-MacBook-Air.local>
Co-authored-by: 天海蒼灆 <huangaoqin@tecpie.com>
Co-authored-by: He Wang <wanghechn@qq.com>
Co-authored-by: Atsushi Hatakeyama <atu729@icloud.com>
Co-authored-by: Jin Hai <haijin.chn@gmail.com>
Co-authored-by: Mohamed Mathari <155896313+melmathari@users.noreply.github.com>
Co-authored-by: Mohamed Mathari <nocodeventure@Mac-mini-van-Mohamed.fritz.box>
Co-authored-by: Stephen Hu <stephenhu@seismic.com>
Co-authored-by: Shaun Zhang <zhangwfjh@users.noreply.github.com>
Co-authored-by: zhimeng123 <60221886+zhimeng123@users.noreply.github.com>
Co-authored-by: mxc <mxc@example.com>
Co-authored-by: Dominik Novotný <50611433+SgtMarmite@users.noreply.github.com>
Co-authored-by: EVGENY M <168018528+rjohny55@users.noreply.github.com>
Co-authored-by: mcoder6425 <mcoder64@gmail.com>
Co-authored-by: TeslaZY <TeslaZY@outlook.com>
Co-authored-by: lemsn <lemsn@msn.com>
Co-authored-by: lemsn <lemsn@126.com>
Co-authored-by: Adrian Gora <47756404+adagora@users.noreply.github.com>
Co-authored-by: Womsxd <45663319+Womsxd@users.noreply.github.com>
Co-authored-by: FatMii <39074672+FatMii@users.noreply.github.com>
2025-09-30 13:13:15 +08:00
4d6ff672eb Fix: Added read-only mode support and optimized navigation logic #9869 (#10370)
### What problem does this PR solve?

Fix: Added read-only mode support and optimized navigation logic #9869

- Added the `isReadonly` property to the parseResult component to
control the enabled state of editing and interactive features
- Added the `navigateToDataFile` navigation method to navigate to the
data file details page
- Refactored the `navigateToDataflowResult` method to use an object
parameter to support more flexible query parameter configuration
- Unified the `var(--accent-primary)` CSS variable format to
`rgb(var(--accent-primary))` to accommodate more styling scenarios
- Extracted the parser initialization logic into a separate hook
(`useParserInit`)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 12:00:29 +08:00
fb19e24f8a Feat: Delete flow related code. #9869 (#10371)
### What problem does this PR solve?

Feat: Delete flow related code. #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-30 12:00:17 +08:00
9989e06abb Fix: debug PDF positions.. (#10365)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-30 09:24:44 +08:00
c49e81882c Feat: Remove the copy icon from the toolbar for the Splitter and Parser nodes #9869 (#10367)
### What problem does this PR solve?
Feat: Remove the copy icon from the toolbar for the Splitter and Parser
nodes #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-29 18:55:53 +08:00
63cdce660e Feat: Limit the number of Splitter and Parser operators on the canvas to only one #9869 (#10362)
### What problem does this PR solve?

Feat: Limit the number of Splitter and Parser operators on the canvas to
only one #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-29 17:22:40 +08:00
8bc8126848 Feat: Move the github icon to the right #9869 (#10355)
### What problem does this PR solve?

Feat: Move the github icon to the right #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-29 11:50:58 +08:00
71f69cdb75 Fix: debug hierachical merging... (#10337)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-29 09:29:33 +08:00
664bc0b961 Feat: Displays the loading status of the data flow log #9869 (#10347)
### What problem does this PR solve?

Feat: Displays the loading status of the data flow log #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 19:38:46 +08:00
f4cc4dbd30 Fix: Interoperate with the pipeline rerun and unbindTask interfaces. #9869 (#10346)
### What problem does this PR solve?

Fix: Interoperate with the pipeline rerun and unbindTask interfaces.
#9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-28 19:32:19 +08:00
cce361d774 Feat: Filter the agent list by owner and category #9869 (#10344)
### What problem does this PR solve?

Feat: Filter the agent list by owner and category #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 18:43:20 +08:00
7a63b6386e Feat: limit pipeline operation logs to 1000 records (#10341)
### What problem does this PR solve?

 Limit pipeline operation logs to 1000 records.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 18:42:19 +08:00
4996dcb0eb Fix bug of image parser and prompt of parser supports customization (#10319)
### What problem does this PR solve?
BugFix: ERROR: KeyError: 'llm_id'
Feat: The prompt of the describe picture in cv_model supports
customization #10320


### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 12:47:36 +08:00
3521eb61fe Feat: add support for deleting KB tasks (#10335)
### What problem does this PR solve?

Add support for deleting KB tasks.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-28 12:46:00 +08:00
6b9b785b5c Feat: Fixed the issue where the cursor would go to the end when changing its own data #9869 (#10316)
### What problem does this PR solve?

Feat: Fixed the issue where the cursor would go to the end when changing
its own data #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 19:55:42 +08:00
4c0a89f262 Feat: add initial support for Mindmap (#10310)
### What problem does this PR solve?

Add initial support for Mindmap.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
2025-09-26 19:45:01 +08:00
76b1ee2a00 Fix: debug pipeline... (#10311)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-26 19:11:30 +08:00
771a38434f Feat: Bring the parser operator when creating a new data flow #9869 (#10309)
### What problem does this PR solve?

Feat: Bring the parser operator when creating a new data flow #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 19:09:27 +08:00
886d38620e Fix: Improved knowledge base configuration and related logic #9869 (#10315)
### What problem does this PR solve?

Fix: Improved knowledge base configuration and related logic #9869
- Optimized the display logic of the Generate Log button to support
displaying completion time and task ID
- Implemented the ability to pause task generation and connect to the
data flow cancellation interface
- Fixed issues with type definitions and optional chaining calls in some
components
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-26 19:09:11 +08:00
c7efaab30e Feat: debug extractor... (#10294)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 10:51:05 +08:00
ff49454501 Feat: fetch KB config for GraphRAG and RAPTOR (#10288)
### What problem does this PR solve?

Fetch KB config for GraphRAG and RAPTOR.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 09:39:58 +08:00
14273b4595 Fix: Optimized knowledge base file parsing and display #9869 (#10292)
### What problem does this PR solve?

Fix: Optimized knowledge base file parsing and display #9869

- Optimized the ChunkMethodDialog component logic and adjusted
FormSchema validation rules
- Updated the document information interface definition, adding
pipeline_id, pipeline_name, and suffix fields
- Refactored the ChunkResultBar component, removing filter-related logic
and simplifying the input box and chunk creation functionality
- Improved FormatPreserveEditor to support text mode switching
(full/omitted) display control
- Updated timeline node titles to more accurate semantic descriptions
(e.g., character splitters)
- Optimized the data flow result page structure and style, dynamically
adjusting height and content display
- Fixed the table sorting function on the dataset overview page and
enhanced the display of task type icons and status mapping.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-25 19:53:49 +08:00
abe7132630 Feat: Change the corresponding prompt word according to the value of fieldName #9869 (#10291)
### What problem does this PR solve?

Feat: Change the corresponding prompt word according to the value of
fieldName #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 19:53:37 +08:00
c1151519a0 Feat: add foundational support for RAPTOR dataset pipeline logs (#10277)
### What problem does this PR solve?

Add foundational support for RAPTOR dataset pipeline logs.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 16:46:24 +08:00
a1147ce609 Feat: Allows the extractor operator's prompt to reference the output of an upstream operator #9869 (#10279)
### What problem does this PR solve?

Feat: Allows the extractor operator's prompt to reference the output of
an upstream operator #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 15:24:24 +08:00
d907e79893 Refa: fake doc ID. (#10276)
### What problem does this PR solve?
#10273
### Type of change

- [x] Refactoring
2025-09-25 13:52:50 +08:00
1b19d302c5 Feat: add extractor component. (#10271)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 11:34:47 +08:00
840b2b5809 Feat: add foundational support for GraphRAG dataset pipeline logs (#10264)
### What problem does this PR solve?

Add foundational support for GraphRAG dataset pipeline logs

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-25 09:35:50 +08:00
a6039cf563 Fix: Optimized the timeline component and parser editing features #9869 (#10268)
### What problem does this PR solve?

Fix: Optimized the timeline component and parser editing features #9869

- Introduced the TimelineNodeType type, restructured the timeline node
structure, and supported dynamic node generation
- Enhanced the FormatPreserveEditor component to support editing and
line wrapping of JSON-formatted content
- Added a rerun function and loading state to the parser and splitter
components
- Adjusted the timeline style and interaction logic to enhance the user
experience
- Improved the modal component and added a destroy method to support
more flexible control
- Optimized the chunk result display and operation logic, supporting
batch deletion and selection
### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-24 19:58:30 +08:00
8be7380b79 Feat: Added the context operator form for data flow #9869 (#10270)
### What problem does this PR solve?
Feat: Added the context operator form for data flow #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-24 19:58:16 +08:00
afb8a84f7b Feat: Add context node #9869 (#10266)
### What problem does this PR solve?

Feat: Add context node #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-24 18:48:31 +08:00
6bf0cda16f Feat: Cancel a running data flow test #9869 (#10257)
### What problem does this PR solve?

Feat: Cancel a running data flow test #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-24 16:33:33 +08:00
5715ca6b74 Fix: pipeline debug... (#10206)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
2025-09-24 11:12:08 +08:00
8f465525f7 Feat: Display the log after the data flow runs #9869 (#10232)
### What problem does this PR solve?

Feat: Display the log after the data flow runs #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-23 19:30:47 +08:00
f20dca2895 Fix: Interface integration for the file log page in the overview #9869 (#10222)
### What problem does this PR solve?

Fix: Interface integration for the file log page in the overview

- Support for selecting data pipeline parsing types
- Use the RunningStatus enumeration instead of numeric status
- Obtain and display data pipeline file log details
- Replace existing mock data with new interface data on the page
- Link the file log list to the real data source
- Optimize log information display
- Fixed a typo in the field name "pipeline_id" → "pipeline_id"

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-23 10:33:17 +08:00
0c557e37ad Feat: add support for pipeline logs operation (#10207)
### What problem does this PR solve?

Add support for pipeline logs operation

### Type of change


- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-09-23 09:46:31 +08:00
d0bfe8b10c Feat: Display the data flow log on the far right. #9869 (#10214)
### What problem does this PR solve?

Feat: Display the data flow log on the far right. #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 19:13:18 +08:00
28afc7e67d Feat: Exporting the results of data flow tests #9869 (#10209)
### What problem does this PR solve?

Feat: Exporting the results of data flow tests #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 18:08:04 +08:00
73c33bc8d2 Fix: Fixed the issue where the drop-down box could not be displayed after selecting a large model #9869 (#10205)
### What problem does this PR solve?

Fix: Fixed the issue where the drop-down box could not be displayed
after selecting a large model #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-22 17:16:34 +08:00
476852e8f1 Feat: Remove useless files from the data flow #9869 (#10198)
### What problem does this PR solve?

Feat: Remove useless files from the data flow #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 15:48:39 +08:00
e6cf00cb33 Feat: Add suffix field to all operators #9869 (#10195)
### What problem does this PR solve?

Feat: Add suffix field to all operators #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 14:37:06 +08:00
d039d1e73d fix: Added dataset generation logging functionality #9869 (#10180)
### What problem does this PR solve?

fix: Added dataset generation logging functionality #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-22 10:01:34 +08:00
d050ef568d Feat: support dataflow run. (#10182)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-22 09:36:21 +08:00
028c2d83e9 Feat: parse email (#10181)
### What problem does this PR solve?

- Dataflow support email.
- Fix old email parser.
- Add new depends to parse msg file.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
- [x] Other (please describe): add new depends.
2025-09-22 09:29:38 +08:00
b5d6a6e8f2 Feat: Remove unnecessary data from the dsl #9869 (#10177)
### What problem does this PR solve?
Feat: Remove unnecessary data from the dsl #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 19:06:33 +08:00
5dfdbcce3a Feat: pipeline supports PPTX (#10167)
### What problem does this PR solve?

Pipeline supports parsing PPTX naively (text only).

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 12:14:35 +08:00
4fae40f66a Feat: Translate the splitter operator field #9869 (#10166)
### What problem does this PR solve?

Feat: Translate the splitter operator field #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-19 11:11:22 +08:00
a1b947ffd6 Feat: add splitter (#10161)
### What problem does this PR solve?


### Type of change
- [x] New Feature (non-breaking change which adds functionality)

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: Lynn <lynn_inf@hotmail.com>
Co-authored-by: chanx <1243304602@qq.com>
Co-authored-by: balibabu <cike8899@users.noreply.github.com>
Co-authored-by: 纷繁下的无奈 <zhileihuang@126.com>
Co-authored-by: huangzl <huangzl@shinemo.com>
Co-authored-by: writinwaters <93570324+writinwaters@users.noreply.github.com>
Co-authored-by: Wilmer <33392318@qq.com>
Co-authored-by: Adrian Weidig <adrianweidig@gmx.net>
Co-authored-by: Zhichang Yu <yuzhichang@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Yongteng Lei <yongtengrey@outlook.com>
Co-authored-by: Liu An <asiro@qq.com>
Co-authored-by: buua436 <66937541+buua436@users.noreply.github.com>
Co-authored-by: BadwomanCraZY <511528396@qq.com>
Co-authored-by: cucusenok <31804608+cucusenok@users.noreply.github.com>
Co-authored-by: Russell Valentine <russ@coldstonelabs.org>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Billy Bao <newyorkupperbay@gmail.com>
Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
Co-authored-by: TensorNull <129579691+TensorNull@users.noreply.github.com>
Co-authored-by: TensorNull <tensor.null@gmail.com>
2025-09-19 10:15:19 +08:00
f9c7404bee Fix: Updated color parsing functions and optimized component logic. (#10159)
### What problem does this PR solve?

refactor(timeline, modal, dataflow-result, dataset-overview): Updated
color parsing functions and optimized component logic.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-19 09:57:44 +08:00
5c1791d7f0 Feat: Upload files on the data flow page #9869 (#10153)
### What problem does this PR solve?

Feat: Upload files on the data flow page #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 16:19:53 +08:00
e82617f6de feat(dataset): Added data pipeline configuration functionality #9869 (#10132)
### What problem does this PR solve?

feat(dataset): Added data pipeline configuration functionality #9869

- Added a data pipeline selection component to link data pipelines with
knowledge bases
- Added file filtering functionality, supporting custom file filtering
rules
- Optimized the configuration interface layout, adjusting style and
spacing
- Introduced new icons and buttons to enhance the user experience

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-18 09:31:57 +08:00
a7abc57f68 Feat: Add SliderInputFormField story #9869 (#10138)
### What problem does this PR solve?

Feat: Add SliderInputFormField story #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-18 09:29:33 +08:00
cf1f523d03 Feat: Create a data flow #9869 (#10131)
### What problem does this PR solve?

Feat: Create a data flow #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-17 17:54:21 +08:00
ccb255919a Feat: Add HierarchicalMergerForm #9869 (#10122)
### What problem does this PR solve?
Feat:  Add HierarchicalMergerForm #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-17 13:47:50 +08:00
b68c84b52e Feat: Add splitter form #9869 (#10115)
### What problem does this PR solve?

Feat: Add splitter form #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-17 09:36:54 +08:00
93cf0258c3 Feat: Add splitter node component #9869 (#10114)
### What problem does this PR solve?

Feat: Add splitter node component #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-16 17:53:48 +08:00
b79fef1ca8 fix: Modify icon file, knowledge base display style (#10104)
### What problem does this PR solve?

fix: Modify icon file, knowledge base display style #9869

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-16 10:37:08 +08:00
2b50de3186 Feat: Translate the fields of the parsing operator #9869 (#10079)
### What problem does this PR solve?

Feat: Translate the fields of the parsing operator #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-15 11:24:19 +08:00
d8ef22db68 Fix(dataset): Optimized the dataset configuration page UI #9869 (#10066)
### What problem does this PR solve?
fix(dataset): Optimized the dataset configuration page UI

- Added the DataPipelineSelect component for selecting data pipelines
- Restructured the layout and style of the dataset settings page
- Removed unnecessary components and code
- Optimized data pipeline configuration
- Adjusted the Create Dataset dialog box
- Updated the processing log modal style

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-12 16:01:37 +08:00
592f3b1555 Feat: Bind options to the parser operator form. #9869 (#10069)
### What problem does this PR solve?

Feat: Bind options to the parser operator form. #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-12 16:01:24 +08:00
3404469e2a Feat: Dynamically increase the configuration of the parser operator #9869 (#10060)
### What problem does this PR solve?

Feat: Dynamically increase the configuration of the parser operator
#9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-12 10:14:26 +08:00
63d7382dc9 fix: Displays the dataset creation and settings page #9869 (#10052)
### What problem does this PR solve?

[_Briefly describe what this PR aims to solve. Include background
context that will help reviewers understand the purpose of the
PR._](fix: Displays the dataset creation and settings page #9869)

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-11 17:25:07 +08:00
273 changed files with 8187 additions and 9119 deletions

View File

@ -25,7 +25,7 @@ jobs:
- name: Check out code - name: Check out code
uses: actions/checkout@v4 uses: actions/checkout@v4
with: with:
token: ${{ secrets.GITHUB_TOKEN }} # Use the secret as an environment variable token: ${{ secrets.MY_GITHUB_TOKEN }} # Use the secret as an environment variable
fetch-depth: 0 fetch-depth: 0
fetch-tags: true fetch-tags: true
@ -69,7 +69,7 @@ jobs:
# https://github.com/actions/upload-release-asset has been replaced by https://github.com/softprops/action-gh-release # https://github.com/actions/upload-release-asset has been replaced by https://github.com/softprops/action-gh-release
uses: softprops/action-gh-release@v2 uses: softprops/action-gh-release@v2
with: with:
token: ${{ secrets.GITHUB_TOKEN }} # Use the secret as an environment variable token: ${{ secrets.MY_GITHUB_TOKEN }} # Use the secret as an environment variable
prerelease: ${{ env.PRERELEASE }} prerelease: ${{ env.PRERELEASE }}
tag_name: ${{ env.RELEASE_TAG }} tag_name: ${{ env.RELEASE_TAG }}
# The body field does not support environment variable substitution directly. # The body field does not support environment variable substitution directly.

View File

@ -34,10 +34,12 @@ jobs:
# https://github.com/hmarr/debug-action # https://github.com/hmarr/debug-action
#- uses: hmarr/debug-action@v2 #- uses: hmarr/debug-action@v2
- name: Ensure workspace ownership - name: Show who triggered this workflow
run: | run: |
echo "Workflow triggered by ${{ github.event_name }}" echo "Workflow triggered by ${{ github.event_name }}"
echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
- name: Ensure workspace ownership
run: echo "chown -R $USER $GITHUB_WORKSPACE" && sudo chown -R $USER $GITHUB_WORKSPACE
# https://github.com/actions/checkout/issues/1781 # https://github.com/actions/checkout/issues/1781
- name: Check out code - name: Check out code
@ -46,44 +48,6 @@ jobs:
fetch-depth: 0 fetch-depth: 0
fetch-tags: true fetch-tags: true
- name: Check workflow duplication
if: ${{ !cancelled() && !failure() && (github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'ci')) }}
run: |
if [[ ${{ github.event_name }} != 'pull_request' ]]; then
HEAD=$(git rev-parse HEAD)
# Find a PR that introduced a given commit
gh auth login --with-token <<< "${{ secrets.GITHUB_TOKEN }}"
PR_NUMBER=$(gh pr list --search ${HEAD} --state merged --json number --jq .[0].number)
echo "HEAD=${HEAD}"
echo "PR_NUMBER=${PR_NUMBER}"
if [[ -n ${PR_NUMBER} ]]; then
PR_SHA_FP=${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}/PR_${PR_NUMBER}
if [[ -f ${PR_SHA_FP} ]]; then
read -r PR_SHA PR_RUN_ID < "${PR_SHA_FP}"
# Calculate the hash of the current workspace content
HEAD_SHA=$(git rev-parse HEAD^{tree})
if [[ ${HEAD_SHA} == ${PR_SHA} ]]; then
echo "Cancel myself since the workspace content hash is the same with PR #${PR_NUMBER} merged. See ${GITHUB_SERVER_URL}/${GITHUB_REPOSITORY}/actions/runs/${PR_RUN_ID} for details."
gh run cancel ${GITHUB_RUN_ID}
while true; do
status=$(gh run view ${GITHUB_RUN_ID} --json status -q .status)
[ "$status" = "completed" ] && break
sleep 5
done
exit 1
fi
fi
fi
else
PR_NUMBER=${{ github.event.pull_request.number }}
PR_SHA_FP=${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}/PR_${PR_NUMBER}
# Calculate the hash of the current workspace content
PR_SHA=$(git rev-parse HEAD^{tree})
echo "PR #${PR_NUMBER} workspace content hash: ${PR_SHA}"
mkdir -p ${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}
echo "${PR_SHA} ${GITHUB_RUN_ID}" > ${PR_SHA_FP}
fi
# https://github.com/astral-sh/ruff-action # https://github.com/astral-sh/ruff-action
- name: Static check with Ruff - name: Static check with Ruff
uses: astral-sh/ruff-action@v3 uses: astral-sh/ruff-action@v3
@ -95,11 +59,11 @@ jobs:
run: | run: |
RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-$HOME} RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-$HOME}
sudo docker pull ubuntu:22.04 sudo docker pull ubuntu:22.04
sudo DOCKER_BUILDKIT=1 docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim . sudo docker build --progress=plain --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
- name: Build ragflow:nightly - name: Build ragflow:nightly
run: | run: |
sudo DOCKER_BUILDKIT=1 docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly . sudo docker build --progress=plain --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
- name: Start ragflow:nightly-slim - name: Start ragflow:nightly-slim
run: | run: |

View File

@ -341,13 +341,11 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
5. If your operating system does not have jemalloc, please install it as follows: 5. If your operating system does not have jemalloc, please install it as follows:
```bash ```bash
# Ubuntu # ubuntu
sudo apt-get install libjemalloc-dev sudo apt-get install libjemalloc-dev
# CentOS # centos
sudo yum install jemalloc sudo yum install jemalloc
# OpenSUSE # mac
sudo zypper install jemalloc
# macOS
sudo brew install jemalloc sudo brew install jemalloc
``` ```

View File

@ -1,19 +1,3 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse import argparse
import base64 import base64
@ -406,22 +390,6 @@ class AdminCLI:
service_id: int = command['number'] service_id: int = command['number']
print(f"Showing service: {service_id}") print(f"Showing service: {service_id}")
url = f'http://{self.host}:{self.port}/api/v1/admin/services/{service_id}'
response = requests.get(url, auth=HTTPBasicAuth(self.admin_account, self.admin_password))
res_json = response.json()
if response.status_code == 200:
res_data = res_json['data']
if res_data['alive']:
print(f"Service {res_data['service_name']} is alive. Detail:")
if isinstance(res_data['message'], str):
print(res_data['message'])
else:
self._print_table_simple(res_data['message'])
else:
print(f"Service {res_data['service_name']} is down. Detail: {res_data['message']}")
else:
print(f"Fail to show service, code: {res_json['code']}, message: {res_json['message']}")
def _handle_restart_service(self, command): def _handle_restart_service(self, command):
service_id: int = command['number'] service_id: int = command['number']
print(f"Restart service {service_id}") print(f"Restart service {service_id}")

View File

@ -1,18 +1,3 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os import os
import signal import signal

View File

@ -1,26 +1,9 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging import logging
import uuid import uuid
from functools import wraps from functools import wraps
from flask import request, jsonify from flask import request, jsonify
from api.common.exceptions import AdminException from exceptions import AdminException
from api.db.init_data import encode_to_base64 from api.db.init_data import encode_to_base64
from api.db.services import UserService from api.db.services import UserService

View File

@ -1,20 +1,3 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging import logging
import threading import threading
from enum import Enum from enum import Enum
@ -49,11 +32,9 @@ class BaseConfig(BaseModel):
host: str host: str
port: int port: int
service_type: str service_type: str
detail_func_name: str
def to_dict(self) -> dict[str, Any]: def to_dict(self) -> dict[str, Any]:
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port, return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port, 'service_type': self.service_type}
'service_type': self.service_type}
class MetaConfig(BaseConfig): class MetaConfig(BaseConfig):
@ -228,8 +209,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
name: str = f'ragflow_{ragflow_count}' name: str = f'ragflow_{ragflow_count}'
host: str = v['host'] host: str = v['host']
http_port: int = v['http_port'] http_port: int = v['http_port']
config = RAGFlowServerConfig(id=id_count, name=name, host=host, port=http_port, config = RAGFlowServerConfig(id=id_count, name=name, host=host, port=http_port, service_type="ragflow_server")
service_type="ragflow_server", detail_func_name="check_ragflow_server_alive")
configurations.append(config) configurations.append(config)
id_count += 1 id_count += 1
case "es": case "es":
@ -242,8 +222,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
password: str = v.get('password') password: str = v.get('password')
config = ElasticsearchConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval", config = ElasticsearchConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval",
retrieval_type="elasticsearch", retrieval_type="elasticsearch",
username=username, password=password, username=username, password=password)
detail_func_name="get_es_cluster_stats")
configurations.append(config) configurations.append(config)
id_count += 1 id_count += 1
@ -255,7 +234,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
port = int(parts[1]) port = int(parts[1])
database: str = v.get('db_name', 'default_db') database: str = v.get('db_name', 'default_db')
config = InfinityConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval", retrieval_type="infinity", config = InfinityConfig(id=id_count, name=name, host=host, port=port, service_type="retrieval", retrieval_type="infinity",
db_name=database, detail_func_name="get_infinity_status") db_name=database)
configurations.append(config) configurations.append(config)
id_count += 1 id_count += 1
case "minio": case "minio":
@ -267,7 +246,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
user = v.get('user') user = v.get('user')
password = v.get('password') password = v.get('password')
config = MinioConfig(id=id_count, name=name, host=host, port=port, user=user, password=password, service_type="file_store", config = MinioConfig(id=id_count, name=name, host=host, port=port, user=user, password=password, service_type="file_store",
store_type="minio", detail_func_name="check_minio_alive") store_type="minio")
configurations.append(config) configurations.append(config)
id_count += 1 id_count += 1
case "redis": case "redis":
@ -279,7 +258,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
password = v.get('password') password = v.get('password')
db: int = v.get('db') db: int = v.get('db')
config = RedisConfig(id=id_count, name=name, host=host, port=port, password=password, database=db, config = RedisConfig(id=id_count, name=name, host=host, port=port, password=password, database=db,
service_type="message_queue", mq_type="redis", detail_func_name="get_redis_info") service_type="message_queue", mq_type="redis")
configurations.append(config) configurations.append(config)
id_count += 1 id_count += 1
case "mysql": case "mysql":
@ -289,7 +268,7 @@ def load_configurations(config_path: str) -> list[BaseConfig]:
username = v.get('user') username = v.get('user')
password = v.get('password') password = v.get('password')
config = MySQLConfig(id=id_count, name=name, host=host, port=port, username=username, password=password, config = MySQLConfig(id=id_count, name=name, host=host, port=port, username=username, password=password,
service_type="meta_data", meta_type="mysql", detail_func_name="get_mysql_status") service_type="meta_data", meta_type="mysql")
configurations.append(config) configurations.append(config)
id_count += 1 id_count += 1
case "admin": case "admin":

View File

@ -1,15 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

View File

@ -1,31 +1,12 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import jsonify from flask import jsonify
def success_response(data=None, message="Success", code = 0):
def success_response(data=None, message="Success", code=0):
return jsonify({ return jsonify({
"code": code, "code": code,
"message": message, "message": message,
"data": data "data": data
}), 200 }), 200
def error_response(message="Error", code=-1, data=None): def error_response(message="Error", code=-1, data=None):
return jsonify({ return jsonify({
"code": code, "code": code,

View File

@ -1,26 +1,9 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import Blueprint, request from flask import Blueprint, request
from auth import login_verify from auth import login_verify
from responses import success_response, error_response from responses import success_response, error_response
from services import UserMgr, ServiceMgr, UserServiceMgr from services import UserMgr, ServiceMgr, UserServiceMgr
from api.common.exceptions import AdminException from exceptions import AdminException
admin_bp = Blueprint('admin', __name__, url_prefix='/api/v1/admin') admin_bp = Blueprint('admin', __name__, url_prefix='/api/v1/admin')
@ -119,7 +102,6 @@ def alter_user_activate_status(username):
except Exception as e: except Exception as e:
return error_response(str(e), 500) return error_response(str(e), 500)
@admin_bp.route('/users/<username>', methods=['GET']) @admin_bp.route('/users/<username>', methods=['GET'])
@login_verify @login_verify
def get_user_details(username): def get_user_details(username):
@ -132,7 +114,6 @@ def get_user_details(username):
except Exception as e: except Exception as e:
return error_response(str(e), 500) return error_response(str(e), 500)
@admin_bp.route('/users/<username>/datasets', methods=['GET']) @admin_bp.route('/users/<username>/datasets', methods=['GET'])
@login_verify @login_verify
def get_user_datasets(username): def get_user_datasets(username):

View File

@ -1,20 +1,3 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re import re
from werkzeug.security import check_password_hash from werkzeug.security import check_password_hash
from api.db import ActiveEnum from api.db import ActiveEnum
@ -24,20 +7,16 @@ from api.db.services.canvas_service import UserCanvasService
from api.db.services.user_service import TenantService from api.db.services.user_service import TenantService
from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.crypt import decrypt from api.utils.crypt import decrypt
from api.utils import health_utils from exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
from api.common.exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
from config import SERVICE_CONFIGS from config import SERVICE_CONFIGS
class UserMgr: class UserMgr:
@staticmethod @staticmethod
def get_all_users(): def get_all_users():
users = UserService.get_all_users() users = UserService.get_all_users()
result = [] result = []
for user in users: for user in users:
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date, result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date, 'is_active': user.is_active})
'is_active': user.is_active})
return result return result
@staticmethod @staticmethod
@ -131,7 +110,6 @@ class UserMgr:
UserService.update_user(usr.id, {"is_active": target_status}) UserService.update_user(usr.id, {"is_active": target_status})
return f"Turn {_activate_status} user activate status successfully!" return f"Turn {_activate_status} user activate status successfully!"
class UserServiceMgr: class UserServiceMgr:
@staticmethod @staticmethod
@ -170,7 +148,6 @@ class UserServiceMgr:
'canvas_category': r['canvas_category'] 'canvas_category': r['canvas_category']
} for r in res] } for r in res]
class ServiceMgr: class ServiceMgr:
@staticmethod @staticmethod
@ -187,22 +164,7 @@ class ServiceMgr:
@staticmethod @staticmethod
def get_service_details(service_id: int): def get_service_details(service_id: int):
service_id = int(service_id) raise AdminException("get_service_details: not implemented")
configs = SERVICE_CONFIGS.configs
service_config_mapping = {
c.id: {
'name': c.name,
'detail_func_name': c.detail_func_name
} for c in configs
}
service_info = service_config_mapping.get(service_id, {})
if not service_info:
raise AdminException(f"Invalid service_id: {service_id}")
detail_func = getattr(health_utils, service_info.get('detail_func_name'))
res = detail_func()
res.update({'service_name': service_info.get('name')})
return res
@staticmethod @staticmethod
def shutdown_service(service_id: int): def shutdown_service(service_id: int):

View File

@ -203,6 +203,7 @@ class Canvas(Graph):
self.history = [] self.history = []
self.retrieval = [] self.retrieval = []
self.memory = [] self.memory = []
for k in self.globals.keys(): for k in self.globals.keys():
if isinstance(self.globals[k], str): if isinstance(self.globals[k], str):
self.globals[k] = "" self.globals[k] = ""
@ -291,6 +292,7 @@ class Canvas(Graph):
"thoughts": self.get_component_thoughts(self.path[i]) "thoughts": self.get_component_thoughts(self.path[i])
}) })
_run_batch(idx, to) _run_batch(idx, to)
# post processing of components invocation # post processing of components invocation
for i in range(idx, to): for i in range(idx, to):
cpn = self.get_component(self.path[i]) cpn = self.get_component(self.path[i])
@ -391,6 +393,7 @@ class Canvas(Graph):
self.path = path self.path = path
yield decorate("user_inputs", {"inputs": another_inputs, "tips": tips}) yield decorate("user_inputs", {"inputs": another_inputs, "tips": tips})
return return
self.path = self.path[:idx] self.path = self.path[:idx]
if not self.error: if not self.error:
yield decorate("workflow_finished", yield decorate("workflow_finished",

View File

@ -346,11 +346,3 @@ Respond immediately with your final comprehensive answer.
return "Error occurred." return "Error occurred."
def reset(self, temp=False):
"""
Reset all tools if they have a reset method. This avoids errors for tools like MCPToolCallSession.
"""
for k, cpn in self.tools.items():
if hasattr(cpn, "reset") and callable(cpn.reset):
cpn.reset()

View File

@ -19,12 +19,11 @@ import os
import re import re
import time import time
from abc import ABC from abc import ABC
import requests import requests
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout from api.utils.api_utils import timeout
from deepdoc.parser import HtmlParser from deepdoc.parser import HtmlParser
from agent.component.base import ComponentBase, ComponentParamBase
class InvokeParam(ComponentParamBase): class InvokeParam(ComponentParamBase):
@ -44,11 +43,11 @@ class InvokeParam(ComponentParamBase):
self.datatype = "json" # New parameter to determine data posting type self.datatype = "json" # New parameter to determine data posting type
def check(self): def check(self):
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ["get", "post", "put"]) self.check_valid_value(self.method.lower(), "Type of content from the crawler", ['get', 'post', 'put'])
self.check_empty(self.url, "End point URL") self.check_empty(self.url, "End point URL")
self.check_positive_integer(self.timeout, "Timeout time in second") self.check_positive_integer(self.timeout, "Timeout time in second")
self.check_boolean(self.clean_html, "Clean HTML") self.check_boolean(self.clean_html, "Clean HTML")
self.check_valid_value(self.datatype.lower(), "Data post type", ["json", "formdata"]) # Check for valid datapost value self.check_valid_value(self.datatype.lower(), "Data post type", ['json', 'formdata']) # Check for valid datapost value
class Invoke(ComponentBase, ABC): class Invoke(ComponentBase, ABC):
@ -64,18 +63,6 @@ class Invoke(ComponentBase, ABC):
args[para["key"]] = self._canvas.get_variable_value(para["ref"]) args[para["key"]] = self._canvas.get_variable_value(para["ref"])
url = self._param.url.strip() url = self._param.url.strip()
def replace_variable(match):
var_name = match.group(1)
try:
value = self._canvas.get_variable_value(var_name)
return str(value or "")
except Exception:
return ""
# {base_url} or {component_id@variable_name}
url = re.sub(r"\{([a-zA-Z_][a-zA-Z0-9_.@-]*)\}", replace_variable, url)
if url.find("http") != 0: if url.find("http") != 0:
url = "http://" + url url = "http://" + url
@ -88,32 +75,52 @@ class Invoke(ComponentBase, ABC):
proxies = {"http": self._param.proxy, "https": self._param.proxy} proxies = {"http": self._param.proxy, "https": self._param.proxy}
last_e = "" last_e = ""
for _ in range(self._param.max_retries + 1): for _ in range(self._param.max_retries+1):
try: try:
if method == "get": if method == 'get':
response = requests.get(url=url, params=args, headers=headers, proxies=proxies, timeout=self._param.timeout) response = requests.get(url=url,
params=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html: if self._param.clean_html:
sections = HtmlParser()(None, response.content) sections = HtmlParser()(None, response.content)
self.set_output("result", "\n".join(sections)) self.set_output("result", "\n".join(sections))
else: else:
self.set_output("result", response.text) self.set_output("result", response.text)
if method == "put": if method == 'put':
if self._param.datatype.lower() == "json": if self._param.datatype.lower() == 'json':
response = requests.put(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout) response = requests.put(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
else: else:
response = requests.put(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout) response = requests.put(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html: if self._param.clean_html:
sections = HtmlParser()(None, response.content) sections = HtmlParser()(None, response.content)
self.set_output("result", "\n".join(sections)) self.set_output("result", "\n".join(sections))
else: else:
self.set_output("result", response.text) self.set_output("result", response.text)
if method == "post": if method == 'post':
if self._param.datatype.lower() == "json": if self._param.datatype.lower() == 'json':
response = requests.post(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout) response = requests.post(url=url,
json=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
else: else:
response = requests.post(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout) response = requests.post(url=url,
data=args,
headers=headers,
proxies=proxies,
timeout=self._param.timeout)
if self._param.clean_html: if self._param.clean_html:
self.set_output("result", "\n".join(sections)) self.set_output("result", "\n".join(sections))
else: else:

File diff suppressed because one or more lines are too long

View File

@ -156,8 +156,8 @@ class CodeExec(ToolBase, ABC):
self.set_output("_ERROR", "construct code request error: " + str(e)) self.set_output("_ERROR", "construct code request error: " + str(e))
try: try:
resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=int(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))) resp = requests.post(url=f"http://{settings.SANDBOX_HOST}:9385/run", json=code_req, timeout=os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
logging.info(f"http://{settings.SANDBOX_HOST}:9385/run, code_req: {code_req}, resp.status_code {resp.status_code}:") logging.info(f"http://{settings.SANDBOX_HOST}:9385/run", code_req, resp.status_code)
if resp.status_code != 200: if resp.status_code != 200:
resp.raise_for_status() resp.raise_for_status()
body = resp.json() body = resp.json()

View File

@ -53,12 +53,11 @@ class ExeSQLParam(ToolParamBase):
self.max_records = 1024 self.max_records = 1024
def check(self): def check(self):
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2', 'trino']) self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgres', 'mariadb', 'mssql', 'IBM DB2'])
self.check_empty(self.database, "Database name") self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username") self.check_empty(self.username, "database username")
self.check_empty(self.host, "IP Address") self.check_empty(self.host, "IP Address")
self.check_positive_integer(self.port, "IP Port") self.check_positive_integer(self.port, "IP Port")
if self.db_type != "trino":
self.check_empty(self.password, "Database password") self.check_empty(self.password, "Database password")
self.check_positive_integer(self.max_records, "Maximum number of records") self.check_positive_integer(self.max_records, "Maximum number of records")
if self.database == "rag_flow": if self.database == "rag_flow":
@ -124,45 +123,6 @@ class ExeSQL(ToolBase, ABC):
r'PWD=' + self._param.password r'PWD=' + self._param.password
) )
db = pyodbc.connect(conn_str) db = pyodbc.connect(conn_str)
elif self._param.db_type == 'trino':
try:
import trino
from trino.auth import BasicAuthentication
except Exception:
raise Exception("Missing dependency 'trino'. Please install: pip install trino")
def _parse_catalog_schema(db: str):
if not db:
return None, None
if "." in db:
c, s = db.split(".", 1)
elif "/" in db:
c, s = db.split("/", 1)
else:
c, s = db, "default"
return c, s
catalog, schema = _parse_catalog_schema(self._param.database)
if not catalog:
raise Exception("For Trino, `database` must be 'catalog.schema' or at least 'catalog'.")
http_scheme = "https" if os.environ.get("TRINO_USE_TLS", "0") == "1" else "http"
auth = None
if http_scheme == "https" and self._param.password:
auth = BasicAuthentication(self._param.username, self._param.password)
try:
db = trino.dbapi.connect(
host=self._param.host,
port=int(self._param.port or 8080),
user=self._param.username or "ragflow",
catalog=catalog,
schema=schema or "default",
http_scheme=http_scheme,
auth=auth
)
except Exception as e:
raise Exception("Database Connection Failed! \n" + str(e))
elif self._param.db_type == 'IBM DB2': elif self._param.db_type == 'IBM DB2':
import ibm_db import ibm_db
conn_str = ( conn_str = (

View File

@ -85,7 +85,13 @@ class PubMed(ToolBase, ABC):
self._retrieve_chunks(pubmedcnt.findall("PubmedArticle"), self._retrieve_chunks(pubmedcnt.findall("PubmedArticle"),
get_title=lambda child: child.find("MedlineCitation").find("Article").find("ArticleTitle").text, get_title=lambda child: child.find("MedlineCitation").find("Article").find("ArticleTitle").text,
get_url=lambda child: "https://pubmed.ncbi.nlm.nih.gov/" + child.find("MedlineCitation").find("PMID").text, get_url=lambda child: "https://pubmed.ncbi.nlm.nih.gov/" + child.find("MedlineCitation").find("PMID").text,
get_content=lambda child: self._format_pubmed_content(child),) get_content=lambda child: child.find("MedlineCitation") \
.find("Article") \
.find("Abstract") \
.find("AbstractText").text \
if child.find("MedlineCitation")\
.find("Article").find("Abstract") \
else "No abstract available")
return self.output("formalized_content") return self.output("formalized_content")
except Exception as e: except Exception as e:
last_e = e last_e = e
@ -98,50 +104,5 @@ class PubMed(ToolBase, ABC):
assert False, self.output() assert False, self.output()
def _format_pubmed_content(self, child):
"""Extract structured reference info from PubMed XML"""
def safe_find(path):
node = child
for p in path.split("/"):
if node is None:
return None
node = node.find(p)
return node.text if node is not None and node.text else None
title = safe_find("MedlineCitation/Article/ArticleTitle") or "No title"
abstract = safe_find("MedlineCitation/Article/Abstract/AbstractText") or "No abstract available"
journal = safe_find("MedlineCitation/Article/Journal/Title") or "Unknown Journal"
volume = safe_find("MedlineCitation/Article/Journal/JournalIssue/Volume") or "-"
issue = safe_find("MedlineCitation/Article/Journal/JournalIssue/Issue") or "-"
pages = safe_find("MedlineCitation/Article/Pagination/MedlinePgn") or "-"
# Authors
authors = []
for author in child.findall(".//AuthorList/Author"):
lastname = safe_find("LastName") or ""
forename = safe_find("ForeName") or ""
fullname = f"{forename} {lastname}".strip()
if fullname:
authors.append(fullname)
authors_str = ", ".join(authors) if authors else "Unknown Authors"
# DOI
doi = None
for eid in child.findall(".//ArticleId"):
if eid.attrib.get("IdType") == "doi":
doi = eid.text
break
return (
f"Title: {title}\n"
f"Authors: {authors_str}\n"
f"Journal: {journal}\n"
f"Volume: {volume}\n"
f"Issue: {issue}\n"
f"Pages: {pages}\n"
f"DOI: {doi or '-'}\n"
f"Abstract: {abstract.strip()}"
)
def thoughts(self) -> str: def thoughts(self) -> str:
return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!")) return "Looking for scholarly papers on `{}`,” prioritising reputable sources.".format(self.get_input().get("query", "-_-!"))

View File

@ -57,7 +57,6 @@ class RetrievalParam(ToolParamBase):
self.empty_response = "" self.empty_response = ""
self.use_kg = False self.use_kg = False
self.cross_languages = [] self.cross_languages = []
self.toc_enhance = False
def check(self): def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold") self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
@ -122,7 +121,7 @@ class Retrieval(ToolBase, ABC):
if kbs: if kbs:
query = re.sub(r"^user[:\s]*", "", query, flags=re.IGNORECASE) query = re.sub(r"^user[:\s]*", "", query, flags=re.IGNORECASE)
kbinfos = settings.retriever.retrieval( kbinfos = settings.retrievaler.retrieval(
query, query,
embd_mdl, embd_mdl,
[kb.tenant_id for kb in kbs], [kb.tenant_id for kb in kbs],
@ -135,13 +134,8 @@ class Retrieval(ToolBase, ABC):
rerank_mdl=rerank_mdl, rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs), rank_feature=label_question(query, kbs),
) )
if self._param.toc_enhance:
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT)
cks = settings.retriever.retrieval_by_toc(query, kbinfos["chunks"], [kb.tenant_id for kb in kbs], chat_mdl, self._param.top_n)
if cks:
kbinfos["chunks"] = cks
if self._param.use_kg: if self._param.use_kg:
ck = settings.kg_retriever.retrieval(query, ck = settings.kg_retrievaler.retrieval(query,
[kb.tenant_id for kb in kbs], [kb.tenant_id for kb in kbs],
kb_ids, kb_ids,
embd_mdl, embd_mdl,
@ -152,7 +146,7 @@ class Retrieval(ToolBase, ABC):
kbinfos = {"chunks": [], "doc_aggs": []} kbinfos = {"chunks": [], "doc_aggs": []}
if self._param.use_kg and kbs: if self._param.use_kg and kbs:
ck = settings.kg_retriever.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT)) ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
if ck["content_with_weight"]: if ck["content_with_weight"]:
ck["content"] = ck["content_with_weight"] ck["content"] = ck["content_with_weight"]
del ck["content_with_weight"] del ck["content_with_weight"]

View File

@ -85,7 +85,7 @@ class SearXNG(ToolBase, ABC):
self.set_output("formalized_content", "") self.set_output("formalized_content", "")
return "" return ""
searxng_url = (getattr(self._param, "searxng_url", "") or kwargs.get("searxng_url") or "").strip() searxng_url = (kwargs.get("searxng_url") or getattr(self._param, "searxng_url", "") or "").strip()
# In try-run, if no URL configured, just return empty instead of raising # In try-run, if no URL configured, just return empty instead of raising
if not searxng_url: if not searxng_url:
self.set_output("formalized_content", "") self.set_output("formalized_content", "")

View File

@ -536,7 +536,7 @@ def list_chunks():
) )
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id) kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
res = settings.retriever.chunk_list(doc_id, tenant_id, kb_ids) res = settings.retrievaler.chunk_list(doc_id, tenant_id, kb_ids)
res = [ res = [
{ {
"content": res_item["content_with_weight"], "content": res_item["content_with_weight"],
@ -884,7 +884,7 @@ def retrieval():
if req.get("keyword", False): if req.get("keyword", False):
chat_mdl = LLMBundle(kbs[0].tenant_id, LLMType.CHAT) chat_mdl = LLMBundle(kbs[0].tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question) question += keyword_extraction(chat_mdl, question)
ranks = settings.retriever.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size, ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top, similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl, highlight= highlight, doc_ids, rerank_mdl=rerank_mdl, highlight= highlight,
rank_feature=label_question(question, kbs)) rank_feature=label_question(question, kbs))

View File

@ -409,49 +409,6 @@ def test_db_connect():
ibm_db.fetch_assoc(stmt) ibm_db.fetch_assoc(stmt)
ibm_db.close(conn) ibm_db.close(conn)
return get_json_result(data="Database Connection Successful!") return get_json_result(data="Database Connection Successful!")
elif req["db_type"] == 'trino':
def _parse_catalog_schema(db: str):
if not db:
return None, None
if "." in db:
c, s = db.split(".", 1)
elif "/" in db:
c, s = db.split("/", 1)
else:
c, s = db, "default"
return c, s
try:
import trino
import os
from trino.auth import BasicAuthentication
except Exception:
return server_error_response("Missing dependency 'trino'. Please install: pip install trino")
catalog, schema = _parse_catalog_schema(req["database"])
if not catalog:
return server_error_response("For Trino, 'database' must be 'catalog.schema' or at least 'catalog'.")
http_scheme = "https" if os.environ.get("TRINO_USE_TLS", "0") == "1" else "http"
auth = None
if http_scheme == "https" and req.get("password"):
auth = BasicAuthentication(req.get("username") or "ragflow", req["password"])
conn = trino.dbapi.connect(
host=req["host"],
port=int(req["port"] or 8080),
user=req["username"] or "ragflow",
catalog=catalog,
schema=schema or "default",
http_scheme=http_scheme,
auth=auth
)
cur = conn.cursor()
cur.execute("SELECT 1")
cur.fetchall()
cur.close()
conn.close()
return get_json_result(data="Database Connection Successful!")
else: else:
return server_error_response("Unsupported database type.") return server_error_response("Unsupported database type.")
if req["db_type"] != 'mssql': if req["db_type"] != 'mssql':

View File

@ -60,7 +60,7 @@ def list_chunk():
} }
if "available_int" in req: if "available_int" in req:
query["available_int"] = int(req["available_int"]) query["available_int"] = int(req["available_int"])
sres = settings.retriever.search(query, search.index_name(tenant_id), kb_ids, highlight=True) sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()} res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
for id in sres.ids: for id in sres.ids:
d = { d = {
@ -346,7 +346,7 @@ def retrieval_test():
question += keyword_extraction(chat_mdl, question) question += keyword_extraction(chat_mdl, question)
labels = label_question(question, [kb]) labels = label_question(question, [kb])
ranks = settings.retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size, ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
float(req.get("similarity_threshold", 0.0)), float(req.get("similarity_threshold", 0.0)),
float(req.get("vector_similarity_weight", 0.3)), float(req.get("vector_similarity_weight", 0.3)),
top, top,
@ -354,7 +354,7 @@ def retrieval_test():
rank_feature=labels rank_feature=labels
) )
if use_kg: if use_kg:
ck = settings.kg_retriever.retrieval(question, ck = settings.kg_retrievaler.retrieval(question,
tenant_ids, tenant_ids,
kb_ids, kb_ids,
embd_mdl, embd_mdl,
@ -384,7 +384,7 @@ def knowledge_graph():
"doc_ids": [doc_id], "doc_ids": [doc_id],
"knowledge_graph_kwd": ["graph", "mind_map"] "knowledge_graph_kwd": ["graph", "mind_map"]
} }
sres = settings.retriever.search(req, search.index_name(tenant_id), kb_ids) sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
obj = {"graph": {}, "mind_map": {}} obj = {"graph": {}, "mind_map": {}}
for id in sres.ids[:2]: for id in sres.ids[:2]:
ty = sres.field[id]["knowledge_graph_kwd"] ty = sres.field[id]["knowledge_graph_kwd"]

View File

@ -24,7 +24,6 @@ from flask import request
from flask_login import current_user, login_required from flask_login import current_user, login_required
from api import settings from api import settings
from api.common.check_team_permission import check_kb_team_permission
from api.constants import FILE_NAME_LEN_LIMIT, IMG_BASE64_PREFIX from api.constants import FILE_NAME_LEN_LIMIT, IMG_BASE64_PREFIX
from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileSource, FileType, ParserType, TaskStatus from api.db import VALID_FILE_TYPES, VALID_TASK_STATUS, FileSource, FileType, ParserType, TaskStatus
from api.db.db_models import File, Task from api.db.db_models import File, Task
@ -69,10 +68,8 @@ def upload():
e, kb = KnowledgebaseService.get_by_id(kb_id) e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e: if not e:
raise LookupError("Can't find this knowledgebase!") raise LookupError("Can't find this knowledgebase!")
if not check_kb_team_permission(kb, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
err, files = FileService.upload_document(kb, file_objs, current_user.id) err, files = FileService.upload_document(kb, file_objs, current_user.id)
if err: if err:
return get_json_result(data=files, message="\n".join(err), code=settings.RetCode.SERVER_ERROR) return get_json_result(data=files, message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
@ -97,8 +94,6 @@ def web_crawl():
e, kb = KnowledgebaseService.get_by_id(kb_id) e, kb = KnowledgebaseService.get_by_id(kb_id)
if not e: if not e:
raise LookupError("Can't find this knowledgebase!") raise LookupError("Can't find this knowledgebase!")
if check_kb_team_permission(kb, current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
blob = html2pdf(url) blob = html2pdf(url)
if not blob: if not blob:
@ -557,8 +552,8 @@ def get(doc_id):
@login_required @login_required
@validate_request("doc_id") @validate_request("doc_id")
def change_parser(): def change_parser():
req = request.json req = request.json
if not DocumentService.accessible(req["doc_id"], current_user.id): if not DocumentService.accessible(req["doc_id"], current_user.id):
return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR) return get_json_result(data=False, message="No authorization.", code=settings.RetCode.AUTHENTICATION_ERROR)
@ -582,7 +577,7 @@ def change_parser():
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id) settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), doc.kb_id)
try: try:
if "pipeline_id" in req and req["pipeline_id"] != "": if "pipeline_id" in req:
if doc.pipeline_id == req["pipeline_id"]: if doc.pipeline_id == req["pipeline_id"]:
return get_json_result(data=True) return get_json_result(data=True)
DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"]}) DocumentService.update_by_id(doc.id, {"pipeline_id": req["pipeline_id"]})

View File

@ -21,7 +21,6 @@ import flask
from flask import request from flask import request
from flask_login import login_required, current_user from flask_login import login_required, current_user
from api.common.check_team_permission import check_file_team_permission
from api.db.services.document_service import DocumentService from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService from api.db.services.file2document_service import File2DocumentService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
@ -247,7 +246,7 @@ def rm():
return get_data_error_result(message="File or Folder not found!") return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id: if not file.tenant_id:
return get_data_error_result(message="Tenant not found!") return get_data_error_result(message="Tenant not found!")
if not check_file_team_permission(file, current_user.id): if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR) return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
if file.source_type == FileSource.KNOWLEDGEBASE: if file.source_type == FileSource.KNOWLEDGEBASE:
continue continue
@ -295,7 +294,7 @@ def rename():
e, file = FileService.get_by_id(req["file_id"]) e, file = FileService.get_by_id(req["file_id"])
if not e: if not e:
return get_data_error_result(message="File not found!") return get_data_error_result(message="File not found!")
if not check_file_team_permission(file, current_user.id): if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR) return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
if file.type != FileType.FOLDER.value \ if file.type != FileType.FOLDER.value \
and pathlib.Path(req["name"].lower()).suffix != pathlib.Path( and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
@ -333,7 +332,7 @@ def get(file_id):
e, file = FileService.get_by_id(file_id) e, file = FileService.get_by_id(file_id)
if not e: if not e:
return get_data_error_result(message="Document not found!") return get_data_error_result(message="Document not found!")
if not check_file_team_permission(file, current_user.id): if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR) return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
blob = STORAGE_IMPL.get(file.parent_id, file.location) blob = STORAGE_IMPL.get(file.parent_id, file.location)
@ -374,7 +373,7 @@ def move():
return get_data_error_result(message="File or Folder not found!") return get_data_error_result(message="File or Folder not found!")
if not file.tenant_id: if not file.tenant_id:
return get_data_error_result(message="Tenant not found!") return get_data_error_result(message="Tenant not found!")
if not check_file_team_permission(file, current_user.id): if file.tenant_id != current_user.id:
return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR) return get_json_result(data=False, message='No authorization.', code=settings.RetCode.AUTHENTICATION_ERROR)
fe, _ = FileService.get_by_id(parent_id) fe, _ = FileService.get_by_id(parent_id)
if not fe: if not fe:

View File

@ -36,10 +36,8 @@ from api import settings
from rag.nlp import search from rag.nlp import search
from api.constants import DATASET_NAME_LIMIT from api.constants import DATASET_NAME_LIMIT
from rag.settings import PAGERANK_FLD from rag.settings import PAGERANK_FLD
from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL from rag.utils.storage_factory import STORAGE_IMPL
@manager.route('/create', methods=['post']) # noqa: F821 @manager.route('/create', methods=['post']) # noqa: F821
@login_required @login_required
@validate_request("name") @validate_request("name")
@ -283,7 +281,7 @@ def list_tags(kb_id):
tenants = UserTenantService.get_tenants_by_user_id(current_user.id) tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
tags = [] tags = []
for tenant in tenants: for tenant in tenants:
tags += settings.retriever.all_tags(tenant["tenant_id"], [kb_id]) tags += settings.retrievaler.all_tags(tenant["tenant_id"], [kb_id])
return get_json_result(data=tags) return get_json_result(data=tags)
@ -302,7 +300,7 @@ def list_tags_from_kbs():
tenants = UserTenantService.get_tenants_by_user_id(current_user.id) tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
tags = [] tags = []
for tenant in tenants: for tenant in tenants:
tags += settings.retriever.all_tags(tenant["tenant_id"], kb_ids) tags += settings.retrievaler.all_tags(tenant["tenant_id"], kb_ids)
return get_json_result(data=tags) return get_json_result(data=tags)
@ -363,7 +361,7 @@ def knowledge_graph(kb_id):
obj = {"graph": {}, "mind_map": {}} obj = {"graph": {}, "mind_map": {}}
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id): if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
return get_json_result(data=obj) return get_json_result(data=obj)
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [kb_id]) sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [kb_id])
if not len(sres.ids): if not len(sres.ids):
return get_json_result(data=obj) return get_json_result(data=obj)
@ -761,25 +759,18 @@ def delete_kb_task():
match pipeline_task_type: match pipeline_task_type:
case PipelineTaskType.GRAPH_RAG: case PipelineTaskType.GRAPH_RAG:
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id) settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
kb_task_id_field = "graphrag_task_id" kb_task_id = "graphrag_task_id"
task_id = kb.graphrag_task_id
kb_task_finish_at = "graphrag_task_finish_at" kb_task_finish_at = "graphrag_task_finish_at"
case PipelineTaskType.RAPTOR: case PipelineTaskType.RAPTOR:
kb_task_id_field = "raptor_task_id" kb_task_id = "raptor_task_id"
task_id = kb.raptor_task_id
kb_task_finish_at = "raptor_task_finish_at" kb_task_finish_at = "raptor_task_finish_at"
case PipelineTaskType.MINDMAP: case PipelineTaskType.MINDMAP:
kb_task_id_field = "mindmap_task_id" kb_task_id = "mindmap_task_id"
task_id = kb.mindmap_task_id
kb_task_finish_at = "mindmap_task_finish_at" kb_task_finish_at = "mindmap_task_finish_at"
case _: case _:
return get_error_data_result(message="Internal Error: Invalid task type") return get_error_data_result(message="Internal Error: Invalid task type")
def cancel_task(task_id): ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id: "", kb_task_finish_at: None})
REDIS_CONN.set(f"{task_id}-cancel", "x")
cancel_task(task_id)
ok = KnowledgebaseService.update_by_id(kb_id, {kb_task_id_field: "", kb_task_finish_at: None})
if not ok: if not ok:
return server_error_response(f"Internal error: cannot delete task {pipeline_task_type}") return server_error_response(f"Internal error: cannot delete task {pipeline_task_type}")

View File

@ -1,26 +1,8 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import Response from flask import Response
from flask_login import login_required from flask_login import login_required
from api.utils.api_utils import get_json_result from api.utils.api_utils import get_json_result
from plugin import GlobalPluginManager from plugin import GlobalPluginManager
@manager.route('/llm_tools', methods=['GET']) # noqa: F821 @manager.route('/llm_tools', methods=['GET']) # noqa: F821
@login_required @login_required
def llm_tools() -> Response: def llm_tools() -> Response:

View File

@ -25,7 +25,6 @@ from api.utils.api_utils import get_data_error_result, get_error_data_result, ge
from api.utils.api_utils import get_result from api.utils.api_utils import get_result
from flask import request from flask import request
@manager.route('/agents', methods=['GET']) # noqa: F821 @manager.route('/agents', methods=['GET']) # noqa: F821
@token_required @token_required
def list_agents(tenant_id): def list_agents(tenant_id):
@ -42,7 +41,7 @@ def list_agents(tenant_id):
desc = False desc = False
else: else:
desc = True desc = True
canvas = UserCanvasService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, title) canvas = UserCanvasService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,title)
return get_result(data=canvas) return get_result(data=canvas)

View File

@ -215,8 +215,7 @@ def delete(tenant_id):
continue continue
kb_id_instance_pairs.append((kb_id, kb)) kb_id_instance_pairs.append((kb_id, kb))
if len(error_kb_ids) > 0: if len(error_kb_ids) > 0:
return get_error_permission_result( return get_error_permission_result(message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
errors = [] errors = []
success_count = 0 success_count = 0
@ -233,8 +232,7 @@ def delete(tenant_id):
] ]
) )
File2DocumentService.delete_by_document_id(doc.id) File2DocumentService.delete_by_document_id(doc.id)
FileService.filter_delete( FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
if not KnowledgebaseService.delete_by_id(kb_id): if not KnowledgebaseService.delete_by_id(kb_id):
errors.append(f"Delete dataset error for {kb_id}") errors.append(f"Delete dataset error for {kb_id}")
continue continue
@ -331,8 +329,7 @@ def update(tenant_id, dataset_id):
try: try:
kb = KnowledgebaseService.get_or_none(id=dataset_id, tenant_id=tenant_id) kb = KnowledgebaseService.get_or_none(id=dataset_id, tenant_id=tenant_id)
if kb is None: if kb is None:
return get_error_permission_result( return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
if req.get("parser_config"): if req.get("parser_config"):
req["parser_config"] = deep_merge(kb.parser_config, req["parser_config"]) req["parser_config"] = deep_merge(kb.parser_config, req["parser_config"])
@ -344,8 +341,7 @@ def update(tenant_id, dataset_id):
del req["parser_config"] del req["parser_config"]
if "name" in req and req["name"].lower() != kb.name.lower(): if "name" in req and req["name"].lower() != kb.name.lower():
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)
status=StatusEnum.VALID.value)
if exists: if exists:
return get_error_data_result(message=f"Dataset name '{req['name']}' already exists") return get_error_data_result(message=f"Dataset name '{req['name']}' already exists")
@ -353,8 +349,7 @@ def update(tenant_id, dataset_id):
if not req["embd_id"]: if not req["embd_id"]:
req["embd_id"] = kb.embd_id req["embd_id"] = kb.embd_id
if kb.chunk_num != 0 and req["embd_id"] != kb.embd_id: if kb.chunk_num != 0 and req["embd_id"] != kb.embd_id:
return get_error_data_result( return get_error_data_result(message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
ok, err = verify_embedding_availability(req["embd_id"], tenant_id) ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
if not ok: if not ok:
return err return err
@ -364,12 +359,10 @@ def update(tenant_id, dataset_id):
return get_error_argument_result(message="'pagerank' can only be set when doc_engine is elasticsearch") return get_error_argument_result(message="'pagerank' can only be set when doc_engine is elasticsearch")
if req["pagerank"] > 0: if req["pagerank"] > 0:
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]}, settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]}, search.index_name(kb.tenant_id), kb.id)
search.index_name(kb.tenant_id), kb.id)
else: else:
# Elasticsearch requires PAGERANK_FLD be non-zero! # Elasticsearch requires PAGERANK_FLD be non-zero!
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD}, settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD}, search.index_name(kb.tenant_id), kb.id)
search.index_name(kb.tenant_id), kb.id)
if not KnowledgebaseService.update_by_id(kb.id, req): if not KnowledgebaseService.update_by_id(kb.id, req):
return get_error_data_result(message="Update dataset error.(Database error)") return get_error_data_result(message="Update dataset error.(Database error)")
@ -461,7 +454,7 @@ def list_datasets(tenant_id):
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{name}'") return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{name}'")
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id) tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
kbs, total = KnowledgebaseService.get_list( kbs = KnowledgebaseService.get_list(
[m["tenant_id"] for m in tenants], [m["tenant_id"] for m in tenants],
tenant_id, tenant_id,
args["page"], args["page"],
@ -475,15 +468,14 @@ def list_datasets(tenant_id):
response_data_list = [] response_data_list = []
for kb in kbs: for kb in kbs:
response_data_list.append(remap_dictionary_keys(kb)) response_data_list.append(remap_dictionary_keys(kb))
return get_result(data=response_data_list, total=total) return get_result(data=response_data_list)
except OperationalError as e: except OperationalError as e:
logging.exception(e) logging.exception(e)
return get_error_data_result(message="Database operation failed") return get_error_data_result(message="Database operation failed")
@manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['GET']) # noqa: F821 @manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['GET']) # noqa: F821
@token_required @token_required
def knowledge_graph(tenant_id, dataset_id): def knowledge_graph(tenant_id,dataset_id):
if not KnowledgebaseService.accessible(dataset_id, tenant_id): if not KnowledgebaseService.accessible(dataset_id, tenant_id):
return get_result( return get_result(
data=False, data=False,
@ -499,7 +491,7 @@ def knowledge_graph(tenant_id, dataset_id):
obj = {"graph": {}, "mind_map": {}} obj = {"graph": {}, "mind_map": {}}
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), dataset_id): if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), dataset_id):
return get_result(data=obj) return get_result(data=obj)
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [dataset_id]) sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [dataset_id])
if not len(sres.ids): if not len(sres.ids):
return get_result(data=obj) return get_result(data=obj)
@ -515,16 +507,14 @@ def knowledge_graph(tenant_id, dataset_id):
if "nodes" in obj["graph"]: if "nodes" in obj["graph"]:
obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256] obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256]
if "edges" in obj["graph"]: if "edges" in obj["graph"]:
node_id_set = {o["id"] for o in obj["graph"]["nodes"]} node_id_set = { o["id"] for o in obj["graph"]["nodes"] }
filtered_edges = [o for o in obj["graph"]["edges"] if filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128] obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
return get_result(data=obj) return get_result(data=obj)
@manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['DELETE']) # noqa: F821 @manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
@token_required @token_required
def delete_knowledge_graph(tenant_id, dataset_id): def delete_knowledge_graph(tenant_id,dataset_id):
if not KnowledgebaseService.accessible(dataset_id, tenant_id): if not KnowledgebaseService.accessible(dataset_id, tenant_id):
return get_result( return get_result(
data=False, data=False,
@ -532,7 +522,6 @@ def delete_knowledge_graph(tenant_id, dataset_id):
code=settings.RetCode.AUTHENTICATION_ERROR code=settings.RetCode.AUTHENTICATION_ERROR
) )
_, kb = KnowledgebaseService.get_by_id(dataset_id) _, kb = KnowledgebaseService.get_by_id(dataset_id)
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), dataset_id)
search.index_name(kb.tenant_id), dataset_id)
return get_result(data=True) return get_result(data=True)

View File

@ -1,4 +1,4 @@
# #
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
@ -31,89 +31,6 @@ from api.db.services.dialog_service import meta_filter, convert_conditions
@apikey_required @apikey_required
@validate_request("knowledge_id", "query") @validate_request("knowledge_id", "query")
def retrieval(tenant_id): def retrieval(tenant_id):
"""
Dify-compatible retrieval API
---
tags:
- SDK
security:
- ApiKeyAuth: []
parameters:
- in: body
name: body
required: true
schema:
type: object
required:
- knowledge_id
- query
properties:
knowledge_id:
type: string
description: Knowledge base ID
query:
type: string
description: Query text
use_kg:
type: boolean
description: Whether to use knowledge graph
default: false
retrieval_setting:
type: object
description: Retrieval configuration
properties:
score_threshold:
type: number
description: Similarity threshold
default: 0.0
top_k:
type: integer
description: Number of results to return
default: 1024
metadata_condition:
type: object
description: Metadata filter condition
properties:
conditions:
type: array
items:
type: object
properties:
name:
type: string
description: Field name
comparison_operator:
type: string
description: Comparison operator
value:
type: string
description: Field value
responses:
200:
description: Retrieval succeeded
schema:
type: object
properties:
records:
type: array
items:
type: object
properties:
content:
type: string
description: Content text
score:
type: number
description: Similarity score
title:
type: string
description: Document title
metadata:
type: object
description: Metadata info
404:
description: Knowledge base or document not found
"""
req = request.json req = request.json
question = req["query"] question = req["query"]
kb_id = req["knowledge_id"] kb_id = req["knowledge_id"]
@ -121,7 +38,7 @@ def retrieval(tenant_id):
retrieval_setting = req.get("retrieval_setting", {}) retrieval_setting = req.get("retrieval_setting", {})
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0)) similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
top = int(retrieval_setting.get("top_k", 1024)) top = int(retrieval_setting.get("top_k", 1024))
metadata_condition = req.get("metadata_condition", {}) metadata_condition = req.get("metadata_condition",{})
metas = DocumentService.get_meta_by_kbs([kb_id]) metas = DocumentService.get_meta_by_kbs([kb_id])
doc_ids = [] doc_ids = []
@ -133,12 +50,12 @@ def retrieval(tenant_id):
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id) embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
print(metadata_condition) print(metadata_condition)
# print("after", convert_conditions(metadata_condition)) print("after",convert_conditions(metadata_condition))
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition))) doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition)))
# print("doc_ids", doc_ids) print("doc_ids",doc_ids)
if not doc_ids and metadata_condition is not None: if not doc_ids and metadata_condition is not None:
doc_ids = ['-999'] doc_ids = ['-999']
ranks = settings.retriever.retrieval( ranks = settings.retrievaler.retrieval(
question, question,
embd_mdl, embd_mdl,
kb.tenant_id, kb.tenant_id,
@ -153,7 +70,7 @@ def retrieval(tenant_id):
) )
if use_kg: if use_kg:
ck = settings.kg_retriever.retrieval(question, ck = settings.kg_retrievaler.retrieval(question,
[tenant_id], [tenant_id],
[kb_id], [kb_id],
embd_mdl, embd_mdl,
@ -163,7 +80,7 @@ def retrieval(tenant_id):
records = [] records = []
for c in ranks["chunks"]: for c in ranks["chunks"]:
e, doc = DocumentService.get_by_id(c["doc_id"]) e, doc = DocumentService.get_by_id( c["doc_id"])
c.pop("vector", None) c.pop("vector", None)
meta = getattr(doc, 'meta_fields', {}) meta = getattr(doc, 'meta_fields', {})
meta["doc_id"] = c["doc_id"] meta["doc_id"] = c["doc_id"]
@ -183,3 +100,5 @@ def retrieval(tenant_id):
) )
logging.exception(e) logging.exception(e)
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR) return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)

View File

@ -982,7 +982,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
_ = Chunk(**final_chunk) _ = Chunk(**final_chunk)
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id): elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
sres = settings.retriever.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True) sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
res["total"] = sres.total res["total"] = sres.total
for id in sres.ids: for id in sres.ids:
d = { d = {
@ -1446,7 +1446,7 @@ def retrieval_test(tenant_id):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT) chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question) question += keyword_extraction(chat_mdl, question)
ranks = settings.retriever.retrieval( ranks = settings.retrievaler.retrieval(
question, question,
embd_mdl, embd_mdl,
tenant_ids, tenant_ids,
@ -1462,7 +1462,7 @@ def retrieval_test(tenant_id):
rank_feature=label_question(question, kbs), rank_feature=label_question(question, kbs),
) )
if use_kg: if use_kg:
ck = settings.kg_retriever.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT)) ck = settings.kg_retrievaler.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]: if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck) ranks["chunks"].insert(0, ck)

View File

@ -1,20 +1,3 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pathlib import pathlib
import re import re
@ -34,7 +17,6 @@ from api.utils.api_utils import get_json_result
from api.utils.file_utils import filename_type from api.utils.file_utils import filename_type
from rag.utils.storage_factory import STORAGE_IMPL from rag.utils.storage_factory import STORAGE_IMPL
@manager.route('/file/upload', methods=['POST']) # noqa: F821 @manager.route('/file/upload', methods=['POST']) # noqa: F821
@token_required @token_required
def upload(tenant_id): def upload(tenant_id):
@ -115,14 +97,12 @@ def upload(tenant_id):
e, file = FileService.get_by_id(file_id_list[len_id_list - 1]) e, file = FileService.get_by_id(file_id_list[len_id_list - 1])
if not e: if not e:
return get_json_result(data=False, message="Folder not found!", code=404) return get_json_result(data=False, message="Folder not found!", code=404)
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names, last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names, len_id_list)
len_id_list)
else: else:
e, file = FileService.get_by_id(file_id_list[len_id_list - 2]) e, file = FileService.get_by_id(file_id_list[len_id_list - 2])
if not e: if not e:
return get_json_result(data=False, message="Folder not found!", code=404) return get_json_result(data=False, message="Folder not found!", code=404)
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names, last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names, len_id_list)
len_id_list)
filetype = filename_type(file_obj_names[file_len - 1]) filetype = filename_type(file_obj_names[file_len - 1])
location = file_obj_names[file_len - 1] location = file_obj_names[file_len - 1]
@ -562,8 +542,7 @@ def rename(tenant_id):
if not e: if not e:
return get_json_result(message="File not found!", code=404) return get_json_result(message="File not found!", code=404)
if file.type != FileType.FOLDER.value and pathlib.Path(req["name"].lower()).suffix != pathlib.Path( if file.type != FileType.FOLDER.value and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(file.name.lower()).suffix:
file.name.lower()).suffix:
return get_json_result(data=False, message="The extension of file can't be changed", code=400) return get_json_result(data=False, message="The extension of file can't be changed", code=400)
for existing_file in FileService.query(name=req["name"], pf_id=file.parent_id): for existing_file in FileService.query(name=req["name"], pf_id=file.parent_id):
@ -585,7 +564,7 @@ def rename(tenant_id):
@manager.route('/file/get/<file_id>', methods=['GET']) # noqa: F821 @manager.route('/file/get/<file_id>', methods=['GET']) # noqa: F821
@token_required @token_required
def get(tenant_id, file_id): def get(tenant_id,file_id):
""" """
Download a file. Download a file.
--- ---
@ -690,7 +669,6 @@ def move(tenant_id):
except Exception as e: except Exception as e:
return server_error_response(e) return server_error_response(e)
@manager.route('/file/convert', methods=['POST']) # noqa: F821 @manager.route('/file/convert', methods=['POST']) # noqa: F821
@token_required @token_required
def convert(tenant_id): def convert(tenant_id):

View File

@ -36,8 +36,7 @@ from api.db.services.llm_service import LLMBundle
from api.db.services.search_service import SearchService from api.db.services.search_service import SearchService
from api.db.services.user_service import UserTenantService from api.db.services.user_service import UserTenantService
from api.utils import get_uuid from api.utils import get_uuid
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, \ from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
get_result, server_error_response, token_required, validate_request
from rag.app.tag import label_question from rag.app.tag import label_question
from rag.prompts.template import load_prompt from rag.prompts.template import load_prompt
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
@ -89,8 +88,7 @@ def create_agent_session(tenant_id, agent_id):
canvas.reset() canvas.reset()
cvs.dsl = json.loads(str(canvas)) cvs.dsl = json.loads(str(canvas))
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
"message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv) API4ConversationService.save(**conv)
conv["agent_id"] = conv.pop("dialog_id") conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv) return get_result(data=conv)
@ -281,7 +279,7 @@ def chat_completion_openai_like(tenant_id, chat_id):
reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL) reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
if reasoning_match: if reasoning_match:
reasoning_part = reasoning_match.group(1) reasoning_part = reasoning_match.group(1)
content_part = answer[reasoning_match.end():] content_part = answer[reasoning_match.end() :]
else: else:
reasoning_part = "" reasoning_part = ""
content_part = answer content_part = answer
@ -326,8 +324,7 @@ def chat_completion_openai_like(tenant_id, chat_id):
response["choices"][0]["delta"]["content"] = None response["choices"][0]["delta"]["content"] = None
response["choices"][0]["delta"]["reasoning_content"] = None response["choices"][0]["delta"]["reasoning_content"] = None
response["choices"][0]["finish_reason"] = "stop" response["choices"][0]["finish_reason"] = "stop"
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
"total_tokens": len(prompt) + token_used}
if need_reference: if need_reference:
response["choices"][0]["delta"]["reference"] = chunks_format(last_ans.get("reference", [])) response["choices"][0]["delta"]["reference"] = chunks_format(last_ans.get("reference", []))
response["choices"][0]["delta"]["final_content"] = last_ans.get("answer", "") response["choices"][0]["delta"]["final_content"] = last_ans.get("answer", "")
@ -562,8 +559,7 @@ def list_agent_session(tenant_id, agent_id):
desc = True desc = True
# dsl defaults to True in all cases except for False and false # dsl defaults to True in all cases except for False and false
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false" include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
user_id, include_dsl)
if not convs: if not convs:
return get_result(data=[]) return get_result(data=[])
for conv in convs: for conv in convs:
@ -585,8 +581,7 @@ def list_agent_session(tenant_id, agent_id):
if message_num != 0 and messages[message_num]["role"] != "user": if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = [] chunk_list = []
# Add boundary and type checks to prevent KeyError # Add boundary and type checks to prevent KeyError
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance( if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
chunks = conv["reference"][chunk_num]["chunks"] chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks: for chunk in chunks:
# Ensure chunk is a dictionary before calling get method # Ensure chunk is a dictionary before calling get method
@ -644,16 +639,13 @@ def delete(tenant_id, chat_id):
if errors: if errors:
if success_count > 0: if success_count > 0:
return get_result(data={"success_count": success_count, "errors": errors}, return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
else: else:
return get_error_data_result(message="; ".join(errors)) return get_error_data_result(message="; ".join(errors))
if duplicate_messages: if duplicate_messages:
if success_count > 0: if success_count > 0:
return get_result( return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages})
else: else:
return get_error_data_result(message=";".join(duplicate_messages)) return get_error_data_result(message=";".join(duplicate_messages))
@ -699,16 +691,13 @@ def delete_agent_session(tenant_id, agent_id):
if errors: if errors:
if success_count > 0: if success_count > 0:
return get_result(data={"success_count": success_count, "errors": errors}, return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
else: else:
return get_error_data_result(message="; ".join(errors)) return get_error_data_result(message="; ".join(errors))
if duplicate_messages: if duplicate_messages:
if success_count > 0: if success_count > 0:
return get_result( return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
data={"success_count": success_count, "errors": duplicate_messages})
else: else:
return get_error_data_result(message=";".join(duplicate_messages)) return get_error_data_result(message=";".join(duplicate_messages))
@ -741,9 +730,7 @@ def ask_about(tenant_id):
for ans in ask(req["question"], req["kb_ids"], uid): for ans in ask(req["question"], req["kb_ids"], uid):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n" yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e: except Exception as e:
yield "data:" + json.dumps( yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n" yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream") resp = Response(stream(), mimetype="text/event-stream")
@ -895,9 +882,7 @@ def begin_inputs(agent_id):
return get_error_data_result(f"Can't find agent by ID: {agent_id}") return get_error_data_result(f"Can't find agent by ID: {agent_id}")
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id) canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
return get_result( return get_result(data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"), "prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"),
"prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821 @manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
@ -926,9 +911,7 @@ def ask_about_embedded():
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config): for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n" yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
except Exception as e: except Exception as e:
yield "data:" + json.dumps( yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n" yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(stream(), mimetype="text/event-stream") resp = Response(stream(), mimetype="text/event-stream")
@ -995,8 +978,7 @@ def retrieval_test_embedded():
tenant_ids.append(tenant.tenant_id) tenant_ids.append(tenant.tenant_id)
break break
else: else:
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
code=settings.RetCode.OPERATING_ERROR)
e, kb = KnowledgebaseService.get_by_id(kb_ids[0]) e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e: if not e:
@ -1016,13 +998,11 @@ def retrieval_test_embedded():
question += keyword_extraction(chat_mdl, question) question += keyword_extraction(chat_mdl, question)
labels = label_question(question, [kb]) labels = label_question(question, [kb])
ranks = settings.retriever.retrieval( ranks = settings.retrievaler.retrieval(
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
) )
if use_kg: if use_kg:
ck = settings.kg_retriever.retrieval(question, tenant_ids, kb_ids, embd_mdl, ck = settings.kg_retrievaler.retrieval(question, tenant_ids, kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
LLMBundle(kb.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]: if ck["content_with_weight"]:
ranks["chunks"].insert(0, ck) ranks["chunks"].insert(0, ck)
@ -1033,8 +1013,7 @@ def retrieval_test_embedded():
return get_json_result(data=ranks) return get_json_result(data=ranks)
except Exception as e: except Exception as e:
if str(e).find("not_found") > 0: if str(e).find("not_found") > 0:
return get_json_result(data=False, message="No chunk found! Check the chunk status please!", return get_json_result(data=False, message="No chunk found! Check the chunk status please!", code=settings.RetCode.DATA_ERROR)
code=settings.RetCode.DATA_ERROR)
return server_error_response(e) return server_error_response(e)
@ -1103,8 +1082,7 @@ def detail_share_embedded():
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id): if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
break break
else: else:
return get_json_result(data=False, message="Has no permission for this operation.", return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
code=settings.RetCode.OPERATING_ERROR)
search = SearchService.get_detail(search_id) search = SearchService.get_detail(search_id)
if not search: if not search:

View File

@ -162,7 +162,7 @@ def status():
task_executors = REDIS_CONN.smembers("TASKEXE") task_executors = REDIS_CONN.smembers("TASKEXE")
now = datetime.now().timestamp() now = datetime.now().timestamp()
for task_executor_id in task_executors: for task_executor_id in task_executors:
heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60 * 30, now) heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60*30, now)
heartbeats = [json.loads(heartbeat) for heartbeat in heartbeats] heartbeats = [json.loads(heartbeat) for heartbeat in heartbeats]
task_executor_heartbeats[task_executor_id] = heartbeats task_executor_heartbeats[task_executor_id] = heartbeats
except Exception: except Exception:
@ -178,11 +178,6 @@ def healthz():
return jsonify(result), (200 if all_ok else 500) return jsonify(result), (200 if all_ok else 500)
@manager.route("/ping", methods=["GET"]) # noqa: F821
def ping():
return "pong", 200
@manager.route("/new_token", methods=["POST"]) # noqa: F821 @manager.route("/new_token", methods=["POST"]) # noqa: F821
@login_required @login_required
def new_token(): def new_token():
@ -274,8 +269,7 @@ def token_list():
objs = [o.to_dict() for o in objs] objs = [o.to_dict() for o in objs]
for o in objs: for o in objs:
if not o["beta"]: if not o["beta"]:
o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace( o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace("ragflow-", "")[:32]
"ragflow-", "")[:32]
APITokenService.filter_update([APIToken.tenant_id == tenant_id, APIToken.token == o["token"]], o) APITokenService.filter_update([APIToken.tenant_id == tenant_id, APIToken.token == o["token"]], o)
return get_json_result(data=objs) return get_json_result(data=objs)
except Exception as e: except Exception as e:

View File

@ -70,8 +70,7 @@ def create(tenant_id):
return get_data_error_result(message=f"{invite_user_email} is already in the team.") return get_data_error_result(message=f"{invite_user_email} is already in the team.")
if user_tenant_role == UserTenantRole.OWNER: if user_tenant_role == UserTenantRole.OWNER:
return get_data_error_result(message=f"{invite_user_email} is the owner of the team.") return get_data_error_result(message=f"{invite_user_email} is the owner of the team.")
return get_data_error_result( return get_data_error_result(message=f"{invite_user_email} is in the team, but the role: {user_tenant_role} is invalid.")
message=f"{invite_user_email} is in the team, but the role: {user_tenant_role} is invalid.")
UserTenantService.save( UserTenantService.save(
id=get_uuid(), id=get_uuid(),
@ -133,8 +132,7 @@ def tenant_list():
@login_required @login_required
def agree(tenant_id): def agree(tenant_id):
try: try:
UserTenantService.filter_update([UserTenant.tenant_id == tenant_id, UserTenant.user_id == current_user.id], UserTenantService.filter_update([UserTenant.tenant_id == tenant_id, UserTenant.user_id == current_user.id], {"role": UserTenantRole.NORMAL})
{"role": UserTenantRole.NORMAL})
return get_json_result(data=True) return get_json_result(data=True)
except Exception as e: except Exception as e:
return server_error_response(e) return server_error_response(e)

View File

@ -1,59 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.db import TenantPermission
from api.db.db_models import File, Knowledgebase
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.user_service import TenantService
def check_kb_team_permission(kb: dict | Knowledgebase, other: str) -> bool:
kb = kb.to_dict() if isinstance(kb, Knowledgebase) else kb
kb_tenant_id = kb["tenant_id"]
if kb_tenant_id == other:
return True
if kb["permission"] != TenantPermission.TEAM:
return False
joined_tenants = TenantService.get_joined_tenants_by_user_id(other)
return any(tenant["tenant_id"] == kb_tenant_id for tenant in joined_tenants)
def check_file_team_permission(file: dict | File, other: str) -> bool:
file = file.to_dict() if isinstance(file, File) else file
file_tenant_id = file["tenant_id"]
if file_tenant_id == other:
return True
file_id = file["id"]
kb_ids = [kb_info["kb_id"] for kb_info in FileService.get_kb_id_by_file_id(file_id)]
for kb_id in kb_ids:
ok, kb = KnowledgebaseService.get_by_id(kb_id)
if not ok:
continue
if check_kb_team_permission(kb, other):
return True
return False

View File

@ -641,7 +641,7 @@ class TenantLLM(DataBaseModel):
llm_factory = CharField(max_length=128, null=False, help_text="LLM factory name", index=True) llm_factory = CharField(max_length=128, null=False, help_text="LLM factory name", index=True)
model_type = CharField(max_length=128, null=True, help_text="LLM, Text Embedding, Image2Text, ASR", index=True) model_type = CharField(max_length=128, null=True, help_text="LLM, Text Embedding, Image2Text, ASR", index=True)
llm_name = CharField(max_length=128, null=True, help_text="LLM name", default="", index=True) llm_name = CharField(max_length=128, null=True, help_text="LLM name", default="", index=True)
api_key = TextField(null=True, help_text="API KEY") api_key = CharField(max_length=2048, null=True, help_text="API KEY", index=True)
api_base = CharField(max_length=255, null=True, help_text="API Base") api_base = CharField(max_length=255, null=True, help_text="API Base")
max_tokens = IntegerField(default=8192, index=True) max_tokens = IntegerField(default=8192, index=True)
used_tokens = IntegerField(default=0, index=True) used_tokens = IntegerField(default=0, index=True)
@ -1142,8 +1142,4 @@ def migrate_db():
migrate(migrator.add_column("knowledgebase", "mindmap_task_finish_at", CharField(null=True))) migrate(migrator.add_column("knowledgebase", "mindmap_task_finish_at", CharField(null=True)))
except Exception: except Exception:
pass pass
try:
migrate(migrator.alter_column_type("tenant_llm", "api_key", TextField(null=True, help_text="API KEY")))
except Exception:
pass
logging.disable(logging.NOTSET) logging.disable(logging.NOTSET)

View File

@ -370,7 +370,7 @@ def chat(dialog, messages, stream=True, **kwargs):
chat_mdl.bind_tools(toolcall_session, tools) chat_mdl.bind_tools(toolcall_session, tools)
bind_models_ts = timer() bind_models_ts = timer()
retriever = settings.retriever retriever = settings.retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:] questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else [] attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else []
if "doc_ids" in messages[-1]: if "doc_ids" in messages[-1]:
@ -466,17 +466,13 @@ def chat(dialog, messages, stream=True, **kwargs):
rerank_mdl=rerank_mdl, rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs), rank_feature=label_question(" ".join(questions), kbs),
) )
if prompt_config.get("toc_enhance"):
cks = retriever.retrieval_by_toc(" ".join(questions), kbinfos["chunks"], tenant_ids, chat_mdl, dialog.top_n)
if cks:
kbinfos["chunks"] = cks
if prompt_config.get("tavily_api_key"): if prompt_config.get("tavily_api_key"):
tav = Tavily(prompt_config["tavily_api_key"]) tav = Tavily(prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(questions)) tav_res = tav.retrieve_chunks(" ".join(questions))
kbinfos["chunks"].extend(tav_res["chunks"]) kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"]) kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"): if prompt_config.get("use_kg"):
ck = settings.kg_retriever.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl, ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT)) LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]: if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck) kbinfos["chunks"].insert(0, ck)
@ -662,7 +658,7 @@ Please write the SQL, only SQL, without any other explanations or text.
logging.debug(f"{question} get SQL(refined): {sql}") logging.debug(f"{question} get SQL(refined): {sql}")
tried_times += 1 tried_times += 1
return settings.retriever.sql_retrieval(sql, format="json"), sql return settings.retrievaler.sql_retrieval(sql, format="json"), sql
tbl, sql = get_table() tbl, sql = get_table()
if tbl is None: if tbl is None:
@ -756,7 +752,7 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
embedding_list = list(set([kb.embd_id for kb in kbs])) embedding_list = list(set([kb.embd_id for kb in kbs]))
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs]) is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
retriever = settings.retriever if not is_knowledge_graph else settings.kg_retriever retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0]) embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_llm_name) chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_llm_name)
@ -852,7 +848,7 @@ def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
if not doc_ids: if not doc_ids:
doc_ids = None doc_ids = None
ranks = settings.retriever.retrieval( ranks = settings.retrievaler.retrieval(
question=question, question=question,
embd_mdl=embd_mdl, embd_mdl=embd_mdl,
tenant_ids=tenant_ids, tenant_ids=tenant_ids,

View File

@ -379,7 +379,6 @@ class KnowledgebaseService(CommonService):
# name: Optional name filter # name: Optional name filter
# Returns: # Returns:
# List of knowledge bases # List of knowledge bases
# Total count of knowledge bases
kbs = cls.model.select() kbs = cls.model.select()
if id: if id:
kbs = kbs.where(cls.model.id == id) kbs = kbs.where(cls.model.id == id)
@ -391,7 +390,6 @@ class KnowledgebaseService(CommonService):
cls.model.tenant_id == user_id)) cls.model.tenant_id == user_id))
& (cls.model.status == StatusEnum.VALID.value) & (cls.model.status == StatusEnum.VALID.value)
) )
if desc: if desc:
kbs = kbs.order_by(cls.model.getter_by(orderby).desc()) kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
else: else:
@ -399,7 +397,7 @@ class KnowledgebaseService(CommonService):
kbs = kbs.paginate(page_number, items_per_page) kbs = kbs.paginate(page_number, items_per_page)
return list(kbs.dicts()), kbs.count() return list(kbs.dicts())
@classmethod @classmethod
@DB.connection_context() @DB.connection_context()

View File

@ -33,8 +33,7 @@ class MCPServerService(CommonService):
@classmethod @classmethod
@DB.connection_context() @DB.connection_context()
def get_servers(cls, tenant_id: str, id_list: list[str] | None, page_number, items_per_page, orderby, desc, def get_servers(cls, tenant_id: str, id_list: list[str] | None, page_number, items_per_page, orderby, desc, keywords):
keywords):
"""Retrieve all MCP servers associated with a tenant. """Retrieve all MCP servers associated with a tenant.
This method fetches all MCP servers for a given tenant, ordered by creation time. This method fetches all MCP servers for a given tenant, ordered by creation time.

View File

@ -94,8 +94,7 @@ class SearchService(CommonService):
query = ( query = (
cls.model.select(*fields) cls.model.select(*fields)
.join(User, on=(cls.model.tenant_id == User.id)) .join(User, on=(cls.model.tenant_id == User.id))
.where(((cls.model.tenant_id.in_(joined_tenant_ids)) | (cls.model.tenant_id == user_id)) & ( .where(((cls.model.tenant_id.in_(joined_tenant_ids)) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value))
cls.model.status == StatusEnum.VALID.value))
) )
if keywords: if keywords:

View File

@ -343,7 +343,6 @@ def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
- Task digests are calculated for optimization and reuse - Task digests are calculated for optimization and reuse
- Previous task chunks may be reused if available - Previous task chunks may be reused if available
""" """
def new_task(): def new_task():
return { return {
"id": get_uuid(), "id": get_uuid(),

View File

@ -57,10 +57,8 @@ class TenantLLMService(CommonService):
@classmethod @classmethod
@DB.connection_context() @DB.connection_context()
def get_my_llms(cls, tenant_id): def get_my_llms(cls, tenant_id):
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
cls.model.used_tokens] objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
return list(objs) return list(objs)
@ -124,8 +122,7 @@ class TenantLLMService(CommonService):
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""} model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
if not model_config: if not model_config:
if mdlnm == "flag-embedding": if mdlnm == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
"api_base": ""}
else: else:
if not mdlnm: if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.") raise LookupError(f"Type of {llm_type} model is not set.")
@ -140,33 +137,27 @@ class TenantLLMService(CommonService):
if llm_type == LLMType.EMBEDDING.value: if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel: if model_config["llm_factory"] not in EmbeddingModel:
return return
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
base_url=model_config["api_base"])
if llm_type == LLMType.RERANK: if llm_type == LLMType.RERANK:
if model_config["llm_factory"] not in RerankModel: if model_config["llm_factory"] not in RerankModel:
return return
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
base_url=model_config["api_base"])
if llm_type == LLMType.IMAGE2TEXT.value: if llm_type == LLMType.IMAGE2TEXT.value:
if model_config["llm_factory"] not in CvModel: if model_config["llm_factory"] not in CvModel:
return return
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
base_url=model_config["api_base"], **kwargs)
if llm_type == LLMType.CHAT.value: if llm_type == LLMType.CHAT.value:
if model_config["llm_factory"] not in ChatModel: if model_config["llm_factory"] not in ChatModel:
return return
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
base_url=model_config["api_base"], **kwargs)
if llm_type == LLMType.SPEECH2TEXT: if llm_type == LLMType.SPEECH2TEXT:
if model_config["llm_factory"] not in Seq2txtModel: if model_config["llm_factory"] not in Seq2txtModel:
return return
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
model_name=model_config["llm_name"], lang=lang,
base_url=model_config["api_base"])
if llm_type == LLMType.TTS: if llm_type == LLMType.TTS:
if model_config["llm_factory"] not in TTSModel: if model_config["llm_factory"] not in TTSModel:
return return
@ -203,14 +194,11 @@ class TenantLLMService(CommonService):
try: try:
num = ( num = (
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens) cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, .where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
cls.model.llm_factory == llm_factory if llm_factory else True)
.execute() .execute()
) )
except Exception: except Exception:
logging.exception( logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
"TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s",
tenant_id, llm_name)
return 0 return 0
return num return num
@ -218,9 +206,7 @@ class TenantLLMService(CommonService):
@classmethod @classmethod
@DB.connection_context() @DB.connection_context()
def get_openai_models(cls): def get_openai_models(cls):
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
~(cls.model.llm_name == "text-embedding-3-small"),
~(cls.model.llm_name == "text-embedding-3-large")).dicts()
return list(objs) return list(objs)
@classmethod @classmethod
@ -264,8 +250,7 @@ class LLM4Tenant:
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id) langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
self.langfuse = None self.langfuse = None
if langfuse_keys: if langfuse_keys:
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
host=langfuse_keys.host)
if langfuse.auth_check(): if langfuse.auth_check():
self.langfuse = langfuse self.langfuse = langfuse
trace_id = self.langfuse.create_trace_id() trace_id = self.langfuse.create_trace_id()

View File

@ -2,10 +2,10 @@ from api.db.db_models import UserCanvasVersion, DB
from api.db.services.common_service import CommonService from api.db.services.common_service import CommonService
from peewee import DoesNotExist from peewee import DoesNotExist
class UserCanvasVersionService(CommonService): class UserCanvasVersionService(CommonService):
model = UserCanvasVersion model = UserCanvasVersion
@classmethod @classmethod
@DB.connection_context() @DB.connection_context()
def list_by_canvas_id(cls, user_canvas_id): def list_by_canvas_id(cls, user_canvas_id):
@ -46,8 +46,7 @@ class UserCanvasVersionService(CommonService):
@DB.connection_context() @DB.connection_context()
def delete_all_versions(cls, user_canvas_id): def delete_all_versions(cls, user_canvas_id):
try: try:
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by( user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(cls.model.create_time.desc())
cls.model.create_time.desc())
if user_canvas_version.count() > 20: if user_canvas_version.count() > 20:
delete_ids = [] delete_ids = []
for i in range(20, user_canvas_version.count()): for i in range(20, user_canvas_version.count()):
@ -59,3 +58,6 @@ class UserCanvasVersionService(CommonService):
return None return None
except Exception: except Exception:
return None return None

View File

@ -65,8 +65,8 @@ OAUTH_CONFIG = None
DOC_ENGINE = None DOC_ENGINE = None
docStoreConn = None docStoreConn = None
retriever = None retrievaler = None
kg_retriever = None kg_retrievaler = None
# user registration switch # user registration switch
REGISTER_ENABLED = 1 REGISTER_ENABLED = 1
@ -174,7 +174,7 @@ def init_settings():
OAUTH_CONFIG = get_base_config("oauth", {}) OAUTH_CONFIG = get_base_config("oauth", {})
global DOC_ENGINE, docStoreConn, retriever, kg_retriever global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch") DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
# DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch") # DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch")
lower_case_doc_engine = DOC_ENGINE.lower() lower_case_doc_engine = DOC_ENGINE.lower()
@ -187,10 +187,10 @@ def init_settings():
else: else:
raise Exception(f"Not supported doc engine: {DOC_ENGINE}") raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
retriever = search.Dealer(docStoreConn) retrievaler = search.Dealer(docStoreConn)
from graphrag import search as kg_search from graphrag import search as kg_search
kg_retriever = kg_search.KGSearch(docStoreConn) kg_retrievaler = kg_search.KGSearch(docStoreConn)
if int(os.environ.get("SANDBOX_ENABLED", "0")): if int(os.environ.get("SANDBOX_ENABLED", "0")):
global SANDBOX_HOST global SANDBOX_HOST

View File

@ -51,13 +51,15 @@ from api import settings
from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC from api.constants import REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC
from api.db import ActiveEnum from api.db import ActiveEnum
from api.db.db_models import APIToken from api.db.db_models import APIToken
from api.db.services import UserService
from api.db.services.llm_service import LLMService
from api.db.services.tenant_llm_service import TenantLLMService
from api.utils.json import CustomJSONEncoder, json_dumps from api.utils.json import CustomJSONEncoder, json_dumps
from api.utils import get_uuid from api.utils import get_uuid
from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_toolcall_sessions from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_toolcall_sessions
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder) requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
def serialize_for_json(obj): def serialize_for_json(obj):
""" """
Recursively serialize objects to make them JSON serializable. Recursively serialize objects to make them JSON serializable.
@ -83,7 +85,6 @@ def serialize_for_json(obj):
# Fallback: convert to string representation # Fallback: convert to string representation
return str(obj) return str(obj)
def request(**kwargs): def request(**kwargs):
sess = requests.Session() sess = requests.Session()
stream = kwargs.pop("stream", sess.stream) stream = kwargs.pop("stream", sess.stream)
@ -104,8 +105,7 @@ def request(**kwargs):
settings.HTTP_APP_KEY.encode("ascii"), settings.HTTP_APP_KEY.encode("ascii"),
prepped.path_url.encode("ascii"), prepped.path_url.encode("ascii"),
prepped.body if kwargs.get("json") else b"", prepped.body if kwargs.get("json") else b"",
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode( urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode("ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
"ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
] ]
), ),
"sha1", "sha1",
@ -127,7 +127,7 @@ def request(**kwargs):
def get_exponential_backoff_interval(retries, full_jitter=False): def get_exponential_backoff_interval(retries, full_jitter=False):
"""Calculate the exponential backoff wait time.""" """Calculate the exponential backoff wait time."""
# Will be zero if factor equals 0 # Will be zero if factor equals 0
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2 ** retries)) countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2**retries))
# Full jitter according to # Full jitter according to
# https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/ # https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
if full_jitter: if full_jitter:
@ -158,12 +158,11 @@ def server_error_response(e):
if len(e.args) > 1: if len(e.args) > 1:
try: try:
serialized_data = serialize_for_json(e.args[1]) serialized_data = serialize_for_json(e.args[1])
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data) return get_json_result(code= settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
except Exception: except Exception:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=None) return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=None)
if repr(e).find("index_not_found_exception") >= 0: if repr(e).find("index_not_found_exception") >= 0:
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
message="No chunk found, please upload file and parse it.")
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e)) return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
@ -208,8 +207,7 @@ def validate_request(*args, **kwargs):
if no_arguments: if no_arguments:
error_string += "required argument are missing: {}; ".format(",".join(no_arguments)) error_string += "required argument are missing: {}; ".format(",".join(no_arguments))
if error_arguments: if error_arguments:
error_string += "required argument values: {}".format( error_string += "required argument values: {}".format(",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=error_string) return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=error_string)
return func(*_args, **_kwargs) return func(*_args, **_kwargs)
@ -224,8 +222,7 @@ def not_allowed_parameters(*params):
input_arguments = flask_request.json or flask_request.form.to_dict() input_arguments = flask_request.json or flask_request.form.to_dict()
for param in params: for param in params:
if param in input_arguments: if param in input_arguments:
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"Parameter {param} isn't allowed")
message=f"Parameter {param} isn't allowed")
return f(*args, **kwargs) return f(*args, **kwargs)
return wrapper return wrapper
@ -236,14 +233,12 @@ def not_allowed_parameters(*params):
def active_required(f): def active_required(f):
@wraps(f) @wraps(f)
def wrapper(*args, **kwargs): def wrapper(*args, **kwargs):
from api.db.services import UserService
user_id = current_user.id user_id = current_user.id
usr = UserService.filter_by_id(user_id) usr = UserService.filter_by_id(user_id)
# check is_active # check is_active
if not usr or not usr.is_active == ActiveEnum.ACTIVE.value: if not usr or not usr.is_active == ActiveEnum.ACTIVE.value:
return get_json_result(code=settings.RetCode.FORBIDDEN, message="User isn't active, please activate first.") return get_json_result(code=settings.RetCode.FORBIDDEN, message="User isn't active, please activate first.")
return f(*args, **kwargs) return f(*args, **kwargs)
return wrapper return wrapper
@ -264,7 +259,7 @@ def send_file_in_mem(data, filename):
return send_file(f, as_attachment=True, attachment_filename=filename) return send_file(f, as_attachment=True, attachment_filename=filename)
def get_json_result(code: settings.RetCode = settings.RetCode.SUCCESS, message="success", data=None): def get_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
response = {"code": code, "message": message, "data": data} response = {"code": code, "message": message, "data": data}
return jsonify(response) return jsonify(response)
@ -319,7 +314,7 @@ def construct_result(code=settings.RetCode.DATA_ERROR, message="data is missing"
return jsonify(response) return jsonify(response)
def construct_json_result(code: settings.RetCode = settings.RetCode.SUCCESS, message="success", data=None): def construct_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
if data is None: if data is None:
return jsonify({"code": code, "message": message}) return jsonify({"code": code, "message": message})
else: else:
@ -352,36 +347,24 @@ def token_required(func):
token = authorization_list[1] token = authorization_list[1]
objs = APIToken.query(token=token) objs = APIToken.query(token=token)
if not objs: if not objs:
return get_json_result(data=False, message="Authentication error: API key is invalid!", return get_json_result(data=False, message="Authentication error: API key is invalid!", code=settings.RetCode.AUTHENTICATION_ERROR)
code=settings.RetCode.AUTHENTICATION_ERROR)
kwargs["tenant_id"] = objs[0].tenant_id kwargs["tenant_id"] = objs[0].tenant_id
return func(*args, **kwargs) return func(*args, **kwargs)
return decorated_function return decorated_function
def get_result(code=settings.RetCode.SUCCESS, message="", data=None, total=None): def get_result(code=settings.RetCode.SUCCESS, message="", data=None):
""" if code == 0:
Standard API response format:
{
"code": 0,
"data": [...], # List or object, backward compatible
"total": 47, # Optional field for pagination
"message": "..." # Error or status message
}
"""
response = {"code": code}
if code == settings.RetCode.SUCCESS:
if data is not None: if data is not None:
response["data"] = data response = {"code": code, "data": data}
if total is not None:
response["total_datasets"] = total
else: else:
response["message"] = message or "Error" response = {"code": code}
else:
response = {"code": code, "message": message}
return jsonify(response) return jsonify(response)
def get_error_data_result( def get_error_data_result(
message="Sorry! Data missing!", message="Sorry! Data missing!",
code=settings.RetCode.DATA_ERROR, code=settings.RetCode.DATA_ERROR,
@ -419,8 +402,7 @@ def get_parser_config(chunk_method, parser_config):
# Define default configurations for each chunking method # Define default configurations for each chunking method
key_mapping = { key_mapping = {
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}}, "qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
"tag": None, "tag": None,
"resume": None, "resume": None,
@ -542,8 +524,6 @@ def check_duplicate_ids(ids, id_type="item"):
def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, Response | None]: def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, Response | None]:
from api.db.services.llm_service import LLMService
from api.db.services.tenant_llm_service import TenantLLMService
""" """
Verifies availability of an embedding model for a specific tenant. Verifies availability of an embedding model for a specific tenant.
@ -582,9 +562,7 @@ def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, R
in_llm_service = bool(LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding")) in_llm_service = bool(LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding"))
tenant_llms = TenantLLMService.get_my_llms(tenant_id=tenant_id) tenant_llms = TenantLLMService.get_my_llms(tenant_id=tenant_id)
is_tenant_model = any( is_tenant_model = any(llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for llm in tenant_llms)
llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for
llm in tenant_llms)
is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS
if not (is_builtin_model or is_tenant_model or in_llm_service): if not (is_builtin_model or is_tenant_model or in_llm_service):
@ -815,9 +793,7 @@ async def is_strong_enough(chat_model, embedding_model):
_ = await trio.to_thread.run_sync(lambda: embedding_model.encode(["Are you strong enough!?"])) _ = await trio.to_thread.run_sync(lambda: embedding_model.encode(["Are you strong enough!?"]))
if chat_model: if chat_model:
with trio.fail_after(30): with trio.fail_after(30):
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user", res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user", "content": "Are you strong enough!?"}], {}))
"content": "Are you strong enough!?"}],
{}))
if res.find("**ERROR**") >= 0: if res.find("**ERROR**") >= 0:
raise Exception(res) raise Exception(res)

View File

@ -21,26 +21,3 @@ def string_to_bytes(string):
def bytes_to_string(byte): def bytes_to_string(byte):
return byte.decode(encoding="utf-8") return byte.decode(encoding="utf-8")
def convert_bytes(size_in_bytes: int) -> str:
"""
Format size in bytes.
"""
if size_in_bytes == 0:
return "0 B"
units = ['B', 'KB', 'MB', 'GB', 'TB', 'PB']
i = 0
size = float(size_in_bytes)
while size >= 1024 and i < len(units) - 1:
size /= 1024
i += 1
if i == 0 or size >= 100:
return f"{size:.0f} {units[i]}"
elif size >= 10:
return f"{size:.1f} {units[i]}"
else:
return f"{size:.2f} {units[i]}"

View File

@ -13,17 +13,14 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# #
import os
import requests
from timeit import default_timer as timer from timeit import default_timer as timer
from api import settings from api import settings
from api.db.db_models import DB from api.db.db_models import DB
from rag import settings as rag_settings
from rag.utils.redis_conn import REDIS_CONN from rag.utils.redis_conn import REDIS_CONN
from rag.utils.storage_factory import STORAGE_IMPL from rag.utils.storage_factory import STORAGE_IMPL
from rag.utils.es_conn import ESConnection
from rag.utils.infinity_conn import InfinityConnection
def _ok_nok(ok: bool) -> str: def _ok_nok(ok: bool) -> str:
@ -68,96 +65,6 @@ def check_storage() -> tuple[bool, dict]:
return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)} return False, {"elapsed": f"{(timer() - st) * 1000.0:.1f}", "error": str(e)}
def get_es_cluster_stats() -> dict:
doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
if doc_engine != 'elasticsearch':
raise Exception("Elasticsearch is not in use.")
try:
return {
"alive": True,
"message": ESConnection().get_cluster_stats()
}
except Exception as e:
return {
"alive": False,
"message": f"error: {str(e)}",
}
def get_infinity_status():
doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
if doc_engine != 'infinity':
raise Exception("Infinity is not in use.")
try:
return {
"alive": True,
"message": InfinityConnection().health()
}
except Exception as e:
return {
"alive": False,
"message": f"error: {str(e)}",
}
def get_mysql_status():
try:
cursor = DB.execute_sql("SHOW PROCESSLIST;")
res_rows = cursor.fetchall()
headers = ['id', 'user', 'host', 'db', 'command', 'time', 'state', 'info']
cursor.close()
return {
"alive": True,
"message": [dict(zip(headers, r)) for r in res_rows]
}
except Exception as e:
return {
"alive": False,
"message": f"error: {str(e)}",
}
def check_minio_alive():
start_time = timer()
try:
response = requests.get(f'http://{rag_settings.MINIO["host"]}/minio/health/live')
if response.status_code == 200:
return {'alive': True, "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
else:
return {'alive': False, "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
except Exception as e:
return {
"alive": False,
"message": f"error: {str(e)}",
}
def get_redis_info():
try:
return {
"alive": True,
"message": REDIS_CONN.info()
}
except Exception as e:
return {
"alive": False,
"message": f"error: {str(e)}",
}
def check_ragflow_server_alive():
start_time = timer()
try:
response = requests.get(f'http://{settings.HOST_IP}:{settings.HOST_PORT}/v1/system/ping')
if response.status_code == 200:
return {'alive': True, "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
else:
return {'alive': False, "message": f"Confirm elapsed: {(timer() - start_time) * 1000.0:.1f} ms."}
except Exception as e:
return {
"alive": False,
"message": f"error: {str(e)}",
}
def run_health_checks() -> tuple[dict, bool]: def run_health_checks() -> tuple[dict, bool]:

View File

@ -2816,13 +2816,6 @@
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,IMAGE2TEXT", "tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,IMAGE2TEXT",
"status": "1", "status": "1",
"llm": [ "llm": [
{
"llm_name":"THUDM/GLM-4.1V-9B-Thinking",
"tags":"LLM,CHAT,IMAGE2TEXT, 64k",
"max_tokens":64000,
"model_type":"chat",
"is_tools": false
},
{ {
"llm_name": "Qwen/Qwen3-Embedding-8B", "llm_name": "Qwen/Qwen3-Embedding-8B",
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k", "tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
@ -3152,6 +3145,13 @@
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
}, },
{
"llm_name": "Qwen/Qwen2-1.5B-Instruct",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": "chat",
"is_tools": true
},
{ {
"llm_name": "Pro/Qwen/Qwen2.5-Coder-7B-Instruct", "llm_name": "Pro/Qwen/Qwen2.5-Coder-7B-Instruct",
"tags": "LLM,CHAT,32k", "tags": "LLM,CHAT,32k",
@ -3159,6 +3159,13 @@
"model_type": "chat", "model_type": "chat",
"is_tools": false "is_tools": false
}, },
{
"llm_name": "Pro/Qwen/Qwen2-VL-7B-Instruct",
"tags": "LLM,CHAT,IMAGE2TEXT,32k",
"max_tokens": 32000,
"model_type": "image2text",
"is_tools": false
},
{ {
"llm_name": "Pro/Qwen/Qwen2.5-7B-Instruct", "llm_name": "Pro/Qwen/Qwen2.5-7B-Instruct",
"tags": "LLM,CHAT,32k", "tags": "LLM,CHAT,32k",
@ -3526,13 +3533,6 @@
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
}, },
{
"llm_name": "claude-sonnet-4-5-20250929",
"tags": "LLM,CHAT,IMAGE2TEXT,200k",
"max_tokens": 204800,
"model_type": "chat",
"is_tools": true
},
{ {
"llm_name": "claude-sonnet-4-20250514", "llm_name": "claude-sonnet-4-20250514",
"tags": "LLM,CHAT,IMAGE2TEXT,200k", "tags": "LLM,CHAT,IMAGE2TEXT,200k",
@ -4862,280 +4862,6 @@
"max_tokens": 8000, "max_tokens": 8000,
"model_type": "chat", "model_type": "chat",
"is_tools": true "is_tools": true
},
{
"llm_name": "LongCat-Flash-Thinking",
"tags": "LLM,CHAT,8000",
"max_tokens": 8000,
"model_type": "chat",
"is_tools": true
}
]
},
{
"name": "DeerAPI",
"logo": "",
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
"status": "1",
"llm": [
{
"llm_name": "gpt-5-chat-latest",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "chatgpt-4o-latest",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5-mini",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5-nano",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-5",
"tags": "LLM,CHAT,400k",
"max_tokens": 400000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1-mini",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1-nano",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4.1",
"tags": "LLM,CHAT,1M",
"max_tokens": 1047576,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gpt-4o-mini",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "o4-mini-2025-04-16",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "o3-pro-2025-06-10",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "claude-opus-4-1-20250805",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-opus-4-1-20250805-thinking",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-sonnet-4-20250514",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-sonnet-4-20250514-thinking",
"tags": "LLM,CHAT,200k,IMAGE2TEXT",
"max_tokens": 200000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "claude-3-7-sonnet-latest",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "claude-3-5-haiku-latest",
"tags": "LLM,CHAT,200k",
"max_tokens": 200000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "gemini-2.5-pro",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.5-flash",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.5-flash-lite",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "gemini-2.0-flash",
"tags": "LLM,CHAT,1M,IMAGE2TEXT",
"max_tokens": 1000000,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "grok-4-0709",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-3",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-3-mini",
"tags": "LLM,CHAT,131k",
"max_tokens": 131072,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "grok-2-image-1212",
"tags": "LLM,CHAT,32k,IMAGE2TEXT",
"max_tokens": 32768,
"model_type": "image2text",
"is_tools": true
},
{
"llm_name": "deepseek-v3.1",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-v3",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-r1-0528",
"tags": "LLM,CHAT,164k",
"max_tokens": 164000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-chat",
"tags": "LLM,CHAT,32k",
"max_tokens": 32000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-reasoner",
"tags": "LLM,CHAT,64k",
"max_tokens": 64000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-30b-a3b",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-coder-plus-2025-07-22",
"tags": "LLM,CHAT,128k",
"max_tokens": 128000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "text-embedding-ada-002",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "text-embedding-3-small",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "text-embedding-3-large",
"tags": "TEXT EMBEDDING,8K",
"max_tokens": 8191,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "whisper-1",
"tags": "SPEECH2TEXT",
"max_tokens": 26214400,
"model_type": "speech2text",
"is_tools": false
},
{
"llm_name": "tts-1",
"tags": "TTS",
"max_tokens": 2048,
"model_type": "tts",
"is_tools": false
} }
] ]
} }

View File

@ -200,61 +200,6 @@
} }
} }
}, },
{
"knn_vector": {
"match": "*_2048_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 2048
}
}
},
{
"knn_vector": {
"match": "*_4096_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 4096
}
}
},
{
"knn_vector": {
"match": "*_6144_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 6144
}
}
},
{
"knn_vector": {
"match": "*_8192_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 8192
}
}
},
{
"knn_vector": {
"match": "*_10240_vec",
"mapping": {
"type": "knn_vector",
"index": true,
"space_type": "cosinesimil",
"dimension": 10240
}
}
},
{ {
"binary": { "binary": {
"match": "*_bin", "match": "*_bin",

View File

@ -17,6 +17,7 @@
import re import re
import mistune
from markdown import markdown from markdown import markdown
@ -116,6 +117,8 @@ class MarkdownElementExtractor:
def __init__(self, markdown_content): def __init__(self, markdown_content):
self.markdown_content = markdown_content self.markdown_content = markdown_content
self.lines = markdown_content.split("\n") self.lines = markdown_content.split("\n")
self.ast_parser = mistune.create_markdown(renderer="ast")
self.ast_nodes = self.ast_parser(markdown_content)
def extract_elements(self): def extract_elements(self):
"""Extract individual elements (headers, code blocks, lists, etc.)""" """Extract individual elements (headers, code blocks, lists, etc.)"""

View File

@ -15,13 +15,11 @@
# #
import logging import logging
import math
import os import os
import random import random
import re import re
import sys import sys
import threading import threading
from collections import Counter, defaultdict
from copy import deepcopy from copy import deepcopy
from io import BytesIO from io import BytesIO
from timeit import default_timer as timer from timeit import default_timer as timer
@ -351,78 +349,9 @@ class RAGFlowPdfParser:
self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1] self.boxes[i]["top"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1] self.boxes[i]["bottom"] += self.page_cum_height[self.boxes[i]["page_number"] - 1]
def _assign_column(self, boxes, zoomin=3): def _text_merge(self):
if not boxes:
return boxes
if all("col_id" in b for b in boxes):
return boxes
by_page = defaultdict(list)
for b in boxes:
by_page[b["page_number"]].append(b)
page_info = {} # pg -> dict(page_w, left_edge, cand_cols)
counter = Counter()
for pg, bxs in by_page.items():
if not bxs:
page_info[pg] = {"page_w": 1.0, "left_edge": 0.0, "cand": 1}
counter[1] += 1
continue
if hasattr(self, "page_images") and self.page_images and len(self.page_images) >= pg:
page_w = self.page_images[pg - 1].size[0] / max(1, zoomin)
left_edge = 0.0
else:
xs0 = [box["x0"] for box in bxs]
xs1 = [box["x1"] for box in bxs]
left_edge = float(min(xs0))
page_w = max(1.0, float(max(xs1) - left_edge))
widths = [max(1.0, (box["x1"] - box["x0"])) for box in bxs]
median_w = float(np.median(widths)) if widths else 1.0
raw_cols = int(page_w / max(1.0, median_w))
# cand = raw_cols if (raw_cols >= 2 and median_w < page_w / raw_cols * 0.8) else 1
cand = raw_cols
page_info[pg] = {"page_w": page_w, "left_edge": left_edge, "cand": cand}
counter[cand] += 1
logging.info(f"[Page {pg}] median_w={median_w:.2f}, page_w={page_w:.2f}, raw_cols={raw_cols}, cand={cand}")
global_cols = counter.most_common(1)[0][0]
logging.info(f"Global column_num decided by majority: {global_cols}")
for pg, bxs in by_page.items():
if not bxs:
continue
page_w = page_info[pg]["page_w"]
left_edge = page_info[pg]["left_edge"]
if global_cols == 1:
for box in bxs:
box["col_id"] = 0
continue
for box in bxs:
w = box["x1"] - box["x0"]
if w >= 0.8 * page_w:
box["col_id"] = 0
continue
cx = 0.5 * (box["x0"] + box["x1"])
norm_cx = (cx - left_edge) / page_w
norm_cx = max(0.0, min(norm_cx, 0.999999))
box["col_id"] = int(min(global_cols - 1, norm_cx * global_cols))
return boxes
def _text_merge(self, zoomin=3):
# merge adjusted boxes # merge adjusted boxes
bxs = self._assign_column(self.boxes, zoomin) bxs = self.boxes
def end_with(b, txt): def end_with(b, txt):
txt = txt.strip() txt = txt.strip()
@ -438,15 +367,9 @@ class RAGFlowPdfParser:
while i < len(bxs) - 1: while i < len(bxs) - 1:
b = bxs[i] b = bxs[i]
b_ = bxs[i + 1] b_ = bxs[i + 1]
if b["page_number"] != b_["page_number"] or b.get("col_id") != b_.get("col_id"):
i += 1
continue
if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]: if b.get("layoutno", "0") != b_.get("layoutno", "1") or b.get("layout_type", "") in ["table", "figure", "equation"]:
i += 1 i += 1
continue continue
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3: if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 3:
# merge # merge
bxs[i]["x1"] = b_["x1"] bxs[i]["x1"] = b_["x1"]
@ -456,49 +379,50 @@ class RAGFlowPdfParser:
bxs.pop(i + 1) bxs.pop(i + 1)
continue continue
i += 1 i += 1
continue
dis_thr = 1
dis = b["x1"] - b_["x0"]
if b.get("layout_type", "") != "text" or b_.get("layout_type", "") != "text":
if end_with(b, "") or start_with(b_, ""):
dis_thr = -8
else:
i += 1
continue
if abs(self._y_dis(b, b_)) < self.mean_height[bxs[i]["page_number"] - 1] / 5 and dis >= dis_thr and b["x1"] < b_["x1"]:
# merge
bxs[i]["x1"] = b_["x1"]
bxs[i]["top"] = (b["top"] + b_["top"]) / 2
bxs[i]["bottom"] = (b["bottom"] + b_["bottom"]) / 2
bxs[i]["text"] += b_["text"]
bxs.pop(i + 1)
continue
i += 1
self.boxes = bxs self.boxes = bxs
def _naive_vertical_merge(self, zoomin=3): def _naive_vertical_merge(self, zoomin=3):
bxs = self._assign_column(self.boxes, zoomin) import math
bxs = Recognizer.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
grouped = defaultdict(list) column_width = np.median([b["x1"] - b["x0"] for b in self.boxes])
for b in bxs: if not column_width or math.isnan(column_width):
grouped[(b["page_number"], b.get("col_id", 0))].append(b) column_width = self.mean_width[0]
self.column_num = int(self.page_images[0].size[0] / zoomin / column_width)
merged_boxes = [] if column_width < self.page_images[0].size[0] / zoomin / self.column_num:
for (pg, col), bxs in grouped.items(): logging.info("Multi-column................... {} {}".format(column_width, self.page_images[0].size[0] / zoomin / self.column_num))
bxs = sorted(bxs, key=lambda x: (x["top"], x["x0"])) self.boxes = self.sort_X_by_page(self.boxes, column_width / self.column_num)
if not bxs:
continue
mh = self.mean_height[pg - 1] if self.mean_height else np.median([b["bottom"] - b["top"] for b in bxs]) or 10
i = 0 i = 0
while i + 1 < len(bxs): while i + 1 < len(bxs):
b = bxs[i] b = bxs[i]
b_ = bxs[i + 1] b_ = bxs[i + 1]
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]): if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
bxs.pop(i) bxs.pop(i)
continue continue
if not b["text"].strip(): if not b["text"].strip():
bxs.pop(i) bxs.pop(i)
continue continue
if not b["text"].strip() or b.get("layoutno") != b_.get("layoutno"):
i += 1
continue
if b_["top"] - b["bottom"] > mh * 1.5:
i += 1
continue
overlap = max(0, min(b["x1"], b_["x1"]) - max(b["x0"], b_["x0"]))
if overlap / max(1, min(b["x1"] - b["x0"], b_["x1"] - b_["x0"])) < 0.3:
i += 1
continue
concatting_feats = [ concatting_feats = [
b["text"].strip()[-1] in ",;:'\",、‘“;:-", b["text"].strip()[-1] in ",;:'\",、‘“;:-",
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:", len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
@ -525,39 +449,13 @@ class RAGFlowPdfParser:
) )
i += 1 i += 1
continue continue
# merge up and down
b["text"] = (b["text"].rstrip() + " " + b_["text"].lstrip()).strip()
b["bottom"] = b_["bottom"] b["bottom"] = b_["bottom"]
b["text"] += b_["text"]
b["x0"] = min(b["x0"], b_["x0"]) b["x0"] = min(b["x0"], b_["x0"])
b["x1"] = max(b["x1"], b_["x1"]) b["x1"] = max(b["x1"], b_["x1"])
bxs.pop(i + 1) bxs.pop(i + 1)
self.boxes = bxs
merged_boxes.extend(bxs)
self.boxes = sorted(merged_boxes, key=lambda x: (x["page_number"], x.get("col_id", 0), x["top"]))
def _final_reading_order_merge(self, zoomin=3):
if not self.boxes:
return
self.boxes = self._assign_column(self.boxes, zoomin=zoomin)
pages = defaultdict(lambda: defaultdict(list))
for b in self.boxes:
pg = b["page_number"]
col = b.get("col_id", 0)
pages[pg][col].append(b)
for pg in pages:
for col in pages[pg]:
pages[pg][col].sort(key=lambda x: (x["top"], x["x0"]))
new_boxes = []
for pg in sorted(pages.keys()):
for col in sorted(pages[pg].keys()):
new_boxes.extend(pages[pg][col])
self.boxes = new_boxes
def _concat_downward(self, concat_between_pages=True): def _concat_downward(self, concat_between_pages=True):
self.boxes = Recognizer.sort_Y_firstly(self.boxes, 0) self.boxes = Recognizer.sort_Y_firstly(self.boxes, 0)
@ -1099,7 +997,7 @@ class RAGFlowPdfParser:
self.__ocr(i + 1, img, chars, zoomin, id) self.__ocr(i + 1, img, chars, zoomin, id)
if callback and i % 6 == 5: if callback and i % 6 == 5:
callback((i + 1) * 0.6 / len(self.page_images)) callback(prog=(i + 1) * 0.6 / len(self.page_images), msg="")
async def __img_ocr_launcher(): async def __img_ocr_launcher():
def __ocr_preprocess(): def __ocr_preprocess():
@ -1150,7 +1048,7 @@ class RAGFlowPdfParser:
def parse_into_bboxes(self, fnm, callback=None, zoomin=3): def parse_into_bboxes(self, fnm, callback=None, zoomin=3):
start = timer() start = timer()
self.__images__(fnm, zoomin, callback=callback) self.__images__(fnm, zoomin)
if callback: if callback:
callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start)) callback(0.40, "OCR finished ({:.2f}s)".format(timer() - start))
@ -1176,6 +1074,7 @@ class RAGFlowPdfParser:
def insert_table_figures(tbls_or_figs, layout_type): def insert_table_figures(tbls_or_figs, layout_type):
def min_rectangle_distance(rect1, rect2): def min_rectangle_distance(rect1, rect2):
import math
pn1, left1, right1, top1, bottom1 = rect1 pn1, left1, right1, top1, bottom1 = rect1
pn2, left2, right2, top2, bottom2 = rect2 pn2, left2, right2, top2, bottom2 = rect2
if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1: if right1 >= left2 and right2 >= left1 and bottom1 >= top2 and bottom2 >= top1:
@ -1192,39 +1091,27 @@ class RAGFlowPdfParser:
dy = top1 - bottom2 dy = top1 - bottom2
else: else:
dy = 0 dy = 0
return math.sqrt(dx * dx + dy * dy) # + (pn2-pn1)*10000 return math.sqrt(dx*dx + dy*dy)# + (pn2-pn1)*10000
for (img, txt), poss in tbls_or_figs: for (img, txt), poss in tbls_or_figs:
bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)] bboxes = [(i, (b["page_number"], b["x0"], b["x1"], b["top"], b["bottom"])) for i, b in enumerate(self.boxes)]
dists = [ dists = [(min_rectangle_distance((pn, left, right, top+self.page_cum_height[pn], bott+self.page_cum_height[pn]), rect),i) for i, rect in bboxes for pn, left, right, top, bott in poss]
(min_rectangle_distance((pn, left, right, top + self.page_cum_height[pn], bott + self.page_cum_height[pn]), rect), i) for i, rect in bboxes for pn, left, right, top, bott in poss
]
min_i = np.argmin(dists, axis=0)[0] min_i = np.argmin(dists, axis=0)[0]
min_i, rect = bboxes[dists[min_i][-1]] min_i, rect = bboxes[dists[min_i][-1]]
if isinstance(txt, list): if isinstance(txt, list):
txt = "\n".join(txt) txt = "\n".join(txt)
pn, left, right, top, bott = poss[0] pn, left, right, top, bott = poss[0]
if self.boxes[min_i]["bottom"] < top + self.page_cum_height[pn]: if self.boxes[min_i]["bottom"] < top+self.page_cum_height[pn]:
min_i += 1 min_i += 1
self.boxes.insert( self.boxes.insert(min_i, {
min_i, "page_number": pn+1, "x0": left, "x1": right, "top": top+self.page_cum_height[pn], "bottom": bott+self.page_cum_height[pn], "layout_type": layout_type, "text": txt, "image": img,
{ "positions": [[pn+1, int(left), int(right), int(top), int(bott)]]
"page_number": pn + 1, })
"x0": left,
"x1": right,
"top": top + self.page_cum_height[pn],
"bottom": bott + self.page_cum_height[pn],
"layout_type": layout_type,
"text": txt,
"image": img,
"positions": [[pn + 1, int(left), int(right), int(top), int(bott)]],
},
)
for b in self.boxes: for b in self.boxes:
b["position_tag"] = self._line_tag(b, zoomin) b["position_tag"] = self._line_tag(b, zoomin)
b["image"] = self.crop(b["position_tag"], zoomin) b["image"] = self.crop(b["position_tag"], zoomin)
b["positions"] = [[pos[0][-1] + 1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(b["position_tag"])] b["positions"] = [[pos[0][-1]+1, *pos[1:]] for pos in RAGFlowPdfParser.extract_positions(b["position_tag"])]
insert_table_figures(tbls, "table") insert_table_figures(tbls, "table")
insert_table_figures(figs, "figure") insert_table_figures(figs, "figure")
@ -1242,7 +1129,7 @@ class RAGFlowPdfParser:
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt): for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", txt):
pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t") pn, left, right, top, bottom = tag.strip("#").strip("@").split("\t")
left, right, top, bottom = float(left), float(right), float(top), float(bottom) left, right, top, bottom = float(left), float(right), float(top), float(bottom)
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom)) poss.append(([int(p) - 1 for p in pn.split("-")], int(left), int(right), int(top), int(bottom)))
return poss return poss
def crop(self, text, ZM=3, need_position=False): def crop(self, text, ZM=3, need_position=False):
@ -1387,16 +1274,12 @@ class VisionParser(RAGFlowPdfParser):
prompt=vision_llm_describe_prompt(page=pdf_page_num + 1), prompt=vision_llm_describe_prompt(page=pdf_page_num + 1),
callback=callback, callback=callback,
) )
if kwargs.get("callback"): if kwargs.get("callback"):
kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}") kwargs["callback"](idx * 1.0 / len(self.page_images), f"Processed: {idx + 1}/{len(self.page_images)}")
if text: if text:
width, height = self.page_images[idx].size width, height = self.page_images[idx].size
all_docs.append(( all_docs.append((text, f"{pdf_page_num + 1} 0 {width / zoomin} 0 {height / zoomin}"))
text,
f"@@{pdf_page_num + 1}\t{0.0:.1f}\t{width / zoomin:.1f}\t{0.0:.1f}\t{height / zoomin:.1f}##"
))
return all_docs, [] return all_docs, []

View File

@ -84,8 +84,7 @@ def load_model(model_dir, nm, device_id: int | None = None):
def cuda_is_available(): def cuda_is_available():
try: try:
import torch import torch
target_id = 0 if device_id is None else device_id if torch.cuda.is_available() and torch.cuda.device_count() > device_id:
if torch.cuda.is_available() and torch.cuda.device_count() > target_id:
return True return True
except Exception: except Exception:
return False return False
@ -101,13 +100,10 @@ def load_model(model_dir, nm, device_id: int | None = None):
# Shrink GPU memory after execution # Shrink GPU memory after execution
run_options = ort.RunOptions() run_options = ort.RunOptions()
if cuda_is_available(): if cuda_is_available():
gpu_mem_limit_mb = int(os.environ.get("OCR_GPU_MEM_LIMIT_MB", "2048"))
arena_strategy = os.environ.get("OCR_ARENA_EXTEND_STRATEGY", "kNextPowerOfTwo")
provider_device_id = 0 if device_id is None else device_id
cuda_provider_options = { cuda_provider_options = {
"device_id": provider_device_id, # Use specific GPU "device_id": device_id, # Use specific GPU
"gpu_mem_limit": max(gpu_mem_limit_mb, 0) * 1024 * 1024, "gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
"arena_extend_strategy": arena_strategy, # gpu memory allocation strategy "arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
} }
sess = ort.InferenceSession( sess = ort.InferenceSession(
model_file_path, model_file_path,
@ -115,8 +111,8 @@ def load_model(model_dir, nm, device_id: int | None = None):
providers=['CUDAExecutionProvider'], providers=['CUDAExecutionProvider'],
provider_options=[cuda_provider_options] provider_options=[cuda_provider_options]
) )
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(provider_device_id)) run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(device_id))
logging.info(f"load_model {model_file_path} uses GPU (device {provider_device_id}, gpu_mem_limit={cuda_provider_options['gpu_mem_limit']}, arena_strategy={arena_strategy})") logging.info(f"load_model {model_file_path} uses GPU")
else: else:
sess = ort.InferenceSession( sess = ort.InferenceSession(
model_file_path, model_file_path,

View File

@ -77,7 +77,7 @@ services:
container_name: ragflow-infinity container_name: ragflow-infinity
profiles: profiles:
- infinity - infinity
image: infiniflow/infinity:v0.6.0-dev7 image: infiniflow/infinity:v0.6.0-dev5
volumes: volumes:
- infinity_data:/var/infinity - infinity_data:/var/infinity
- ./infinity_conf.toml:/infinity_conf.toml - ./infinity_conf.toml:/infinity_conf.toml

View File

@ -98,7 +98,7 @@ Where:
- `mcp-host`: The MCP server's host address. - `mcp-host`: The MCP server's host address.
- `mcp-port`: The MCP server's listening port. - `mcp-port`: The MCP server's listening port.
- `mcp-base-url`: The address of the running RAGFlow server. - `mcp-base_url`: The address of the running RAGFlow server.
- `mcp-script-path`: The file path to the MCP servers main script. - `mcp-script-path`: The file path to the MCP servers main script.
- `mcp-mode`: The launch mode. - `mcp-mode`: The launch mode.
- `self-host`: (default) self-host mode. - `self-host`: (default) self-host mode.

View File

@ -21,10 +21,6 @@ Ensure that your metadata is in JSON format; otherwise, your updates will not be
![Input metadata](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/input_metadata.jpg) ![Input metadata](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/input_metadata.jpg)
## Related APIs
[Retrieve chunks](../../references/http_api_reference.md#retrieve-chunks)
## Frequently asked questions ## Frequently asked questions
### Can I set metadata for multiple documents at once? ### Can I set metadata for multiple documents at once?

View File

@ -1,360 +0,0 @@
# Admin CLI and Admin Service
The Admin CLI and Admin Service form a client-server architectural suite for RAGflow system administration. The Admin CLI serves as an interactive command-line interface that receives instructions and displays execution results from the Admin Service in real-time. This duo enables real-time monitoring of system operational status, supporting visibility into RAGflow Server services and dependent components including MySQL, Elasticsearch, Redis, and MinIO. In administrator mode, they provide user management capabilities that allow viewing users and performing critical operations—such as user creation, password updates, activation status changes, and comprehensive user data deletion—even when corresponding web interface functionalities are disabled.
## Starting the Admin Service
1. Before start Admin Service, please make sure RAGFlow system is already started.
2. Switch to ragflow/ directory and run the service script:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
python admin/admin_server.py
```
The service will start and listen for incoming connections from the CLI on the configured port. Default port is 9381.
## Using the Admin CLI
1. Ensure the Admin Service is running.
2. Launch the CLI client:
```bash
source .venv/bin/activate
export PYTHONPATH=$(pwd)
python admin/admin_client.py -h 0.0.0.0 -p 9381
```
Enter superuser's password to login. Default password is `admin`.
## Supported Commands
Commands are case-insensitive and must be terminated with a semicolon(;).
### Service manage commands
`LIST SERVICES;`
- Lists all available services within the RAGFlow system.
- [Example](#example-list-services)
`SHOW SERVICE <id>;`
- Shows detailed status information for the service identified by <id>.
- [Example](#example-show-service)
### User Management Commands
`LIST USERS;`
- Lists all users known to the system.
- [Example](#example-list-users)
`SHOW USER <username>;`
- Shows details and permissions for the user specified by **email**. The username must be enclosed in single or double quotes.
- [Example](#example-show-user)
`CREATE USER <username> <password>;`
- Create user by username and password. The username and password must be enclosed in single or double quotes.
- [Example](#example-create-user)
`DROP USER <username>;`
- Removes the specified user from the system. Use with caution.
- [Example](#example-drop-user)
`ALTER USER PASSWORD <username> <new_password>;`
- Changes the password for the specified user.
- [Example](#example-alter-user-password)
`ALTER USER ACTIVE <username> <on/off>;`
- Changes the user to active or inactive.
- [Example](#example-alter-user-active)
### Data and Agent Commands
`LIST DATASETS OF <username>;`
- Lists the datasets associated with the specified user.
- [Example](#example-list-datasets-of-user)
`LIST AGENTS OF <username>;`
- Lists the agents associated with the specified user.
- [Example](#example-list-agents-of-user)
### Meta-Commands
- \? or \help
Shows help information for the available commands.
- \q or \quit
Exits the CLI application.
- [Example](#example-meta-commands)
### Examples
<span id="example-list-services"></span>
- List all available services.
```
admin> list services;
command: list services;
Listing all services
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| extra | host | id | name | port | service_type |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
| {} | 0.0.0.0 | 0 | ragflow_0 | 9380 | ragflow_server |
| {'meta_type': 'mysql', 'password': 'infini_rag_flow', 'username': 'root'} | localhost | 1 | mysql | 5455 | meta_data |
| {'password': 'infini_rag_flow', 'store_type': 'minio', 'user': 'rag_flow'} | localhost | 2 | minio | 9000 | file_store |
| {'password': 'infini_rag_flow', 'retrieval_type': 'elasticsearch', 'username': 'elastic'} | localhost | 3 | elasticsearch | 1200 | retrieval |
| {'db_name': 'default_db', 'retrieval_type': 'infinity'} | localhost | 4 | infinity | 23817 | retrieval |
| {'database': 1, 'mq_type': 'redis', 'password': 'infini_rag_flow'} | localhost | 5 | redis | 6379 | message_queue |
+-------------------------------------------------------------------------------------------+-----------+----+---------------+-------+----------------+
```
<span id="example-show-service"></span>
- Show ragflow_server.
```
admin> show service 0;
command: show service 0;
Showing service: 0
Service ragflow_0 is alive. Detail:
Confirm elapsed: 26.0 ms.
```
- Show mysql.
```
admin> show service 1;
command: show service 1;
Showing service: 1
Service mysql is alive. Detail:
+---------+----------+------------------+------+------------------+------------------------+-------+-----------------+
| command | db | host | id | info | state | time | user |
+---------+----------+------------------+------+------------------+------------------------+-------+-----------------+
| Daemon | None | localhost | 5 | None | Waiting on empty queue | 16111 | event_scheduler |
| Sleep | rag_flow | 172.18.0.1:40046 | 1610 | None | | 2 | root |
| Query | rag_flow | 172.18.0.1:35882 | 1629 | SHOW PROCESSLIST | init | 0 | root |
+---------+----------+------------------+------+------------------+------------------------+-------+-----------------+
```
- Show minio.
```
admin> show service 2;
command: show service 2;
Showing service: 2
Service minio is alive. Detail:
Confirm elapsed: 2.1 ms.
```
- Show elasticsearch.
```
admin> show service 3;
command: show service 3;
Showing service: 3
Service elasticsearch is alive. Detail:
+----------------+------+--------------+---------+----------------+--------------+---------------+--------------+------------------------------+----------------------------+-----------------+-------+---------------+---------+-------------+---------------------+--------+------------+--------------------+
| cluster_name | docs | docs_deleted | indices | indices_shards | jvm_heap_max | jvm_heap_used | jvm_versions | mappings_deduplicated_fields | mappings_deduplicated_size | mappings_fields | nodes | nodes_version | os_mem | os_mem_used | os_mem_used_percent | status | store_size | total_dataset_size |
+----------------+------+--------------+---------+----------------+--------------+---------------+--------------+------------------------------+----------------------------+-----------------+-------+---------------+---------+-------------+---------------------+--------+------------+--------------------+
| docker-cluster | 717 | 86 | 37 | 42 | 3.76 GB | 1.74 GB | 21.0.1+12-29 | 6575 | 48.0 KB | 8521 | 1 | ['8.11.3'] | 7.52 GB | 4.55 GB | 61 | green | 4.60 MB | 4.60 MB |
+----------------+------+--------------+---------+----------------+--------------+---------------+--------------+------------------------------+----------------------------+-----------------+-------+---------------+---------+-------------+---------------------+--------+------------+--------------------+
```
- Show infinity.
```
admin> show service 4;
command: show service 4;
Showing service: 4
Fail to show service, code: 500, message: Infinity is not in use.
```
- Show redis.
```
admin> show service 5;
command: show service 5;
Showing service: 5
Service redis is alive. Detail:
+-----------------+-------------------+---------------------------+-------------------------+---------------+-------------+--------------------------+---------------------+-------------+
| blocked_clients | connected_clients | instantaneous_ops_per_sec | mem_fragmentation_ratio | redis_version | server_mode | total_commands_processed | total_system_memory | used_memory |
+-----------------+-------------------+---------------------------+-------------------------+---------------+-------------+--------------------------+---------------------+-------------+
| 0 | 2 | 1 | 10.41 | 7.2.4 | standalone | 10446 | 30.84G | 1.10M |
+-----------------+-------------------+---------------------------+-------------------------+---------------+-------------+--------------------------+---------------------+-------------+
```
<span id="example-list-users"></span>
- List all user.
```
admin> list users;
command: list users;
Listing all users
+-------------------------------+----------------------+-----------+----------+
| create_date | email | is_active | nickname |
+-------------------------------+----------------------+-----------+----------+
| Mon, 22 Sep 2025 10:59:04 GMT | admin@ragflow.io | 1 | admin |
| Sun, 14 Sep 2025 17:36:27 GMT | lynn_inf@hotmail.com | 1 | Lynn |
+-------------------------------+----------------------+-----------+----------+
```
<span id="example-show-user"></span>
- Show specified user.
```
admin> show user "admin@ragflow.io";
command: show user "admin@ragflow.io";
Showing user: admin@ragflow.io
+-------------------------------+------------------+-----------+--------------+------------------+--------------+----------+-----------------+---------------+--------+-------------------------------+
| create_date | email | is_active | is_anonymous | is_authenticated | is_superuser | language | last_login_time | login_channel | status | update_date |
+-------------------------------+------------------+-----------+--------------+------------------+--------------+----------+-----------------+---------------+--------+-------------------------------+
| Mon, 22 Sep 2025 10:59:04 GMT | admin@ragflow.io | 1 | 0 | 1 | True | Chinese | None | None | 1 | Mon, 22 Sep 2025 10:59:04 GMT |
+-------------------------------+------------------+-----------+--------------+------------------+--------------+----------+-----------------+---------------+--------+-------------------------------+
```
<span id="example-create-user"></span>
- Create new user.
```
admin> create user "example@ragflow.io" "psw";
command: create user "example@ragflow.io" "psw";
Create user: example@ragflow.io, password: psw, role: user
+----------------------------------+--------------------+----------------------------------+--------------+---------------+----------+
| access_token | email | id | is_superuser | login_channel | nickname |
+----------------------------------+--------------------+----------------------------------+--------------+---------------+----------+
| 5cdc6d1e9df111f099b543aee592c6bf | example@ragflow.io | 5cdc6ca69df111f099b543aee592c6bf | False | password | |
+----------------------------------+--------------------+----------------------------------+--------------+---------------+----------+
```
<span id="example-alter-user-password"></span>
- Alter user password.
```
admin> alter user password "example@ragflow.io" "newpsw";
command: alter user password "example@ragflow.io" "newpsw";
Alter user: example@ragflow.io, password: newpsw
Password updated successfully!
```
<span id="example-alter-user-active"></span>
- Alter user active, turn off.
```
admin> alter user active "example@ragflow.io" off;
command: alter user active "example@ragflow.io" off;
Alter user example@ragflow.io activate status, turn off.
Turn off user activate status successfully!
```
<span id="example-drop-user"></span>
- Drop user.
```
admin> Drop user "example@ragflow.io";
command: Drop user "example@ragflow.io";
Drop user: example@ragflow.io
Successfully deleted user. Details:
Start to delete owned tenant.
- Deleted 2 tenant-LLM records.
- Deleted 0 langfuse records.
- Deleted 1 tenant.
- Deleted 1 user-tenant records.
- Deleted 1 user.
Delete done!
```
Delete user's data at the same time.
<span id="example-list-datasets-of-user"></span>
- List the specified user's dataset.
```
admin> list datasets of "lynn_inf@hotmail.com";
command: list datasets of "lynn_inf@hotmail.com";
Listing all datasets of user: lynn_inf@hotmail.com
+-----------+-------------------------------+---------+----------+---------------+------------+--------+-----------+-------------------------------+
| chunk_num | create_date | doc_num | language | name | permission | status | token_num | update_date |
+-----------+-------------------------------+---------+----------+---------------+------------+--------+-----------+-------------------------------+
| 29 | Mon, 15 Sep 2025 11:56:59 GMT | 12 | Chinese | test_dataset | me | 1 | 12896 | Fri, 19 Sep 2025 17:50:58 GMT |
| 4 | Sun, 28 Sep 2025 11:49:31 GMT | 6 | Chinese | dataset_share | team | 1 | 1121 | Sun, 28 Sep 2025 14:41:03 GMT |
+-----------+-------------------------------+---------+----------+---------------+------------+--------+-----------+-------------------------------+
```
<span id="example-list-agents-of-user"></span>
- List the specified user's agents.
```
admin> list agents of "lynn_inf@hotmail.com";
command: list agents of "lynn_inf@hotmail.com";
Listing all agents of user: lynn_inf@hotmail.com
+-----------------+-------------+------------+-----------------+
| canvas_category | canvas_type | permission | title |
+-----------------+-------------+------------+-----------------+
| agent_canvas | None | team | research_helper |
+-----------------+-------------+------------+-----------------+
```
<span id="example-meta-commands"></span>
- Show help information.
```
admin> \help
command: \help
Commands:
LIST SERVICES
SHOW SERVICE <service>
STARTUP SERVICE <service>
SHUTDOWN SERVICE <service>
RESTART SERVICE <service>
LIST USERS
SHOW USER <user>
DROP USER <user>
CREATE USER <user> <password>
ALTER USER PASSWORD <user> <new_password>
ALTER USER ACTIVE <user> <on/off>
LIST DATASETS OF <user>
LIST AGENTS OF <user>
Meta Commands:
\?, \h, \help Show this help
\q, \quit, \exit Quit the CLI
```
- Exit
```
admin> \q
command: \q
Goodbye!
```

View File

@ -830,8 +830,7 @@ Success:
"update_time": 1728533243536, "update_time": 1728533243536,
"vector_similarity_weight": 0.3 "vector_similarity_weight": 0.3
} }
], ]
"total": 1
} }
``` ```
@ -1281,7 +1280,7 @@ Success:
"update_time": 1728897061948 "update_time": 1728897061948
} }
], ],
"total_datasets": 1 "total": 1
} }
} }
``` ```
@ -1823,21 +1822,7 @@ curl --request POST \
{ {
"question": "What is advantage of ragflow?", "question": "What is advantage of ragflow?",
"dataset_ids": ["b2a62730759d11ef987d0242ac120004"], "dataset_ids": ["b2a62730759d11ef987d0242ac120004"],
"document_ids": ["77df9ef4759a11ef8bdd0242ac120004"], "document_ids": ["77df9ef4759a11ef8bdd0242ac120004"]
"metadata_condition": {
"conditions": [
{
"name": "author",
"comparison_operator": "=",
"value": "Toby"
},
{
"name": "url",
"comparison_operator": "not contains",
"value": "amd"
}
]
}
}' }'
``` ```
@ -1872,25 +1857,7 @@ curl --request POST \
- `"cross_languages"`: (*Body parameter*) `list[string]` - `"cross_languages"`: (*Body parameter*) `list[string]`
The languages that should be translated into, in order to achieve keywords retrievals in different languages. The languages that should be translated into, in order to achieve keywords retrievals in different languages.
- `"metadata_condition"`: (*Body parameter*), `object` - `"metadata_condition"`: (*Body parameter*), `object`
The metadata condition used for filtering chunks: The metadata condition for filtering chunks.
- `"conditions"`: (*Body parameter*), `array`
A list of metadata filter conditions.
- `"name"`: `string` - The metadata field name to filter by, e.g., `"author"`, `"company"`, `"url"`. Ensure this parameter before use. See [Set metadata](../guides/dataset/set_metadata.md) for details.
- `comparison_operator`: `string` - The comparison operator. Can be one of:
- `"contains"`
- `"not contains"`
- `"start with"`
- `"empty"`
- `"not empty"`
- `"="`
- `"≠"`
- `">"`
- `"<"`
- `"≥"`
- `"≤"`
- `"value"`: `string` - The value to compare.
#### Response #### Response
Success: Success:

View File

@ -33,7 +33,7 @@ A complete list of models supported by RAGFlow, which will continue to expand.
| Jina | | :heavy_check_mark: | :heavy_check_mark: | | | | | Jina | | :heavy_check_mark: | :heavy_check_mark: | | | |
| LeptonAI | :heavy_check_mark: | | | | | | | LeptonAI | :heavy_check_mark: | | | | | |
| LocalAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | | | LocalAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| LM-Studio | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | | | LM-Studio | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| MiniMax | :heavy_check_mark: | | | | | | | MiniMax | :heavy_check_mark: | | | | | |
| Mistral | :heavy_check_mark: | :heavy_check_mark: | | | | | | Mistral | :heavy_check_mark: | :heavy_check_mark: | | | | |
| ModelScope | :heavy_check_mark: | | | | | | | ModelScope | :heavy_check_mark: | | | | | |
@ -66,7 +66,6 @@ A complete list of models supported by RAGFlow, which will continue to expand.
| DeepInfra | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | | DeepInfra | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: |
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | | | 302.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| CometAPI | :heavy_check_mark: | :heavy_check_mark: | | | | | | CometAPI | :heavy_check_mark: | :heavy_check_mark: | | | | |
| DeerAPI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | :heavy_check_mark: |
```mdx-code-block ```mdx-code-block
</APITable> </APITable>

View File

@ -6,6 +6,7 @@
# dependencies = [ # dependencies = [
# "huggingface-hub", # "huggingface-hub",
# "nltk", # "nltk",
# "argparse",
# ] # ]
# /// # ///
@ -16,7 +17,7 @@ import os
import urllib.request import urllib.request
import argparse import argparse
def get_urls(use_china_mirrors=False) -> list[Union[str, list[str]]]: def get_urls(use_china_mirrors=False) -> Union[str, list[str]]:
if use_china_mirrors: if use_china_mirrors:
return [ return [
"http://mirrors.tuna.tsinghua.edu.cn/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb", "http://mirrors.tuna.tsinghua.edu.cn/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb",

View File

@ -60,7 +60,7 @@ class EntityResolution(Extractor):
self._llm = llm_invoker self._llm = llm_invoker
self._resolution_prompt = ENTITY_RESOLUTION_PROMPT self._resolution_prompt = ENTITY_RESOLUTION_PROMPT
self._record_delimiter_key = "record_delimiter" self._record_delimiter_key = "record_delimiter"
self._entity_index_delimiter_key = "entity_index_delimiter" self._entity_index_dilimiter_key = "entity_index_delimiter"
self._resolution_result_delimiter_key = "resolution_result_delimiter" self._resolution_result_delimiter_key = "resolution_result_delimiter"
self._input_text_key = "input_text" self._input_text_key = "input_text"
@ -77,7 +77,7 @@ class EntityResolution(Extractor):
**prompt_variables, **prompt_variables,
self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key) self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
or DEFAULT_RECORD_DELIMITER, or DEFAULT_RECORD_DELIMITER,
self._entity_index_delimiter_key: prompt_variables.get(self._entity_index_delimiter_key) self._entity_index_dilimiter_key: prompt_variables.get(self._entity_index_dilimiter_key)
or DEFAULT_ENTITY_INDEX_DELIMITER, or DEFAULT_ENTITY_INDEX_DELIMITER,
self._resolution_result_delimiter_key: prompt_variables.get(self._resolution_result_delimiter_key) self._resolution_result_delimiter_key: prompt_variables.get(self._resolution_result_delimiter_key)
or DEFAULT_RESOLUTION_RESULT_DELIMITER, or DEFAULT_RESOLUTION_RESULT_DELIMITER,
@ -185,7 +185,7 @@ class EntityResolution(Extractor):
result = self._process_results(len(candidate_resolution_i[1]), response, result = self._process_results(len(candidate_resolution_i[1]), response,
self.prompt_variables.get(self._record_delimiter_key, self.prompt_variables.get(self._record_delimiter_key,
DEFAULT_RECORD_DELIMITER), DEFAULT_RECORD_DELIMITER),
self.prompt_variables.get(self._entity_index_delimiter_key, self.prompt_variables.get(self._entity_index_dilimiter_key,
DEFAULT_ENTITY_INDEX_DELIMITER), DEFAULT_ENTITY_INDEX_DELIMITER),
self.prompt_variables.get(self._resolution_result_delimiter_key, self.prompt_variables.get(self._resolution_result_delimiter_key,
DEFAULT_RESOLUTION_RESULT_DELIMITER)) DEFAULT_RESOLUTION_RESULT_DELIMITER))

View File

@ -55,7 +55,7 @@ async def run_graphrag(
start = trio.current_time() start = trio.current_time()
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"] tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]
chunks = [] chunks = []
for d in settings.retriever.chunk_list(doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"], sort_by_position=True): for d in settings.retrievaler.chunk_list(doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"], sort_by_position=True):
chunks.append(d["content_with_weight"]) chunks.append(d["content_with_weight"])
with trio.fail_after(max(120, len(chunks) * 60 * 10) if enable_timeout_assertion else 10000000000): with trio.fail_after(max(120, len(chunks) * 60 * 10) if enable_timeout_assertion else 10000000000):
@ -170,7 +170,7 @@ async def run_graphrag_for_kb(
chunks = [] chunks = []
current_chunk = "" current_chunk = ""
for d in settings.retriever.chunk_list( for d in settings.retrievaler.chunk_list(
doc_id, doc_id,
tenant_id, tenant_id,
[kb_id], [kb_id],

View File

@ -62,7 +62,7 @@ async def main():
chunks = [ chunks = [
d["content_with_weight"] d["content_with_weight"]
for d in settings.retriever.chunk_list( for d in settings.retrievaler.chunk_list(
args.doc_id, args.doc_id,
args.tenant_id, args.tenant_id,
[kb_id], [kb_id],

View File

@ -63,7 +63,7 @@ async def main():
chunks = [ chunks = [
d["content_with_weight"] d["content_with_weight"]
for d in settings.retriever.chunk_list( for d in settings.retrievaler.chunk_list(
args.doc_id, args.doc_id,
args.tenant_id, args.tenant_id,
[kb_id], [kb_id],

View File

@ -92,7 +92,10 @@ def dict_has_keys_with_types(data: dict, expected_fields: list[tuple[str, type]]
def get_llm_cache(llmnm, txt, history, genconf): def get_llm_cache(llmnm, txt, history, genconf):
hasher = xxhash.xxh64() hasher = xxhash.xxh64()
hasher.update((str(llmnm)+str(txt)+str(history)+str(genconf)).encode("utf-8")) hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
hasher.update(str(history).encode("utf-8"))
hasher.update(str(genconf).encode("utf-8"))
k = hasher.hexdigest() k = hasher.hexdigest()
bin = REDIS_CONN.get(k) bin = REDIS_CONN.get(k)
@ -103,7 +106,11 @@ def get_llm_cache(llmnm, txt, history, genconf):
def set_llm_cache(llmnm, txt, v, history, genconf): def set_llm_cache(llmnm, txt, v, history, genconf):
hasher = xxhash.xxh64() hasher = xxhash.xxh64()
hasher.update((str(llmnm)+str(txt)+str(history)+str(genconf)).encode("utf-8")) hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
hasher.update(str(history).encode("utf-8"))
hasher.update(str(genconf).encode("utf-8"))
k = hasher.hexdigest() k = hasher.hexdigest()
REDIS_CONN.set(k, v.encode("utf-8"), 24 * 3600) REDIS_CONN.set(k, v.encode("utf-8"), 24 * 3600)
@ -334,7 +341,7 @@ def get_relation(tenant_id, kb_id, from_ent_name, to_ent_name, size=1):
ents = list(set(ents)) ents = list(set(ents))
conds = {"fields": ["content_with_weight"], "size": size, "from_entity_kwd": ents, "to_entity_kwd": ents, "knowledge_graph_kwd": ["relation"]} conds = {"fields": ["content_with_weight"], "size": size, "from_entity_kwd": ents, "to_entity_kwd": ents, "knowledge_graph_kwd": ["relation"]}
res = [] res = []
es_res = settings.retriever.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id) es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id)
for id in es_res.ids: for id in es_res.ids:
try: try:
if size == 1: if size == 1:
@ -391,7 +398,7 @@ async def does_graph_contains(tenant_id, kb_id, doc_id):
async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]: async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
conds = {"fields": ["source_id"], "removed_kwd": "N", "size": 1, "knowledge_graph_kwd": ["graph"]} conds = {"fields": ["source_id"], "removed_kwd": "N", "size": 1, "knowledge_graph_kwd": ["graph"]}
res = await trio.to_thread.run_sync(lambda: settings.retriever.search(conds, search.index_name(tenant_id), [kb_id])) res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
doc_ids = [] doc_ids = []
if res.total == 0: if res.total == 0:
return doc_ids return doc_ids
@ -402,7 +409,7 @@ async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
async def get_graph(tenant_id, kb_id, exclude_rebuild=None): async def get_graph(tenant_id, kb_id, exclude_rebuild=None):
conds = {"fields": ["content_with_weight", "removed_kwd", "source_id"], "size": 1, "knowledge_graph_kwd": ["graph"]} conds = {"fields": ["content_with_weight", "removed_kwd", "source_id"], "size": 1, "knowledge_graph_kwd": ["graph"]}
res = await trio.to_thread.run_sync(settings.retriever.search, conds, search.index_name(tenant_id), [kb_id]) res = await trio.to_thread.run_sync(settings.retrievaler.search, conds, search.index_name(tenant_id), [kb_id])
if not res.total == 0: if not res.total == 0:
for id in res.ids: for id in res.ids:
try: try:
@ -555,7 +562,7 @@ def merge_tuples(list1, list2):
async def get_entity_type2samples(idxnms, kb_ids: list): async def get_entity_type2samples(idxnms, kb_ids: list):
es_res = await trio.to_thread.run_sync(lambda: settings.retriever.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids, "size": 10000, "fields": ["content_with_weight"]}, idxnms, kb_ids)) es_res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids, "size": 10000, "fields": ["content_with_weight"]}, idxnms, kb_ids))
res = defaultdict(list) res = defaultdict(list)
for id in es_res.ids: for id in es_res.ids:

View File

@ -96,7 +96,7 @@ ragflow:
infinity: infinity:
image: image:
repository: infiniflow/infinity repository: infiniflow/infinity
tag: v0.6.0-dev7 tag: v0.6.0-dev5
pullPolicy: IfNotPresent pullPolicy: IfNotPresent
pullSecrets: [] pullSecrets: []
storage: storage:

View File

@ -46,7 +46,7 @@ dependencies = [
"html-text==0.6.2", "html-text==0.6.2",
"httpx[socks]==0.27.2", "httpx[socks]==0.27.2",
"huggingface-hub>=0.25.0,<0.26.0", "huggingface-hub>=0.25.0,<0.26.0",
"infinity-sdk==0.6.0.dev7", "infinity-sdk==0.6.0.dev5",
"infinity-emb>=0.0.66,<0.0.67", "infinity-emb>=0.0.66,<0.0.67",
"itsdangerous==2.1.2", "itsdangerous==2.1.2",
"json-repair==0.35.0", "json-repair==0.35.0",
@ -119,7 +119,7 @@ dependencies = [
"graspologic>=3.4.1,<4.0.0", "graspologic>=3.4.1,<4.0.0",
"mini-racer>=0.12.4,<0.13.0", "mini-racer>=0.12.4,<0.13.0",
"pyodbc>=5.2.0,<6.0.0", "pyodbc>=5.2.0,<6.0.0",
"pyicu>=2.15.3,<3.0.0", "pyicu>=2.13.1,<3.0.0",
"flasgger>=0.9.7.1,<0.10.0", "flasgger>=0.9.7.1,<0.10.0",
"xxhash>=3.5.0,<4.0.0", "xxhash>=3.5.0,<4.0.0",
"trio>=0.29.0", "trio>=0.29.0",
@ -133,8 +133,6 @@ dependencies = [
"litellm>=1.74.15.post1", "litellm>=1.74.15.post1",
"flask-mail>=0.10.0", "flask-mail>=0.10.0",
"lark>=1.2.2", "lark>=1.2.2",
"mammoth>=1.11.0",
"markdownify>=1.2.0",
] ]
[project.optional-dependencies] [project.optional-dependencies]
@ -161,7 +159,7 @@ test = [
] ]
[[tool.uv.index]] [[tool.uv.index]]
url = "https://pypi.tuna.tsinghua.edu.cn/simple" url = "https://mirrors.aliyun.com/pypi/simple"
[tool.setuptools] [tool.setuptools]
packages = [ packages = [

View File

@ -256,49 +256,6 @@ class Docx(DocxParser):
tbls.append(((None, html), "")) tbls.append(((None, html), ""))
return new_line, tbls return new_line, tbls
def to_markdown(self, filename=None, binary=None, inline_images: bool = True):
"""
This function uses mammoth, licensed under the BSD 2-Clause License.
"""
import base64
import uuid
import mammoth
from markdownify import markdownify
docx_file = BytesIO(binary) if binary else open(filename, "rb")
def _convert_image_to_base64(image):
try:
with image.open() as image_file:
image_bytes = image_file.read()
encoded = base64.b64encode(image_bytes).decode("utf-8")
base64_url = f"data:{image.content_type};base64,{encoded}"
alt_name = "image"
alt_name = f"img_{uuid.uuid4().hex[:8]}"
return {"src": base64_url, "alt": alt_name}
except Exception as e:
logging.warning(f"Failed to convert image to base64: {e}")
return {"src": "", "alt": "image"}
try:
if inline_images:
result = mammoth.convert_to_html(docx_file, convert_image=mammoth.images.img_element(_convert_image_to_base64))
else:
result = mammoth.convert_to_html(docx_file)
html = result.value
markdown_text = markdownify(html)
return markdown_text
finally:
if not binary:
docx_file.close()
class Pdf(PdfParser): class Pdf(PdfParser):
def __init__(self): def __init__(self):
@ -328,7 +285,7 @@ class Pdf(PdfParser):
callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start)) callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start))
start = timer() start = timer()
self._text_merge(zoomin=zoomin) self._text_merge()
callback(0.67, "Text merged ({:.2f}s)".format(timer() - start)) callback(0.67, "Text merged ({:.2f}s)".format(timer() - start))
if separate_tables_figures: if separate_tables_figures:
@ -340,7 +297,6 @@ class Pdf(PdfParser):
tbls = self._extract_table_figure(True, zoomin, True, True) tbls = self._extract_table_figure(True, zoomin, True, True)
self._naive_vertical_merge() self._naive_vertical_merge()
self._concat_downward() self._concat_downward()
self._final_reading_order_merge()
# self._filter_forpages() # self._filter_forpages()
logging.info("layouts cost: {}s".format(timer() - first_start)) logging.info("layouts cost: {}s".format(timer() - first_start))
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls

View File

@ -133,14 +133,14 @@ def label_question(question, kbs):
if tag_kb_ids: if tag_kb_ids:
all_tags = get_tags_from_cache(tag_kb_ids) all_tags = get_tags_from_cache(tag_kb_ids)
if not all_tags: if not all_tags:
all_tags = settings.retriever.all_tags_in_portion(kb.tenant_id, tag_kb_ids) all_tags = settings.retrievaler.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
set_tags_to_cache(tags=all_tags, kb_ids=tag_kb_ids) set_tags_to_cache(tags=all_tags, kb_ids=tag_kb_ids)
else: else:
all_tags = json.loads(all_tags) all_tags = json.loads(all_tags)
tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids) tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
if not tag_kbs: if not tag_kbs:
return tags return tags
tags = settings.retriever.tag_query(question, tags = settings.retrievaler.tag_query(question,
list(set([kb.tenant_id for kb in tag_kbs])), list(set([kb.tenant_id for kb in tag_kbs])),
tag_kb_ids, tag_kb_ids,
all_tags, all_tags,

View File

@ -52,7 +52,7 @@ class Benchmark:
run = defaultdict(dict) run = defaultdict(dict)
query_list = list(qrels.keys()) query_list = list(qrels.keys())
for query in query_list: for query in query_list:
ranks = settings.retriever.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30, ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
0.0, self.vector_similarity_weight) 0.0, self.vector_similarity_weight)
if len(ranks["chunks"]) == 0: if len(ranks["chunks"]) == 0:
print(f"deleted query: {query}") print(f"deleted query: {query}")

View File

@ -12,27 +12,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
#
class AdminException(Exception):
def __init__(self, message, code=400):
super().__init__(message)
self.type = "admin"
self.code = code
self.message = message
class UserNotFoundError(AdminException):
def __init__(self, username):
super().__init__(f"User '{username}' not found", 404)
class UserAlreadyExistsError(AdminException):
def __init__(self, username):
super().__init__(f"User '{username}' already exists", 409)
class CannotDeleteAdminError(AdminException):
def __init__(self):
super().__init__("Cannot delete admin account", 403)

299
rag/flow/chunker/chunker.py Normal file
View File

@ -0,0 +1,299 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from graphrag.utils import chat_limiter, get_llm_cache, set_llm_cache
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.chunker.schema import ChunkerFromUpstream
from rag.nlp import naive_merge, naive_merge_with_images, concat_img
from rag.prompts.prompts import keyword_extraction, question_proposal, detect_table_of_contents, \
table_of_contents_index, toc_transformer
from rag.utils import num_tokens_from_string
class ChunkerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.method_options = [
# General
"general",
"onetable",
# Customer Service
"q&a",
"manual",
# Recruitment
"resume",
# Education & Research
"book",
"paper",
"laws",
"presentation",
"toc" # table of contents
# Other
# "Tag" # TODO: Other method
]
self.method = "general"
self.chunk_token_size = 512
self.delimiter = "\n"
self.overlapped_percent = 0
self.page_rank = 0
self.auto_keywords = 0
self.auto_questions = 0
self.tag_sets = []
self.llm_setting = {"llm_id": "", "lang": "Chinese"}
def check(self):
self.check_valid_value(self.method.lower(), "Chunk method abnormal.", self.method_options)
self.check_positive_integer(self.chunk_token_size, "Chunk token size.")
self.check_nonnegative_number(self.page_rank, "Page rank value: (0, 10]")
self.check_nonnegative_number(self.auto_keywords, "Auto-keyword value: (0, 10]")
self.check_nonnegative_number(self.auto_questions, "Auto-question value: (0, 10]")
self.check_decimal_float(self.overlapped_percent, "Overlapped percentage: [0, 1)")
def get_input_form(self) -> dict[str, dict]:
return {}
class Chunker(ProcessBase):
component_name = "Chunker"
def _general(self, from_upstream: ChunkerFromUpstream):
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `General`.")
if from_upstream.output_format in ["markdown", "text", "html"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
elif from_upstream.output_format == "text":
payload = from_upstream.text_result
else: # == "html"
payload = from_upstream.html_result
if not payload:
payload = ""
cks = naive_merge(
payload,
self._param.chunk_token_size,
self._param.delimiter,
self._param.overlapped_percent,
)
return [{"text": c} for c in cks]
# json
sections, section_images = [], []
for o in from_upstream.json_result or []:
sections.append((o.get("text", ""), o.get("position_tag", "")))
section_images.append(o.get("image"))
chunks, images = naive_merge_with_images(
sections,
section_images,
self._param.chunk_token_size,
self._param.delimiter,
self._param.overlapped_percent,
)
return [
{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c),
}
for c, img in zip(chunks, images)
]
def _q_and_a(self, from_upstream: ChunkerFromUpstream):
pass
def _resume(self, from_upstream: ChunkerFromUpstream):
pass
def _manual(self, from_upstream: ChunkerFromUpstream):
pass
def _table(self, from_upstream: ChunkerFromUpstream):
pass
def _paper(self, from_upstream: ChunkerFromUpstream):
pass
def _book(self, from_upstream: ChunkerFromUpstream):
pass
def _laws(self, from_upstream: ChunkerFromUpstream):
pass
def _presentation(self, from_upstream: ChunkerFromUpstream):
pass
def _one(self, from_upstream: ChunkerFromUpstream):
pass
def _toc(self, from_upstream: ChunkerFromUpstream):
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `ToC`.")
if from_upstream.output_format in ["markdown", "text", "html"]:
return
# json
sections, section_images, page_1024, tc_arr = [], [], [""], [0]
for o in from_upstream.json_result or []:
txt = o.get("text", "")
tc = num_tokens_from_string(txt)
page_1024[-1] += "\n" + txt
tc_arr[-1] += tc
if tc_arr[-1] > 1024:
page_1024.append("")
tc_arr.append(0)
sections.append((o.get("text", ""), o.get("position_tag", "")))
section_images.append(o.get("image"))
print(len(sections), o)
llm_setting = self._param.llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
self.callback(random.randint(5, 15) / 100.0, "Start to detect table of contents...")
toc_secs = detect_table_of_contents(page_1024, chat_mdl)
if toc_secs:
self.callback(random.randint(25, 35) / 100.0, "Start to extract table of contents...")
toc_arr = toc_transformer(toc_secs, chat_mdl)
toc_arr = [it for it in toc_arr if it.get("structure")]
print(json.dumps(toc_arr, ensure_ascii=False, indent=2), flush=True)
self.callback(random.randint(35, 75) / 100.0, "Start to link table of contents...")
toc_arr = table_of_contents_index(toc_arr, [t for t,_ in sections], chat_mdl)
for i in range(len(toc_arr)-1):
if not toc_arr[i].get("indices"):
continue
for j in range(i+1, len(toc_arr)):
if toc_arr[j].get("indices"):
if toc_arr[j]["indices"][0] - toc_arr[i]["indices"][-1] > 1:
toc_arr[i]["indices"].extend([x for x in range(toc_arr[i]["indices"][-1]+1, toc_arr[j]["indices"][0])])
break
# put all sections ahead of toc_arr[0] into it
# for i in range(len(toc_arr)):
# if toc_arr[i].get("indices") and toc_arr[i]["indices"][0]:
# toc_arr[i]["indices"] = [x for x in range(toc_arr[i]["indices"][-1]+1)]
# break
# put all sections after toc_arr[-1] into it
for i in range(len(toc_arr)-1, -1, -1):
if toc_arr[i].get("indices") and toc_arr[i]["indices"][-1]:
toc_arr[i]["indices"] = [x for x in range(toc_arr[i]["indices"][0], len(sections))]
break
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n", json.dumps(toc_arr, ensure_ascii=False, indent=2), flush=True)
chunks, images = [], []
for it in toc_arr:
if not it.get("indices"):
continue
txt = ""
img = None
for i in it["indices"]:
idx = i
txt += "\n" + sections[idx][0] + "\t" + sections[idx][1]
if img and section_images[idx]:
img = concat_img(img, section_images[idx])
elif section_images[idx]:
img = section_images[idx]
it["indices"] = []
if not txt:
continue
it["indices"] = [len(chunks)]
print(it, "KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK\n", txt)
chunks.append(txt)
images.append(img)
self.callback(1, "Done")
return [
{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c),
}
for c, img in zip(chunks, images)
]
self.callback(message="No table of contents detected.")
async def _invoke(self, **kwargs):
function_map = {
"general": self._general,
"q&a": self._q_and_a,
"resume": self._resume,
"manual": self._manual,
"table": self._table,
"paper": self._paper,
"book": self._book,
"laws": self._laws,
"presentation": self._presentation,
"one": self._one,
}
try:
from_upstream = ChunkerFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
chunks = function_map[self._param.method](from_upstream)
llm_setting = self._param.llm_setting
async def auto_keywords():
nonlocal chunks, llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
async def doc_keyword_extraction(chat_mdl, ck, topn):
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "keywords", {"topn": topn})
if not cached:
async with chat_limiter:
cached = await trio.to_thread.run_sync(lambda: keyword_extraction(chat_mdl, ck["text"], topn))
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "keywords", {"topn": topn})
if cached:
ck["keywords"] = cached.split(",")
async with trio.open_nursery() as nursery:
for ck in chunks:
nursery.start_soon(doc_keyword_extraction, chat_mdl, ck, self._param.auto_keywords)
async def auto_questions():
nonlocal chunks, llm_setting
chat_mdl = LLMBundle(self._canvas._tenant_id, LLMType.CHAT, llm_name=llm_setting["llm_id"], lang=llm_setting["lang"])
async def doc_question_proposal(chat_mdl, d, topn):
cached = get_llm_cache(chat_mdl.llm_name, ck["text"], "question", {"topn": topn})
if not cached:
async with chat_limiter:
cached = await trio.to_thread.run_sync(lambda: question_proposal(chat_mdl, ck["text"], topn))
set_llm_cache(chat_mdl.llm_name, ck["text"], cached, "question", {"topn": topn})
if cached:
d["questions"] = cached.split("\n")
async with trio.open_nursery() as nursery:
for ck in chunks:
nursery.start_soon(doc_question_proposal, chat_mdl, ck, self._param.auto_questions)
async with trio.open_nursery() as nursery:
if self._param.auto_questions:
nursery.start_soon(auto_questions)
if self._param.auto_keywords:
nursery.start_soon(auto_keywords)
if self._param.page_rank:
for ck in chunks:
ck["page_rank"] = self._param.page_rank
self.set_output("chunks", chunks)

View File

@ -0,0 +1,37 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field
class ChunkerFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
file: dict | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: list[str] | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
# def to_dict(self, *, exclude_none: bool = True) -> dict:
# return self.model_dump(by_alias=True, exclude_none=exclude_none)

View File

@ -52,7 +52,6 @@ class ParserParam(ProcessParamBase):
], ],
"word": [ "word": [
"json", "json",
"markdown",
], ],
"slides": [ "slides": [
"json", "json",
@ -184,6 +183,8 @@ class ParserParam(ProcessParamBase):
audio_config = self.setups.get("audio", "") audio_config = self.setups.get("audio", "")
if audio_config: if audio_config:
self.check_empty(audio_config.get("llm_id"), "Audio VLM") self.check_empty(audio_config.get("llm_id"), "Audio VLM")
audio_language = audio_config.get("lang", "")
self.check_empty(audio_language, "Language")
email_config = self.setups.get("email", "") email_config = self.setups.get("email", "")
if email_config: if email_config:
@ -246,15 +247,13 @@ class Parser(ProcessBase):
conf = self._param.setups["word"] conf = self._param.setups["word"]
self.set_output("output_format", conf["output_format"]) self.set_output("output_format", conf["output_format"])
docx_parser = Docx() docx_parser = Docx()
if conf.get("output_format") == "json":
sections, tbls = docx_parser(name, binary=blob) sections, tbls = docx_parser(name, binary=blob)
sections = [{"text": section[0], "image": section[1]} for section in sections if section] sections = [{"text": section[0], "image": section[1]} for section in sections if section]
sections.extend([{"text": tb, "image": None} for ((_,tb), _) in tbls]) sections.extend([{"text": tb, "image": None} for ((_,tb), _) in tbls])
# json
assert conf.get("output_format") == "json", "have to be json for doc"
if conf.get("output_format") == "json":
self.set_output("json", sections) self.set_output("json", sections)
elif conf.get("output_format") == "markdown":
markdown_text = docx_parser.to_markdown(name, binary=blob)
self.set_output("markdown", markdown_text)
def _slides(self, name, blob): def _slides(self, name, blob):
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
@ -346,13 +345,15 @@ class Parser(ProcessBase):
conf = self._param.setups["audio"] conf = self._param.setups["audio"]
self.set_output("output_format", conf["output_format"]) self.set_output("output_format", conf["output_format"])
lang = conf["lang"]
_, ext = os.path.splitext(name) _, ext = os.path.splitext(name)
with tempfile.NamedTemporaryFile(suffix=ext) as tmpf: with tempfile.NamedTemporaryFile(suffix=ext) as tmpf:
tmpf.write(blob) tmpf.write(blob)
tmpf.flush() tmpf.flush()
tmp_path = os.path.abspath(tmpf.name) tmp_path = os.path.abspath(tmpf.name)
seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT) seq2txt_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.SPEECH2TEXT, lang=lang)
txt = seq2txt_mdl.transcription(tmp_path) txt = seq2txt_mdl.transcription(tmp_path)
self.set_output("text", txt) self.set_output("text", txt)
@ -362,7 +363,6 @@ class Parser(ProcessBase):
email_content = {} email_content = {}
conf = self._param.setups["email"] conf = self._param.setups["email"]
self.set_output("output_format", conf["output_format"])
target_fields = conf["fields"] target_fields = conf["fields"]
_, ext = os.path.splitext(name) _, ext = os.path.splitext(name)
@ -400,8 +400,8 @@ class Parser(ProcessBase):
_add_content(msg, msg.get_content_type()) _add_content(msg, msg.get_content_type())
email_content["text"] = "\n".join(body_text) email_content["text"] = body_text
email_content["text_html"] = "\n".join(body_html) email_content["text_html"] = body_html
# get attachment # get attachment
if "attachments" in target_fields: if "attachments" in target_fields:
attachments = [] attachments = []
@ -411,7 +411,7 @@ class Parser(ProcessBase):
dispositions = content_disposition.strip().split(";") dispositions = content_disposition.strip().split(";")
if dispositions[0].lower() == "attachment": if dispositions[0].lower() == "attachment":
filename = part.get_filename() filename = part.get_filename()
payload = part.get_payload(decode=True).decode(part.get_content_charset()) payload = part.get_payload(decode=True)
attachments.append({ attachments.append({
"filename": filename, "filename": filename,
"payload": payload, "payload": payload,
@ -439,16 +439,15 @@ class Parser(ProcessBase):
} }
# get body # get body
if "body" in target_fields: if "body" in target_fields:
email_content["text"] = msg.body[0] if isinstance(msg.body, list) and msg.body else msg.body email_content["text"] = msg.body # usually empty. try text_html instead
if not email_content["text"] and msg.htmlBody: email_content["text_html"] = msg.htmlBody
email_content["text"] = msg.htmlBody[0] if isinstance(msg.htmlBody, list) and msg.htmlBody else msg.htmlBody
# get attachments # get attachments
if "attachments" in target_fields: if "attachments" in target_fields:
attachments = [] attachments = []
for t in msg.attachments: for t in msg.attachments:
attachments.append({ attachments.append({
"filename": t.name, "filename": t.name,
"payload": t.data.decode("utf-8") "payload": t.data # binary
}) })
email_content["attachments"] = attachments email_content["attachments"] = attachments

View File

@ -25,7 +25,7 @@ class SplitterFromUpstream(BaseModel):
file: dict | None = Field(default=None) file: dict | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None) chunks: list[dict[str, Any]] | None = Field(default=None)
output_format: Literal["json", "markdown", "text", "html", "chunks"] | None = Field(default=None) output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json") json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown") markdown_result: str | None = Field(default=None, alias="markdown")

View File

@ -126,7 +126,7 @@ class Tokenizer(ProcessBase):
if ck.get("summary"): if ck.get("summary"):
ck["content_ltks"] = rag_tokenizer.tokenize(str(ck["summary"])) ck["content_ltks"] = rag_tokenizer.tokenize(str(ck["summary"]))
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"]) ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
elif ck.get("text"): else:
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"]) ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"]) ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99: if i % 100 == 99:
@ -155,8 +155,6 @@ class Tokenizer(ProcessBase):
for i, ck in enumerate(chunks): for i, ck in enumerate(chunks):
ck["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", from_upstream.name)) ck["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", from_upstream.name))
ck["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(ck["title_tks"]) ck["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(ck["title_tks"])
if not ck.get("text"):
continue
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"]) ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"]) ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99: if i % 100 == 99:

View File

@ -132,7 +132,7 @@ class Base(ABC):
"tool_choice", "tool_choice",
"logprobs", "logprobs",
"top_logprobs", "top_logprobs",
"extra_headers" "extra_headers",
} }
gen_conf = {k: v for k, v in gen_conf.items() if k in allowed_conf} gen_conf = {k: v for k, v in gen_conf.items() if k in allowed_conf}
@ -141,22 +141,6 @@ class Base(ABC):
def _chat(self, history, gen_conf, **kwargs): def _chat(self, history, gen_conf, **kwargs):
logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2)) logging.info("[HISTORY]" + json.dumps(history, ensure_ascii=False, indent=2))
if self.model_name.lower().find("qwq") >= 0:
logging.info(f"[INFO] {self.model_name} detected as reasoning model, using _chat_streamly")
final_ans = ""
tol_token = 0
for delta, tol in self._chat_streamly(history, gen_conf, with_reasoning=False, **kwargs):
if delta.startswith("<think>") or delta.endswith("</think>"):
continue
final_ans += delta
tol_token = tol
if len(final_ans.strip()) == 0:
final_ans = "**ERROR**: Empty response from reasoning model"
return final_ans.strip(), tol_token
if self.model_name.lower().find("qwen3") >= 0: if self.model_name.lower().find("qwen3") >= 0:
kwargs["extra_body"] = {"enable_thinking": False} kwargs["extra_body"] = {"enable_thinking": False}
@ -1182,43 +1166,13 @@ class GoogleChat(Base):
else: else:
if "max_tokens" in gen_conf: if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"] gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
del gen_conf["max_tokens"]
for k in list(gen_conf.keys()): for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]: if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k] del gen_conf[k]
return gen_conf return gen_conf
def _get_thinking_config(self, gen_conf):
"""Extract and create ThinkingConfig from gen_conf.
Default behavior for Vertex AI Generative Models: thinking_budget=0 (disabled)
unless explicitly specified by the user. This does not apply to Claude models.
Users can override by setting thinking_budget in gen_conf/llm_setting:
- 0: Disabled (default)
- 1-24576: Manual budget
- -1: Auto (model decides)
"""
# Claude models don't support ThinkingConfig
if "claude" in self.model_name:
gen_conf.pop("thinking_budget", None)
return None
# For Vertex AI Generative Models, default to thinking disabled
thinking_budget = gen_conf.pop("thinking_budget", 0)
if thinking_budget is not None:
try:
import vertexai.generative_models as glm # type: ignore
return glm.ThinkingConfig(thinking_budget=thinking_budget)
except Exception:
pass
return None
def _chat(self, history, gen_conf={}, **kwargs): def _chat(self, history, gen_conf={}, **kwargs):
system = history[0]["content"] if history and history[0]["role"] == "system" else "" system = history[0]["content"] if history and history[0]["role"] == "system" else ""
thinking_config = self._get_thinking_config(gen_conf)
gen_conf = self._clean_conf(gen_conf)
if "claude" in self.model_name: if "claude" in self.model_name:
response = self.client.messages.create( response = self.client.messages.create(
model=self.model_name, model=self.model_name,
@ -1251,9 +1205,6 @@ class GoogleChat(Base):
} }
] ]
if thinking_config:
response = self.client.generate_content(hist, generation_config=gen_conf, thinking_config=thinking_config)
else:
response = self.client.generate_content(hist, generation_config=gen_conf) response = self.client.generate_content(hist, generation_config=gen_conf)
ans = response.text ans = response.text
return ans, response.usage_metadata.total_token_count return ans, response.usage_metadata.total_token_count
@ -1283,13 +1234,9 @@ class GoogleChat(Base):
yield total_tokens yield total_tokens
else: else:
response = None
total_tokens = 0
self.client._system_instruction = system self.client._system_instruction = system
thinking_config = self._get_thinking_config(gen_conf)
if "max_tokens" in gen_conf: if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"] gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
del gen_conf["max_tokens"]
for k in list(gen_conf.keys()): for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]: if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k] del gen_conf[k]
@ -1297,26 +1244,18 @@ class GoogleChat(Base):
if "role" in item and item["role"] == "assistant": if "role" in item and item["role"] == "assistant":
item["role"] = "model" item["role"] = "model"
if "content" in item: if "content" in item:
item["parts"] = [ item["parts"] = item.pop("content")
{
"text": item.pop("content"),
}
]
ans = "" ans = ""
try: try:
if thinking_config: response = self.model.generate_content(history, generation_config=gen_conf, stream=True)
response = self.client.generate_content(history, generation_config=gen_conf, thinking_config=thinking_config, stream=True)
else:
response = self.client.generate_content(history, generation_config=gen_conf, stream=True)
for resp in response: for resp in response:
ans = resp.text ans = resp.text
total_tokens += num_tokens_from_string(ans)
yield ans yield ans
except Exception as e: except Exception as e:
yield ans + "\n**ERROR**: " + str(e) yield ans + "\n**ERROR**: " + str(e)
yield total_tokens yield response._chunks[-1].usage_metadata.total_token_count
class GPUStackChat(Base): class GPUStackChat(Base):
@ -1336,14 +1275,6 @@ class TokenPonyChat(Base):
if not base_url: if not base_url:
base_url = "https://ragflow.vip-api.tokenpony.cn/v1" base_url = "https://ragflow.vip-api.tokenpony.cn/v1"
class DeerAPIChat(Base):
_FACTORY_NAME = "DeerAPI"
def __init__(self, key, model_name, base_url="https://api.deerapi.com/v1", **kwargs):
if not base_url:
base_url = "https://api.deerapi.com/v1"
super().__init__(key, model_name, base_url, **kwargs)
class LiteLLMBase(ABC): class LiteLLMBase(ABC):
_FACTORY_NAME = [ _FACTORY_NAME = [

View File

@ -26,7 +26,7 @@ from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI from zhipuai import ZhipuAI
from rag.nlp import is_english from rag.nlp import is_english
from rag.prompts.generator import vision_llm_describe_prompt from rag.prompts.generator import vision_llm_describe_prompt
from rag.utils import num_tokens_from_string, total_token_count_from_response from rag.utils import num_tokens_from_string
class Base(ABC): class Base(ABC):
@ -125,7 +125,7 @@ class Base(ABC):
b64 = base64.b64encode(data).decode("utf-8") b64 = base64.b64encode(data).decode("utf-8")
return f"data:{mime};base64,{b64}" return f"data:{mime};base64,{b64}"
with BytesIO() as buffered: with BytesIO() as buffered:
fmt = "jpeg" fmt = "JPEG"
try: try:
image.save(buffered, format="JPEG") image.save(buffered, format="JPEG")
except Exception: except Exception:
@ -133,10 +133,10 @@ class Base(ABC):
buffered.seek(0) buffered.seek(0)
buffered.truncate() buffered.truncate()
image.save(buffered, format="PNG") image.save(buffered, format="PNG")
fmt = "png" fmt = "PNG"
data = buffered.getvalue() data = buffered.getvalue()
b64 = base64.b64encode(data).decode("utf-8") b64 = base64.b64encode(data).decode("utf-8")
mime = f"image/{fmt}" mime = f"image/{fmt.lower()}"
return f"data:{mime};base64,{b64}" return f"data:{mime};base64,{b64}"
def prompt(self, b64): def prompt(self, b64):
@ -178,7 +178,7 @@ class GptV4(Base):
model=self.model_name, model=self.model_name,
messages=self.prompt(b64), messages=self.prompt(b64),
) )
return res.choices[0].message.content.strip(), total_token_count_from_response(res) return res.choices[0].message.content.strip(), res.usage.total_tokens
def describe_with_prompt(self, image, prompt=None): def describe_with_prompt(self, image, prompt=None):
b64 = self.image2base64(image) b64 = self.image2base64(image)
@ -186,7 +186,7 @@ class GptV4(Base):
model=self.model_name, model=self.model_name,
messages=self.vision_llm_prompt(b64, prompt), messages=self.vision_llm_prompt(b64, prompt),
) )
return res.choices[0].message.content.strip(),total_token_count_from_response(res) return res.choices[0].message.content.strip(), res.usage.total_tokens
class AzureGptV4(GptV4): class AzureGptV4(GptV4):
@ -522,10 +522,11 @@ class GeminiCV(Base):
) )
b64 = self.image2base64(image) b64 = self.image2base64(image)
with BytesIO(base64.b64decode(b64)) as bio: with BytesIO(base64.b64decode(b64)) as bio:
with open(bio) as img: img = open(bio)
input = [prompt, img] input = [prompt, img]
res = self.model.generate_content(input) res = self.model.generate_content(input)
return res.text, total_token_count_from_response(res) img.close()
return res.text, res.usage_metadata.total_token_count
def describe_with_prompt(self, image, prompt=None): def describe_with_prompt(self, image, prompt=None):
from PIL.Image import open from PIL.Image import open
@ -533,10 +534,11 @@ class GeminiCV(Base):
b64 = self.image2base64(image) b64 = self.image2base64(image)
vision_prompt = prompt if prompt else vision_llm_describe_prompt() vision_prompt = prompt if prompt else vision_llm_describe_prompt()
with BytesIO(base64.b64decode(b64)) as bio: with BytesIO(base64.b64decode(b64)) as bio:
with open(bio) as img: img = open(bio)
input = [vision_prompt, img] input = [vision_prompt, img]
res = self.model.generate_content(input) res = self.model.generate_content(input)
return res.text, total_token_count_from_response(res) img.close()
return res.text, res.usage_metadata.total_token_count
def chat(self, system, history, gen_conf, images=[]): def chat(self, system, history, gen_conf, images=[]):
generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7)) generation_config = dict(temperature=gen_conf.get("temperature", 0.3), top_p=gen_conf.get("top_p", 0.7))
@ -545,7 +547,7 @@ class GeminiCV(Base):
self._form_history(system, history, images), self._form_history(system, history, images),
generation_config=generation_config) generation_config=generation_config)
ans = response.text ans = response.text
return ans, total_token_count_from_response(ans) return ans, response.usage_metadata.total_token_count
except Exception as e: except Exception as e:
return "**ERROR**: " + str(e), 0 return "**ERROR**: " + str(e), 0
@ -568,7 +570,10 @@ class GeminiCV(Base):
except Exception as e: except Exception as e:
yield ans + "\n**ERROR**: " + str(e) yield ans + "\n**ERROR**: " + str(e)
yield total_token_count_from_response(response) if response and hasattr(response, "usage_metadata") and hasattr(response.usage_metadata, "total_token_count"):
yield response.usage_metadata.total_token_count
else:
yield 0
class NvidiaCV(Base): class NvidiaCV(Base):
@ -614,7 +619,7 @@ class NvidiaCV(Base):
response = response.json() response = response.json()
return ( return (
response["choices"][0]["message"]["content"].strip(), response["choices"][0]["message"]["content"].strip(),
total_token_count_from_response(response), response["usage"]["total_tokens"],
) )
def _request(self, msg, gen_conf={}): def _request(self, msg, gen_conf={}):
@ -637,7 +642,7 @@ class NvidiaCV(Base):
response = self._request(vision_prompt) response = self._request(vision_prompt)
return ( return (
response["choices"][0]["message"]["content"].strip(), response["choices"][0]["message"]["content"].strip(),
total_token_count_from_response(response) response["usage"]["total_tokens"],
) )
def chat(self, system, history, gen_conf, images=[], **kwargs): def chat(self, system, history, gen_conf, images=[], **kwargs):
@ -645,7 +650,7 @@ class NvidiaCV(Base):
response = self._request(self._form_history(system, history, images), gen_conf) response = self._request(self._form_history(system, history, images), gen_conf)
return ( return (
response["choices"][0]["message"]["content"].strip(), response["choices"][0]["message"]["content"].strip(),
total_token_count_from_response(response) response["usage"]["total_tokens"],
) )
except Exception as e: except Exception as e:
return "**ERROR**: " + str(e), 0 return "**ERROR**: " + str(e), 0
@ -656,7 +661,7 @@ class NvidiaCV(Base):
response = self._request(self._form_history(system, history, images), gen_conf) response = self._request(self._form_history(system, history, images), gen_conf)
cnt = response["choices"][0]["message"]["content"] cnt = response["choices"][0]["message"]["content"]
if "usage" in response and "total_tokens" in response["usage"]: if "usage" in response and "total_tokens" in response["usage"]:
total_tokens += total_token_count_from_response(response) total_tokens += response["usage"]["total_tokens"]
for resp in cnt: for resp in cnt:
yield resp yield resp
except Exception as e: except Exception as e:

View File

@ -33,7 +33,7 @@ from zhipuai import ZhipuAI
from api import settings from api import settings
from api.utils.file_utils import get_home_cache_dir from api.utils.file_utils import get_home_cache_dir
from api.utils.log_utils import log_exception from api.utils.log_utils import log_exception
from rag.utils import num_tokens_from_string, truncate from rag.utils import num_tokens_from_string, truncate, total_token_count_from_response
class Base(ABC): class Base(ABC):
@ -52,15 +52,7 @@ class Base(ABC):
raise NotImplementedError("Please implement encode method!") raise NotImplementedError("Please implement encode method!")
def total_token_count(self, resp): def total_token_count(self, resp):
try: return total_token_count_from_response(resp)
return resp.usage.total_tokens
except Exception:
pass
try:
return resp["usage"]["total_tokens"]
except Exception:
pass
return 0
class DefaultEmbedding(Base): class DefaultEmbedding(Base):
@ -944,6 +936,7 @@ class GiteeEmbed(SILICONFLOWEmbed):
base_url = "https://ai.gitee.com/v1/embeddings" base_url = "https://ai.gitee.com/v1/embeddings"
super().__init__(key, model_name, base_url) super().__init__(key, model_name, base_url)
class DeepInfraEmbed(OpenAIEmbed): class DeepInfraEmbed(OpenAIEmbed):
_FACTORY_NAME = "DeepInfra" _FACTORY_NAME = "DeepInfra"
@ -969,11 +962,3 @@ class CometAPIEmbed(OpenAIEmbed):
if not base_url: if not base_url:
base_url = "https://api.cometapi.com/v1" base_url = "https://api.cometapi.com/v1"
super().__init__(key, model_name, base_url) super().__init__(key, model_name, base_url)
class DeerAPIEmbed(OpenAIEmbed):
_FACTORY_NAME = "DeerAPI"
def __init__(self, key, model_name, base_url="https://api.deerapi.com/v1"):
if not base_url:
base_url = "https://api.deerapi.com/v1"
super().__init__(key, model_name, base_url)

View File

@ -244,12 +244,3 @@ class CometAPISeq2txt(Base):
base_url = "https://api.cometapi.com/v1" base_url = "https://api.cometapi.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url) self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name self.model_name = model_name
class DeerAPISeq2txt(Base):
_FACTORY_NAME = "DeerAPI"
def __init__(self, key, model_name="whisper-1", base_url="https://api.deerapi.com/v1", **kwargs):
if not base_url:
base_url = "https://api.deerapi.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name

View File

@ -402,11 +402,3 @@ class CometAPITTS(OpenAITTS):
if not base_url: if not base_url:
base_url = "https://api.cometapi.com/v1" base_url = "https://api.cometapi.com/v1"
super().__init__(key, model_name, base_url, **kwargs) super().__init__(key, model_name, base_url, **kwargs)
class DeerAPITTS(OpenAITTS):
_FACTORY_NAME = "DeerAPI"
def __init__(self, key, model_name, base_url="https://api.deerapi.com/v1", **kwargs):
if not base_url:
base_url = "https://api.deerapi.com/v1"
super().__init__(key, model_name, base_url, **kwargs)

View File

@ -613,13 +613,13 @@ def naive_merge(sections: str | list, chunk_token_num=128, delimiter="\n。
dels = get_delimiters(delimiter) dels = get_delimiters(delimiter)
for sec, pos in sections: for sec, pos in sections:
if num_tokens_from_string(sec) < chunk_token_num: if num_tokens_from_string(sec) < chunk_token_num:
add_chunk("\n"+sec, pos) add_chunk(sec, pos)
continue continue
split_sec = re.split(r"(%s)" % dels, sec, flags=re.DOTALL) split_sec = re.split(r"(%s)" % dels, sec, flags=re.DOTALL)
for sub_sec in split_sec: for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec): if re.match(f"^{dels}$", sub_sec):
continue continue
add_chunk("\n"+sub_sec, pos) add_chunk(sub_sec, pos)
return cks return cks
@ -669,13 +669,13 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
for sub_sec in split_sec: for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec): if re.match(f"^{dels}$", sub_sec):
continue continue
add_chunk("\n"+sub_sec, image, text_pos) add_chunk(sub_sec, image, text_pos)
else: else:
split_sec = re.split(r"(%s)" % dels, text) split_sec = re.split(r"(%s)" % dels, text)
for sub_sec in split_sec: for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec): if re.match(f"^{dels}$", sub_sec):
continue continue
add_chunk("\n"+sub_sec, image) add_chunk(sub_sec, image)
return cks, result_images return cks, result_images
@ -757,7 +757,7 @@ def naive_merge_docx(sections, chunk_token_num=128, delimiter="\n。"):
for sub_sec in split_sec: for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec): if re.match(f"^{dels}$", sub_sec):
continue continue
add_chunk("\n"+sub_sec, image,"") add_chunk(sub_sec, image,"")
line = "" line = ""
if line: if line:
@ -765,7 +765,7 @@ def naive_merge_docx(sections, chunk_token_num=128, delimiter="\n。"):
for sub_sec in split_sec: for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec): if re.match(f"^{dels}$", sub_sec):
continue continue
add_chunk("\n"+sub_sec, image,"") add_chunk(sub_sec, image,"")
return cks, images return cks, images

View File

@ -13,14 +13,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# #
import json
import logging import logging
import re import re
import math import math
from collections import OrderedDict from collections import OrderedDict
from dataclasses import dataclass from dataclasses import dataclass
from rag.prompts.generator import relevant_chunks_with_toc
from rag.settings import TAG_FLD, PAGERANK_FLD from rag.settings import TAG_FLD, PAGERANK_FLD
from rag.utils import rmSpace, get_float from rag.utils import rmSpace, get_float
from rag.nlp import rag_tokenizer, query from rag.nlp import rag_tokenizer, query
@ -516,63 +514,3 @@ class Dealer:
tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / max(1e-6, all_tags.get(a, 0.0001)))) for a, c in aggs], tag_fea = sorted([(a, round(0.1*(c + 1) / (cnt + S) / max(1e-6, all_tags.get(a, 0.0001)))) for a, c in aggs],
key=lambda x: x[1] * -1)[:topn_tags] key=lambda x: x[1] * -1)[:topn_tags]
return {a.replace(".", "_"): max(1, c) for a, c in tag_fea} return {a.replace(".", "_"): max(1, c) for a, c in tag_fea}
def retrieval_by_toc(self, query:str, chunks:list[dict], tenant_ids:list[str], chat_mdl, topn: int=6):
if not chunks:
return []
idx_nms = [index_name(tid) for tid in tenant_ids]
ranks, doc_id2kb_id = {}, {}
for ck in chunks:
if ck["doc_id"] not in ranks:
ranks[ck["doc_id"]] = 0
ranks[ck["doc_id"]] += ck["similarity"]
doc_id2kb_id[ck["doc_id"]] = ck["kb_id"]
doc_id = sorted(ranks.items(), key=lambda x: x[1]*-1.)[0][0]
kb_ids = [doc_id2kb_id[doc_id]]
es_res = self.dataStore.search(["content_with_weight"], [], {"doc_id": doc_id, "toc_kwd": "toc"}, [], OrderByExpr(), 0, 128, idx_nms,
kb_ids)
toc = []
dict_chunks = self.dataStore.getFields(es_res, ["content_with_weight"])
for _, doc in dict_chunks.items():
try:
toc.extend(json.loads(doc["content_with_weight"]))
except Exception as e:
logging.exception(e)
if not toc:
return chunks
ids = relevant_chunks_with_toc(query, toc, chat_mdl, topn*2)
if not ids:
return chunks
vector_size = 1024
id2idx = {ck["chunk_id"]: i for i, ck in enumerate(chunks)}
for cid, sim in ids:
if cid in id2idx:
chunks[id2idx[cid]]["similarity"] += sim
continue
chunk = self.dataStore.get(cid, idx_nms, kb_ids)
d = {
"chunk_id": cid,
"content_ltks": chunk["content_ltks"],
"content_with_weight": chunk["content_with_weight"],
"doc_id": doc_id,
"docnm_kwd": chunk.get("docnm_kwd", ""),
"kb_id": chunk["kb_id"],
"important_kwd": chunk.get("important_kwd", []),
"image_id": chunk.get("img_id", ""),
"similarity": sim,
"vector_similarity": sim,
"term_similarity": sim,
"vector": [0.0] * vector_size,
"positions": chunk.get("position_int", []),
"doc_type_kwd": chunk.get("doc_type_kwd", "")
}
for k in chunk.keys():
if k[-4:] == "_vec":
d["vector"] = chunk[k]
vector_size = len(chunk[k])
break
chunks.append(d)
return sorted(chunks, key=lambda x:x["similarity"]*-1)[:topn]

View File

@ -1,53 +0,0 @@
You are given a JSON array of TOC(tabel of content) items. Each item has at least {"title": string} and may include an existing title hierarchical level.
Task
- For each item, assign a depth label using Arabic numerals only: top-level = 1, second-level = 2, third-level = 3, etc.
- Multiple items may share the same depth (e.g., many 1s, many 2s).
- Do not use dotted numbering (no 1.1/1.2). Use a single digit string per item indicating its depth only.
- Preserve the original item order exactly. Do not insert, delete, or reorder.
- Decide levels yourself to keep a coherent hierarchy. Keep peers at the same depth.
Output
- Return a valid JSON array only (no extra text).
- Each element must be {"level": "1|2|3", "title": <original title string>}.
- title must be the original title string.
Examples
Example A (chapters with sections)
Input:
["Chapter 1 Methods", "Section 1 Definition", "Section 2 Process", "Chapter 2 Experiment"]
Output:
[
{"level":"1","title":"Chapter 1 Methods"},
{"level":"2","title":"Section 1 Definition"},
{"level":"2","title":"Section 2 Process"},
{"level":"1","title":"Chapter 2 Experiment"}
]
Example B (parts with chapters)
Input:
["Part I Theory", "Chapter 1 Basics", "Chapter 2 Methods", "Part II Applications", "Chapter 3 Case Studies"]
Output:
[
{"level":"1","title":"Part I Theory"},
{"level":"2","title":"Chapter 1 Basics"},
{"level":"2","title":"Chapter 2 Methods"},
{"level":"1","title":"Part II Applications"},
{"level":"2","title":"Chapter 3 Case Studies"}
]
Example C (plain headings)
Input:
["Introduction", "Background and Motivation", "Related Work", "Methodology", "Evaluation"]
Output:
[
{"level":"1","title":"Introduction"},
{"level":"2","title":"Background and Motivation"},
{"level":"2","title":"Related Work"},
{"level":"1","title":"Methodology"},
{"level":"1","title":"Evaluation"}
]

View File

@ -21,9 +21,7 @@ from copy import deepcopy
from typing import Tuple from typing import Tuple
import jinja2 import jinja2
import json_repair import json_repair
import trio
from api.utils import hash_str2int from api.utils import hash_str2int
from rag.nlp import rag_tokenizer
from rag.prompts.template import load_prompt from rag.prompts.template import load_prompt
from rag.settings import TAG_FLD from rag.settings import TAG_FLD
from rag.utils import encoder, num_tokens_from_string from rag.utils import encoder, num_tokens_from_string
@ -31,7 +29,7 @@ from rag.utils import encoder, num_tokens_from_string
STOP_TOKEN="<|STOP|>" STOP_TOKEN="<|STOP|>"
COMPLETE_TASK="complete_task" COMPLETE_TASK="complete_task"
INPUT_UTILIZATION = 0.5
def get_value(d, k1, k2): def get_value(d, k1, k2):
return d.get(k1, d.get(k2)) return d.get(k1, d.get(k2))
@ -441,18 +439,12 @@ def gen_meta_filter(chat_mdl, meta_data:dict, query: str) -> list:
return [] return []
def gen_json(system_prompt:str, user_prompt:str, chat_mdl, gen_conf = None): def gen_json(system_prompt:str, user_prompt:str, chat_mdl):
from graphrag.utils import get_llm_cache, set_llm_cache
cached = get_llm_cache(chat_mdl.llm_name, system_prompt, user_prompt, gen_conf)
if cached:
return json_repair.loads(cached)
_, msg = message_fit_in(form_message(system_prompt, user_prompt), chat_mdl.max_length) _, msg = message_fit_in(form_message(system_prompt, user_prompt), chat_mdl.max_length)
ans = chat_mdl.chat(msg[0]["content"], msg[1:],gen_conf=gen_conf) ans = chat_mdl.chat(msg[0]["content"], msg[1:])
ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL) ans = re.sub(r"(^.*</think>|```json\n|```\n*$)", "", ans, flags=re.DOTALL)
try: try:
res = json_repair.loads(ans) return json_repair.loads(ans)
set_llm_cache(chat_mdl.llm_name, system_prompt, ans, user_prompt, gen_conf)
return res
except Exception: except Exception:
logging.exception(f"Loading json failure: {ans}") logging.exception(f"Loading json failure: {ans}")
@ -657,140 +649,4 @@ def toc_transformer(toc_pages, chat_mdl):
return last_complete return last_complete
TOC_LEVELS = load_prompt("assign_toc_levels")
def assign_toc_levels(toc_secs, chat_mdl, gen_conf = {"temperature": 0.2}):
if not toc_secs:
return []
return gen_json(
PROMPT_JINJA_ENV.from_string(TOC_LEVELS).render(),
str(toc_secs),
chat_mdl,
gen_conf
)
TOC_FROM_TEXT_SYSTEM = load_prompt("toc_from_text_system")
TOC_FROM_TEXT_USER = load_prompt("toc_from_text_user")
# Generate TOC from text chunks with text llms
async def gen_toc_from_text(txt_info: dict, chat_mdl, callback=None):
try:
ans = gen_json(
PROMPT_JINJA_ENV.from_string(TOC_FROM_TEXT_SYSTEM).render(),
PROMPT_JINJA_ENV.from_string(TOC_FROM_TEXT_USER).render(text="\n".join([json.dumps(d, ensure_ascii=False) for d in txt_info["chunks"]])),
chat_mdl,
gen_conf={"temperature": 0.0, "top_p": 0.9}
)
print(ans, "::::::::::::::::::::::::::::::::::::", flush=True)
txt_info["toc"] = ans if ans else []
if callback:
callback(msg="")
except Exception as e:
logging.exception(e)
def split_chunks(chunks, max_length: int):
"""
Pack chunks into batches according to max_length, returning [{"id": idx, "text": chunk_text}, ...].
Do not split a single chunk, even if it exceeds max_length.
"""
result = []
batch, batch_tokens = [], 0
for idx, chunk in enumerate(chunks):
t = num_tokens_from_string(chunk)
if batch_tokens + t > max_length:
result.append(batch)
batch, batch_tokens = [], 0
batch.append({idx: chunk})
batch_tokens += t
if batch:
result.append(batch)
return result
async def run_toc_from_text(chunks, chat_mdl, callback=None):
input_budget = int(chat_mdl.max_length * INPUT_UTILIZATION) - num_tokens_from_string(
TOC_FROM_TEXT_USER + TOC_FROM_TEXT_SYSTEM
)
input_budget = 1024 if input_budget > 1024 else input_budget
chunk_sections = split_chunks(chunks, input_budget)
titles = []
chunks_res = []
async with trio.open_nursery() as nursery:
for i, chunk in enumerate(chunk_sections):
if not chunk:
continue
chunks_res.append({"chunks": chunk})
nursery.start_soon(gen_toc_from_text, chunks_res[-1], chat_mdl, callback)
for chunk in chunks_res:
titles.extend(chunk.get("toc", []))
print(titles, ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
# Filter out entries with title == -1
prune = len(titles) > 512
max_len = 12 if prune else 22
filtered = []
for x in titles:
if not x.get("title") or x["title"] == "-1":
continue
if len(rag_tokenizer.tokenize(x["title"]).split(" ")) > max_len:
continue
if re.match(r"[0-9,.()/ -]+$", x["title"]):
continue
filtered.append(x)
logging.info(f"\n\nFiltered TOC sections:\n{filtered}")
# Generate initial level (level/title)
raw_structure = [x.get("title", "") for x in filtered]
# Assign hierarchy levels using LLM
toc_with_levels = assign_toc_levels(raw_structure, chat_mdl, {"temperature": 0.0, "top_p": 0.9})
# Merge structure and content (by index)
prune = len(toc_with_levels) > 512
max_lvl = sorted([t.get("level", "0") for t in toc_with_levels])[-1]
merged = []
for _ , (toc_item, src_item) in enumerate(zip(toc_with_levels, filtered)):
if prune and toc_item.get("level", "0") >= max_lvl:
continue
merged.append({
"level": toc_item.get("level", "0"),
"title": toc_item.get("title", ""),
"chunk_id": src_item.get("chunk_id", ""),
})
return merged
TOC_RELEVANCE_SYSTEM = load_prompt("toc_relevance_system")
TOC_RELEVANCE_USER = load_prompt("toc_relevance_user")
def relevant_chunks_with_toc(query: str, toc:list[dict], chat_mdl, topn: int=6):
import numpy as np
try:
ans = gen_json(
PROMPT_JINJA_ENV.from_string(TOC_RELEVANCE_SYSTEM).render(),
PROMPT_JINJA_ENV.from_string(TOC_RELEVANCE_USER).render(query=query, toc_json="[\n%s\n]\n"%"\n".join([json.dumps({"level": d["level"], "title":d["title"]}, ensure_ascii=False) for d in toc])),
chat_mdl,
gen_conf={"temperature": 0.0, "top_p": 0.9}
)
print(ans, "::::::::::::::::::::::::::::::::::::", flush=True)
id2score = {}
for ti, sc in zip(toc, ans):
if not isinstance(sc, dict) or sc.get("score", -1) < 1:
continue
for id in ti.get("ids", []):
if id not in id2score:
id2score[id] = []
id2score[id].append(sc["score"]/5.)
for id in id2score.keys():
id2score[id] = np.mean(id2score[id])
return [(id, sc) for id, sc in list(id2score.items()) if sc>=0.3][:topn]
except Exception as e:
logging.exception(e)
return []

View File

@ -1,119 +0,0 @@
You are a robust Table-of-Contents (TOC) extractor.
GOAL
Given a dictionary of chunks {"<chunk_ID>": chunk_text}, extract TOC-like headings and return a strict JSON array of objects:
[
{"title": "", "chunk_id": ""},
...
]
FIELDS
- "title": the heading text (clean, no page numbers or leader dots).
- If any part of a chunk has no valid heading, output that part as {"title":"-1", ...}.
- "chunk_id": the chunk ID (string).
- One chunk can yield multiple JSON objects in order (unmatched text + one or more headings).
RULES
1) Preserve input chunk order strictly.
2) If a chunk contains multiple headings, expand them in order:
- Pre-heading narrative → {"title":"-1","chunk_id":"<chunk_ID>"}
- Then each heading → {"title":"...","chunk_id":"<chunk_ID>"}
3) Do not merge outputs across chunks; each object refers to exactly one chunk ID.
4) "title" must be non-empty (or exactly "-1"). "chunk_id" must be a string (chunk ID).
5) When ambiguous, prefer "-1" unless the text strongly looks like a heading.
HEADING DETECTION (cues, not hard rules)
- Appears near line start, short isolated phrase, often followed by content.
- May contain separators: — —— - : · •
- Numbering styles:
• 第[一二三四五六七八九十百]+(篇|章|节|条)
• [(]?[一二三四五六七八九十]+[)]?
• [(]?[①②③④⑤⑥⑦⑧⑨⑩][)]?
• ^\d+(\.\d+)*[).]?\s*
• ^[IVXLCDM]+[).]
• ^[A-Z][).]
- Canonical section cues (general only):
Common heading indicators include words such as:
"Overview", "Introduction", "Background", "Purpose", "Scope", "Definition",
"Method", "Procedure", "Result", "Discussion", "Summary", "Conclusion",
"Appendix", "Reference", "Annex", "Acknowledgment", "Disclaimer".
These are soft cues, not strict requirements.
- Length restriction:
• Chinese heading: ≤25 characters
• English heading: ≤80 characters
- Exclude long narrative sentences, continuous prose, or bullet-style lists → output as "-1".
OUTPUT FORMAT
- Return ONLY a valid JSON array of {"title","content"} objects.
- No reasoning or commentary.
EXAMPLES
Example 1 — No heading
Input:
[{"0": "Copyright page · Publication info (ISBN 123-456). All rights reserved."}, ...]
Output:
[
{"title":"-1","chunk_id":"0"},
...
]
Example 2 — One heading
Input:
[{"1": "Chapter 1: General Provisions This chapter defines the overall rules…"}, ...]
Output:
[
{"title":"Chapter 1: General Provisions","chunk_id":"1"},
...
]
Example 3 — Narrative + heading
Input:
[{"2": "This paragraph introduces the background and goals. Section 2: Definitions Key terms are explained…"}, ...]
Output:
[
{"title":"Section 2: Definitions","chunk_id":"2"},
...
]
Example 4 — Multiple headings in one chunk
Input:
[{"3": "Declarations and Commitments (I) Party B commits… (II) Party C commits… Appendix A Data Specification"}, ...]
Output:
[
{"title":"Declarations and Commitments","chunk_id":"3"},
{"title":"(I) Party B commits","chunk_id":"3"},
{"title":"(II) Party C commits","chunk_id":"3"},
{"title":"Appendix A Data Specification","chunk_id":"3"},
...
]
Example 5 — Numbering styles
Input:
[{"4": "1. Scope: Defines boundaries. 2) Definitions: Terms used. III) Methods Overview."}, ...]
Output:
[
{"title":"1. Scope","chunk_id":"4"},
{"title":"2) Definitions","chunk_id":"4"},
{"title":"III) Methods Overview","chunk_id":"4"},
...
]
Example 6 — Long list (NOT headings)
Input:
{"5": "Item list: apples, bananas, strawberries, blueberries, mangos, peaches"}, ...]
Output:
[
{"title":"-1","chunk_id":"5"},
...
]
Example 7 — Mixed Chinese/English
Input:
{"6": "出版信息略This standard follows industry practices. Chapter 1: Overview 摘要… 第2节术语与缩略语"}, ...]
Output:
[
{"title":"Chapter 1: Overview","chunk_id":"6"},
{"title":"第2节术语与缩略语","chunk_id":"6"},
...
]

View File

@ -1,8 +0,0 @@
OUTPUT FORMAT
- Return ONLY the JSON array.
- Use double quotes.
- No extra commentary.
- Keep language of "title" the same as the input.
INPUT
{{text}}

View File

@ -1,118 +0,0 @@
# System Prompt: TOC Relevance Evaluation
You are an expert logical reasoning assistant specializing in hierarchical Table of Contents (TOC) relevance evaluation.
## GOAL
You will receive:
1. A JSON list of TOC items, each with fields:
```json
{
"level": <integer>, // e.g., 1, 2, 3
"title": <string> // section title
}
```
2. A user query (natural language question).
You must assign a **relevance score** (integer) to every TOC entry, based on how related its `title` is to the `query`.
---
## RULES
### Scoring System
- 5 → highly relevant (directly answers or matches the query intent)
- 3 → somewhat related (same topic or partially overlaps)
- 1 → weakly related (vague or tangential)
- 0 → no clear relation
- -1 → explicitly irrelevant or contradictory
### Hierarchy Traversal
- The TOC is hierarchical: smaller `level` = higher layer (e.g., level 1 is top-level, level 2 is a subsection).
- You must traverse in **hierarchical order** — interpret the structure based on levels (1 > 2 > 3).
- If a high-level item (level 1) is strongly related (score 5), its child items (level 2, 3) are likely relevant too.
- If a high-level item is unrelated (-1 or 0), its deeper children are usually less relevant unless the titles clearly match the query.
- Lower (deeper) levels provide more specific content; prefer assigning higher scores if they directly match the query.
### Output Format
Return a **JSON array**, preserving the input order but adding a new key `"score"`:
```json
[
{"level": 1, "title": "Introduction", "score": 0},
{"level": 2, "title": "Definition of Sustainability", "score": 5}
]
```
### Constraints
- Output **only the JSON array** — no explanations or reasoning text.
### EXAMPLES
#### Example 1
Input TOC:
[
{"level": 1, "title": "Machine Learning Overview"},
{"level": 2, "title": "Supervised Learning"},
{"level": 2, "title": "Unsupervised Learning"},
{"level": 3, "title": "Applications of Deep Learning"}
]
Query:
"How is deep learning used in image classification?"
Output:
[
{"level": 1, "title": "Machine Learning Overview", "score": 3},
{"level": 2, "title": "Supervised Learning", "score": 3},
{"level": 2, "title": "Unsupervised Learning", "score": 0},
{"level": 3, "title": "Applications of Deep Learning", "score": 5}
]
---
#### Example 2
Input TOC:
[
{"level": 1, "title": "Marketing Basics"},
{"level": 2, "title": "Consumer Behavior"},
{"level": 2, "title": "Digital Marketing"},
{"level": 3, "title": "Social Media Campaigns"},
{"level": 3, "title": "SEO Optimization"}
]
Query:
"What are the best online marketing methods?"
Output:
[
{"level": 1, "title": "Marketing Basics", "score": 3},
{"level": 2, "title": "Consumer Behavior", "score": 1},
{"level": 2, "title": "Digital Marketing", "score": 5},
{"level": 3, "title": "Social Media Campaigns", "score": 5},
{"level": 3, "title": "SEO Optimization", "score": 5}
]
---
#### Example 3
Input TOC:
[
{"level": 1, "title": "Physics Overview"},
{"level": 2, "title": "Classical Mechanics"},
{"level": 3, "title": "Newtons Laws"},
{"level": 2, "title": "Thermodynamics"},
{"level": 3, "title": "Entropy and Heat Transfer"}
]
Query:
"What is entropy?"
Output:
[
{"level": 1, "title": "Physics Overview", "score": 3},
{"level": 2, "title": "Classical Mechanics", "score": 0},
{"level": 3, "title": "Newtons Laws", "score": -1},
{"level": 2, "title": "Thermodynamics", "score": 5},
{"level": 3, "title": "Entropy and Heat Transfer", "score": 5}
]

View File

@ -1,17 +0,0 @@
# User Prompt: TOC Relevance Evaluation
You will now receive:
1. A JSON list of TOC items (each with `level` and `title`)
2. A user query string.
Traverse the TOC hierarchically based on level numbers and assign scores (5,3,1,0,-1) according to the rules in the system prompt.
Output **only** the JSON array with the added `"score"` field.
---
**Input TOC:**
{{ toc_json }}
**Query:**
{{ query }}

View File

@ -32,7 +32,7 @@ from api.utils.log_utils import init_root_logger, get_project_base_directory
from graphrag.general.index import run_graphrag_for_kb from graphrag.general.index import run_graphrag_for_kb
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
from rag.flow.pipeline import Pipeline from rag.flow.pipeline import Pipeline
from rag.prompts.generator import keyword_extraction, question_proposal, content_tagging, run_toc_from_text from rag.prompts import keyword_extraction, question_proposal, content_tagging
import logging import logging
import os import os
from datetime import datetime from datetime import datetime
@ -370,38 +370,6 @@ async def build_chunks(task, progress_callback):
nursery.start_soon(doc_question_proposal, chat_mdl, d, task["parser_config"]["auto_questions"]) nursery.start_soon(doc_question_proposal, chat_mdl, d, task["parser_config"]["auto_questions"])
progress_callback(msg="Question generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st)) progress_callback(msg="Question generation {} chunks completed in {:.2f}s".format(len(docs), timer() - st))
if task["parser_id"].lower() == "naive" and task["parser_config"].get("toc_extraction", False):
progress_callback(msg="Start to generate table of content ...")
chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
docs = sorted(docs, key=lambda d:(
d.get("page_num_int", 0)[0] if isinstance(d.get("page_num_int", 0), list) else d.get("page_num_int", 0),
d.get("top_int", 0)[0] if isinstance(d.get("top_int", 0), list) else d.get("top_int", 0)
))
toc: list[dict] = await run_toc_from_text([d["content_with_weight"] for d in docs], chat_mdl, progress_callback)
logging.info("------------ T O C -------------\n"+json.dumps(toc, ensure_ascii=False, indent=' '))
ii = 0
while ii < len(toc):
try:
idx = int(toc[ii]["chunk_id"])
del toc[ii]["chunk_id"]
toc[ii]["ids"] = [docs[idx]["id"]]
if ii == len(toc) -1:
break
for jj in range(idx+1, int(toc[ii+1]["chunk_id"])+1):
toc[ii]["ids"].append(docs[jj]["id"])
except Exception as e:
logging.exception(e)
ii += 1
if toc:
d = copy.deepcopy(docs[-1])
d["content_with_weight"] = json.dumps(toc, ensure_ascii=False)
d["toc_kwd"] = "toc"
d["available_int"] = 0
d["page_num_int"] = 100000000
d["id"] = xxhash.xxh64((d["content_with_weight"] + str(d["doc_id"])).encode("utf-8", "surrogatepass")).hexdigest()
docs.append(d)
if task["kb_parser_config"].get("tag_kb_ids", []): if task["kb_parser_config"].get("tag_kb_ids", []):
progress_callback(msg="Start to tag for every chunk ...") progress_callback(msg="Start to tag for every chunk ...")
kb_ids = task["kb_parser_config"]["tag_kb_ids"] kb_ids = task["kb_parser_config"]["tag_kb_ids"]
@ -412,7 +380,7 @@ async def build_chunks(task, progress_callback):
examples = [] examples = []
all_tags = get_tags_from_cache(kb_ids) all_tags = get_tags_from_cache(kb_ids)
if not all_tags: if not all_tags:
all_tags = settings.retriever.all_tags_in_portion(tenant_id, kb_ids, S) all_tags = settings.retrievaler.all_tags_in_portion(tenant_id, kb_ids, S)
set_tags_to_cache(kb_ids, all_tags) set_tags_to_cache(kb_ids, all_tags)
else: else:
all_tags = json.loads(all_tags) all_tags = json.loads(all_tags)
@ -425,7 +393,7 @@ async def build_chunks(task, progress_callback):
if task_canceled: if task_canceled:
progress_callback(-1, msg="Task has been canceled.") progress_callback(-1, msg="Task has been canceled.")
return return
if settings.retriever.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0: if settings.retrievaler.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]}) examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]})
else: else:
docs_to_tag.append(d) docs_to_tag.append(d)
@ -677,7 +645,7 @@ async def run_raptor_for_kb(row, kb_parser_config, chat_mdl, embd_mdl, vector_si
chunks = [] chunks = []
vctr_nm = "q_%d_vec"%vector_size vctr_nm = "q_%d_vec"%vector_size
for doc_id in doc_ids: for doc_id in doc_ids:
for d in settings.retriever.chunk_list(doc_id, row["tenant_id"], [str(row["kb_id"])], for d in settings.retrievaler.chunk_list(doc_id, row["tenant_id"], [str(row["kb_id"])],
fields=["content_with_weight", vctr_nm], fields=["content_with_weight", vctr_nm],
sort_by_position=True): sort_by_position=True):
chunks.append((d["content_with_weight"], np.array(d[vctr_nm]))) chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
@ -691,7 +659,7 @@ async def run_raptor_for_kb(row, kb_parser_config, chat_mdl, embd_mdl, vector_si
raptor_config["threshold"], raptor_config["threshold"],
) )
original_length = len(chunks) original_length = len(chunks)
chunks = await raptor(chunks, kb_parser_config["raptor"]["random_seed"], callback) chunks = await raptor(chunks, row["kb_parser_config"]["raptor"]["random_seed"], callback)
doc = { doc = {
"doc_id": fake_doc_id, "doc_id": fake_doc_id,
"kb_id": [str(row["kb_id"])], "kb_id": [str(row["kb_id"])],
@ -814,22 +782,8 @@ async def do_handle_task(task):
kb_parser_config = kb.parser_config kb_parser_config = kb.parser_config
if not kb_parser_config.get("raptor", {}).get("use_raptor", False): if not kb_parser_config.get("raptor", {}).get("use_raptor", False):
kb_parser_config.update(
{
"raptor": {
"use_raptor": True,
"prompt": "Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize.",
"max_token": 256,
"threshold": 0.1,
"max_cluster": 64,
"random_seed": 0,
},
}
)
if not KnowledgebaseService.update_by_id(kb.id, {"parser_config":kb_parser_config}):
progress_callback(prog=-1.0, msg="Internal error: Invalid RAPTOR configuration") progress_callback(prog=-1.0, msg="Internal error: Invalid RAPTOR configuration")
return return
# bind LLM for raptor # bind LLM for raptor
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language) chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
# run RAPTOR # run RAPTOR
@ -852,26 +806,9 @@ async def do_handle_task(task):
kb_parser_config = kb.parser_config kb_parser_config = kb.parser_config
if not kb_parser_config.get("graphrag", {}).get("use_graphrag", False): if not kb_parser_config.get("graphrag", {}).get("use_graphrag", False):
kb_parser_config.update(
{
"graphrag": {
"use_graphrag": True,
"entity_types": [
"organization",
"person",
"geo",
"event",
"category",
],
"method": "light",
}
}
)
if not KnowledgebaseService.update_by_id(kb.id, {"parser_config":kb_parser_config}):
progress_callback(prog=-1.0, msg="Internal error: Invalid GraphRAG configuration") progress_callback(prog=-1.0, msg="Internal error: Invalid GraphRAG configuration")
return return
graphrag_conf = kb_parser_config.get("graphrag", {}) graphrag_conf = kb_parser_config.get("graphrag", {})
start_ts = timer() start_ts = timer()
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language) chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)

View File

@ -95,12 +95,6 @@ def total_token_count_from_response(resp):
except Exception: except Exception:
pass pass
if hasattr(resp, "usage_metadata") and hasattr(resp.usage_metadata, "total_tokens"):
try:
return resp.usage_metadata.total_tokens
except Exception:
pass
if 'usage' in resp and 'total_tokens' in resp['usage']: if 'usage' in resp and 'total_tokens' in resp['usage']:
try: try:
return resp["usage"]["total_tokens"] return resp["usage"]["total_tokens"]

View File

@ -28,7 +28,6 @@ from rag import settings
from rag.settings import TAG_FLD, PAGERANK_FLD from rag.settings import TAG_FLD, PAGERANK_FLD
from rag.utils import singleton, get_float from rag.utils import singleton, get_float
from api.utils.file_utils import get_project_base_directory from api.utils.file_utils import get_project_base_directory
from api.utils.common import convert_bytes
from rag.utils.doc_store_conn import DocStoreConnection, MatchExpr, OrderByExpr, MatchTextExpr, MatchDenseExpr, \ from rag.utils.doc_store_conn import DocStoreConnection, MatchExpr, OrderByExpr, MatchTextExpr, MatchDenseExpr, \
FusionExpr FusionExpr
from rag.nlp import is_english, rag_tokenizer from rag.nlp import is_english, rag_tokenizer
@ -580,52 +579,3 @@ class ESConnection(DocStoreConnection):
break break
logger.error(f"ESConnection.sql timeout for {ATTEMPT_TIME} times!") logger.error(f"ESConnection.sql timeout for {ATTEMPT_TIME} times!")
return None return None
def get_cluster_stats(self):
"""
curl -XGET "http://{es_host}/_cluster/stats" -H "kbn-xsrf: reporting" to view raw stats.
"""
raw_stats = self.es.cluster.stats()
logger.debug(f"ESConnection.get_cluster_stats: {raw_stats}")
try:
res = {
'cluster_name': raw_stats['cluster_name'],
'status': raw_stats['status']
}
indices_status = raw_stats['indices']
res.update({
'indices': indices_status['count'],
'indices_shards': indices_status['shards']['total']
})
doc_info = indices_status['docs']
res.update({
'docs': doc_info['count'],
'docs_deleted': doc_info['deleted']
})
store_info = indices_status['store']
res.update({
'store_size': convert_bytes(store_info['size_in_bytes']),
'total_dataset_size': convert_bytes(store_info['total_data_set_size_in_bytes'])
})
mappings_info = indices_status['mappings']
res.update({
'mappings_fields': mappings_info['total_field_count'],
'mappings_deduplicated_fields': mappings_info['total_deduplicated_field_count'],
'mappings_deduplicated_size': convert_bytes(mappings_info['total_deduplicated_mapping_size_in_bytes'])
})
node_info = raw_stats['nodes']
res.update({
'nodes': node_info['count']['total'],
'nodes_version': node_info['versions'],
'os_mem': convert_bytes(node_info['os']['mem']['total_in_bytes']),
'os_mem_used': convert_bytes(node_info['os']['mem']['used_in_bytes']),
'os_mem_used_percent': node_info['os']['mem']['used_percent'],
'jvm_versions': node_info['jvm']['versions'][0]['vm_version'],
'jvm_heap_used': convert_bytes(node_info['jvm']['mem']['heap_used_in_bytes']),
'jvm_heap_max': convert_bytes(node_info['jvm']['mem']['heap_max_in_bytes'])
})
return res
except Exception as e:
logger.exception(f"ESConnection.get_cluster_stats: {e}")
return None

View File

@ -30,7 +30,6 @@ from rag.settings import PAGERANK_FLD, TAG_FLD
from rag.utils import singleton from rag.utils import singleton
import pandas as pd import pandas as pd
from api.utils.file_utils import get_project_base_directory from api.utils.file_utils import get_project_base_directory
from rag.nlp import is_english
from rag.utils.doc_store_conn import ( from rag.utils.doc_store_conn import (
DocStoreConnection, DocStoreConnection,
@ -41,8 +40,7 @@ from rag.utils.doc_store_conn import (
OrderByExpr, OrderByExpr,
) )
logger = logging.getLogger("ragflow.infinity_conn") logger = logging.getLogger('ragflow.infinity_conn')
def field_keyword(field_name: str): def field_keyword(field_name: str):
# The "docnm_kwd" field is always a string, not list. # The "docnm_kwd" field is always a string, not list.
@ -50,7 +48,6 @@ def field_keyword(field_name: str):
return True return True
return False return False
def equivalent_condition_to_str(condition: dict, table_instance=None) -> str | None: def equivalent_condition_to_str(condition: dict, table_instance=None) -> str | None:
assert "_id" not in condition assert "_id" not in condition
clmns = {} clmns = {}
@ -77,7 +74,7 @@ def equivalent_condition_to_str(condition: dict, table_instance=None) -> str | N
inCond = list() inCond = list()
for item in v: for item in v:
if isinstance(item, str): if isinstance(item, str):
item = item.replace("'", "''") item = item.replace("'","''")
inCond.append(f"filter_fulltext('{k}', '{item}')") inCond.append(f"filter_fulltext('{k}', '{item}')")
if inCond: if inCond:
strInCond = " or ".join(inCond) strInCond = " or ".join(inCond)
@ -89,7 +86,7 @@ def equivalent_condition_to_str(condition: dict, table_instance=None) -> str | N
inCond = list() inCond = list()
for item in v: for item in v:
if isinstance(item, str): if isinstance(item, str):
item = item.replace("'", "''") item = item.replace("'","''")
inCond.append(f"'{item}'") inCond.append(f"'{item}'")
else: else:
inCond.append(str(item)) inCond.append(str(item))
@ -118,10 +115,10 @@ def concat_dataframes(df_list: list[pd.DataFrame], selectFields: list[str]) -> p
schema = [] schema = []
for field_name in selectFields: for field_name in selectFields:
if field_name == "score()": # Workaround: fix schema is changed to score() if field_name == 'score()': # Workaround: fix schema is changed to score()
schema.append("SCORE") schema.append('SCORE')
elif field_name == "similarity()": # Workaround: fix schema is changed to similarity() elif field_name == 'similarity()': # Workaround: fix schema is changed to similarity()
schema.append("SIMILARITY") schema.append('SIMILARITY')
else: else:
schema.append(field_name) schema.append(field_name)
return pd.DataFrame(columns=schema) return pd.DataFrame(columns=schema)
@ -161,7 +158,9 @@ class InfinityConnection(DocStoreConnection):
def _migrate_db(self, inf_conn): def _migrate_db(self, inf_conn):
inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore) inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
fp_mapping = os.path.join(get_project_base_directory(), "conf", "infinity_mapping.json") fp_mapping = os.path.join(
get_project_base_directory(), "conf", "infinity_mapping.json"
)
if not os.path.exists(fp_mapping): if not os.path.exists(fp_mapping):
raise Exception(f"Mapping file not found at {fp_mapping}") raise Exception(f"Mapping file not found at {fp_mapping}")
schema = json.load(open(fp_mapping)) schema = json.load(open(fp_mapping))
@ -179,12 +178,16 @@ class InfinityConnection(DocStoreConnection):
continue continue
res = inf_table.add_columns({field_name: field_info}) res = inf_table.add_columns({field_name: field_info})
assert res.error_code == infinity.ErrorCode.OK assert res.error_code == infinity.ErrorCode.OK
logger.info(f"INFINITY added following column to table {table_name}: {field_name} {field_info}") logger.info(
f"INFINITY added following column to table {table_name}: {field_name} {field_info}"
)
if field_info["type"] != "varchar" or "analyzer" not in field_info: if field_info["type"] != "varchar" or "analyzer" not in field_info:
continue continue
inf_table.create_index( inf_table.create_index(
f"text_idx_{field_name}", f"text_idx_{field_name}",
IndexInfo(field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}), IndexInfo(
field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}
),
ConflictType.Ignore, ConflictType.Ignore,
) )
@ -218,7 +221,9 @@ class InfinityConnection(DocStoreConnection):
inf_conn = self.connPool.get_conn() inf_conn = self.connPool.get_conn()
inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore) inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
fp_mapping = os.path.join(get_project_base_directory(), "conf", "infinity_mapping.json") fp_mapping = os.path.join(
get_project_base_directory(), "conf", "infinity_mapping.json"
)
if not os.path.exists(fp_mapping): if not os.path.exists(fp_mapping):
raise Exception(f"Mapping file not found at {fp_mapping}") raise Exception(f"Mapping file not found at {fp_mapping}")
schema = json.load(open(fp_mapping)) schema = json.load(open(fp_mapping))
@ -248,11 +253,15 @@ class InfinityConnection(DocStoreConnection):
continue continue
inf_table.create_index( inf_table.create_index(
f"text_idx_{field_name}", f"text_idx_{field_name}",
IndexInfo(field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}), IndexInfo(
field_name, IndexType.FullText, {"ANALYZER": field_info["analyzer"]}
),
ConflictType.Ignore, ConflictType.Ignore,
) )
self.connPool.release_conn(inf_conn) self.connPool.release_conn(inf_conn)
logger.info(f"INFINITY created table {table_name}, vector size {vectorSize}") logger.info(
f"INFINITY created table {table_name}, vector size {vectorSize}"
)
def deleteIdx(self, indexName: str, knowledgebaseId: str): def deleteIdx(self, indexName: str, knowledgebaseId: str):
table_name = f"{indexName}_{knowledgebaseId}" table_name = f"{indexName}_{knowledgebaseId}"
@ -279,8 +288,7 @@ class InfinityConnection(DocStoreConnection):
""" """
def search( def search(
self, self, selectFields: list[str],
selectFields: list[str],
highlightFields: list[str], highlightFields: list[str],
condition: dict, condition: dict,
matchExprs: list[MatchExpr], matchExprs: list[MatchExpr],
@ -290,10 +298,10 @@ class InfinityConnection(DocStoreConnection):
indexNames: str | list[str], indexNames: str | list[str],
knowledgebaseIds: list[str], knowledgebaseIds: list[str],
aggFields: list[str] = [], aggFields: list[str] = [],
rank_feature: dict | None = None, rank_feature: dict | None = None
) -> tuple[pd.DataFrame, int]: ) -> tuple[pd.DataFrame, int]:
""" """
BUG: Infinity returns empty for a highlight field if the query string doesn't use that field. TODO: Infinity doesn't provide highlight
""" """
if isinstance(indexNames, str): if isinstance(indexNames, str):
indexNames = indexNames.split(",") indexNames = indexNames.split(",")
@ -430,7 +438,9 @@ class InfinityConnection(DocStoreConnection):
matchExpr.extra_options.copy(), matchExpr.extra_options.copy(),
) )
elif isinstance(matchExpr, FusionExpr): elif isinstance(matchExpr, FusionExpr):
builder = builder.fusion(matchExpr.method, matchExpr.topn, matchExpr.fusion_params) builder = builder.fusion(
matchExpr.method, matchExpr.topn, matchExpr.fusion_params
)
else: else:
if filter_cond and len(filter_cond) > 0: if filter_cond and len(filter_cond) > 0:
builder.filter(filter_cond) builder.filter(filter_cond)
@ -445,13 +455,15 @@ class InfinityConnection(DocStoreConnection):
self.connPool.release_conn(inf_conn) self.connPool.release_conn(inf_conn)
res = concat_dataframes(df_list, output) res = concat_dataframes(df_list, output)
if matchExprs: if matchExprs:
res["Sum"] = res[score_column] + res[PAGERANK_FLD] res['Sum'] = res[score_column] + res[PAGERANK_FLD]
res = res.sort_values(by="Sum", ascending=False).reset_index(drop=True).drop(columns=["Sum"]) res = res.sort_values(by='Sum', ascending=False).reset_index(drop=True).drop(columns=['Sum'])
res = res.head(limit) res = res.head(limit)
logger.debug(f"INFINITY search final result: {str(res)}") logger.debug(f"INFINITY search final result: {str(res)}")
return res, total_hits_count return res, total_hits_count
def get(self, chunkId: str, indexName: str, knowledgebaseIds: list[str]) -> dict | None: def get(
self, chunkId: str, indexName: str, knowledgebaseIds: list[str]
) -> dict | None:
inf_conn = self.connPool.get_conn() inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName) db_instance = inf_conn.get_database(self.dbName)
df_list = list() df_list = list()
@ -464,7 +476,8 @@ class InfinityConnection(DocStoreConnection):
try: try:
table_instance = db_instance.get_table(table_name) table_instance = db_instance.get_table(table_name)
except Exception: except Exception:
logger.warning(f"Table not found: {table_name}, this knowledge base isn't created in Infinity. Maybe it is created in other document engine.") logger.warning(
f"Table not found: {table_name}, this knowledge base isn't created in Infinity. Maybe it is created in other document engine.")
continue continue
kb_res, _ = table_instance.output(["*"]).filter(f"id = '{chunkId}'").to_df() kb_res, _ = table_instance.output(["*"]).filter(f"id = '{chunkId}'").to_df()
logger.debug(f"INFINITY get table: {str(table_list)}, result: {str(kb_res)}") logger.debug(f"INFINITY get table: {str(table_list)}, result: {str(kb_res)}")
@ -474,7 +487,9 @@ class InfinityConnection(DocStoreConnection):
res_fields = self.getFields(res, res.columns.tolist()) res_fields = self.getFields(res, res.columns.tolist())
return res_fields.get(chunkId, None) return res_fields.get(chunkId, None)
def insert(self, documents: list[dict], indexName: str, knowledgebaseId: str = None) -> list[str]: def insert(
self, documents: list[dict], indexName: str, knowledgebaseId: str = None
) -> list[str]:
inf_conn = self.connPool.get_conn() inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName) db_instance = inf_conn.get_database(self.dbName)
table_name = f"{indexName}_{knowledgebaseId}" table_name = f"{indexName}_{knowledgebaseId}"
@ -517,7 +532,7 @@ class InfinityConnection(DocStoreConnection):
d[k] = v d[k] = v
elif re.search(r"_feas$", k): elif re.search(r"_feas$", k):
d[k] = json.dumps(v) d[k] = json.dumps(v)
elif k == "kb_id": elif k == 'kb_id':
if isinstance(d[k], list): if isinstance(d[k], list):
d[k] = d[k][0] # since d[k] is a list, but we need a str d[k] = d[k][0] # since d[k] is a list, but we need a str
elif k == "position_int": elif k == "position_int":
@ -546,14 +561,16 @@ class InfinityConnection(DocStoreConnection):
logger.debug(f"INFINITY inserted into {table_name} {str_ids}.") logger.debug(f"INFINITY inserted into {table_name} {str_ids}.")
return [] return []
def update(self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str) -> bool: def update(
self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str
) -> bool:
# if 'position_int' in newValue: # if 'position_int' in newValue:
# logger.info(f"update position_int: {newValue['position_int']}") # logger.info(f"update position_int: {newValue['position_int']}")
inf_conn = self.connPool.get_conn() inf_conn = self.connPool.get_conn()
db_instance = inf_conn.get_database(self.dbName) db_instance = inf_conn.get_database(self.dbName)
table_name = f"{indexName}_{knowledgebaseId}" table_name = f"{indexName}_{knowledgebaseId}"
table_instance = db_instance.get_table(table_name) table_instance = db_instance.get_table(table_name)
# if "exists" in condition: #if "exists" in condition:
# del condition["exists"] # del condition["exists"]
clmns = {} clmns = {}
@ -570,7 +587,7 @@ class InfinityConnection(DocStoreConnection):
newValue[k] = v newValue[k] = v
elif re.search(r"_feas$", k): elif re.search(r"_feas$", k):
newValue[k] = json.dumps(v) newValue[k] = json.dumps(v)
elif k == "kb_id": elif k == 'kb_id':
if isinstance(newValue[k], list): if isinstance(newValue[k], list):
newValue[k] = newValue[k][0] # since d[k] is a list, but we need a str newValue[k] = newValue[k][0] # since d[k] is a list, but we need a str
elif k == "position_int": elif k == "position_int":
@ -598,7 +615,7 @@ class InfinityConnection(DocStoreConnection):
remove_opt = {} # "[k,new_value]": [id_to_update, ...] remove_opt = {} # "[k,new_value]": [id_to_update, ...]
if removeValue: if removeValue:
col_to_remove = list(removeValue.keys()) col_to_remove = list(removeValue.keys())
row_to_opt = table_instance.output(col_to_remove + ["id"]).filter(filter).to_df() row_to_opt = table_instance.output(col_to_remove + ['id']).filter(filter).to_df()
logger.debug(f"INFINITY search table {str(table_name)}, filter {filter}, result: {str(row_to_opt[0])}") logger.debug(f"INFINITY search table {str(table_name)}, filter {filter}, result: {str(row_to_opt[0])}")
row_to_opt = self.getFields(row_to_opt, col_to_remove) row_to_opt = self.getFields(row_to_opt, col_to_remove)
for id, old_v in row_to_opt.items(): for id, old_v in row_to_opt.items():
@ -615,7 +632,7 @@ class InfinityConnection(DocStoreConnection):
logger.debug(f"INFINITY update table {table_name}, filter {filter}, newValue {newValue}.") logger.debug(f"INFINITY update table {table_name}, filter {filter}, newValue {newValue}.")
for update_kv, ids in remove_opt.items(): for update_kv, ids in remove_opt.items():
k, v = json.loads(update_kv) k, v = json.loads(update_kv)
table_instance.update(filter + " AND id in ({0})".format(",".join([f"'{id}'" for id in ids])), {k: "###".join(v)}) table_instance.update(filter + " AND id in ({0})".format(",".join([f"'{id}'" for id in ids])), {k:"###".join(v)})
table_instance.update(filter, newValue) table_instance.update(filter, newValue)
self.connPool.release_conn(inf_conn) self.connPool.release_conn(inf_conn)
@ -628,7 +645,9 @@ class InfinityConnection(DocStoreConnection):
try: try:
table_instance = db_instance.get_table(table_name) table_instance = db_instance.get_table(table_name)
except Exception: except Exception:
logger.warning(f"Skipped deleting from table {table_name} since the table doesn't exist.") logger.warning(
f"Skipped deleting from table {table_name} since the table doesn't exist."
)
return 0 return 0
filter = equivalent_condition_to_str(condition, table_instance) filter = equivalent_condition_to_str(condition, table_instance)
logger.debug(f"INFINITY delete table {table_name}, filter {filter}.") logger.debug(f"INFINITY delete table {table_name}, filter {filter}.")
@ -656,34 +675,32 @@ class InfinityConnection(DocStoreConnection):
if not fields: if not fields:
return {} return {}
fieldsAll = fields.copy() fieldsAll = fields.copy()
fieldsAll.append("id") fieldsAll.append('id')
column_map = {col.lower(): col for col in res.columns} column_map = {col.lower(): col for col in res.columns}
matched_columns = {column_map[col.lower()]: col for col in set(fieldsAll) if col.lower() in column_map} matched_columns = {column_map[col.lower()]:col for col in set(fieldsAll) if col.lower() in column_map}
none_columns = [col for col in set(fieldsAll) if col.lower() not in column_map] none_columns = [col for col in set(fieldsAll) if col.lower() not in column_map]
res2 = res[matched_columns.keys()] res2 = res[matched_columns.keys()]
res2 = res2.rename(columns=matched_columns) res2 = res2.rename(columns=matched_columns)
res2.drop_duplicates(subset=["id"], inplace=True) res2.drop_duplicates(subset=['id'], inplace=True)
for column in res2.columns: for column in res2.columns:
k = column.lower() k = column.lower()
if field_keyword(k): if field_keyword(k):
res2[column] = res2[column].apply(lambda v: [kwd for kwd in v.split("###") if kwd]) res2[column] = res2[column].apply(lambda v:[kwd for kwd in v.split("###") if kwd])
elif re.search(r"_feas$", k): elif re.search(r"_feas$", k):
res2[column] = res2[column].apply(lambda v: json.loads(v) if v else {}) res2[column] = res2[column].apply(lambda v: json.loads(v) if v else {})
elif k == "position_int": elif k == "position_int":
def to_position_int(v): def to_position_int(v):
if v: if v:
arr = [int(hex_val, 16) for hex_val in v.split("_")] arr = [int(hex_val, 16) for hex_val in v.split('_')]
v = [arr[i : i + 5] for i in range(0, len(arr), 5)] v = [arr[i:i + 5] for i in range(0, len(arr), 5)]
else: else:
v = [] v = []
return v return v
res2[column] = res2[column].apply(to_position_int) res2[column] = res2[column].apply(to_position_int)
elif k in ["page_num_int", "top_int"]: elif k in ["page_num_int", "top_int"]:
res2[column] = res2[column].apply(lambda v: [int(hex_val, 16) for hex_val in v.split("_")] if v else []) res2[column] = res2[column].apply(lambda v:[int(hex_val, 16) for hex_val in v.split('_')] if v else [])
else: else:
pass pass
for column in none_columns: for column in none_columns:
@ -702,35 +719,23 @@ class InfinityConnection(DocStoreConnection):
for i in range(num_rows): for i in range(num_rows):
id = column_id[i] id = column_id[i]
txt = res[fieldnm][i] txt = res[fieldnm][i]
if re.search(r"<em>[^<>]+</em>", txt, flags=re.IGNORECASE | re.MULTILINE):
ans[id] = txt
continue
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE) txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE)
txts = [] txts = []
for t in re.split(r"[.?!;\n]", txt): for t in re.split(r"[.?!;\n]", txt):
if is_english([t]):
for w in keywords: for w in keywords:
t = re.sub( t = re.sub(
r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])" % re.escape(w), r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"
% re.escape(w),
r"\1<em>\2</em>\3", r"\1<em>\2</em>\3",
t, t,
flags=re.IGNORECASE | re.MULTILINE, flags=re.IGNORECASE | re.MULTILINE,
) )
else: if not re.search(
for w in sorted(keywords, key=len, reverse=True): r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE
t = re.sub( ):
re.escape(w),
f"<em>{w}</em>",
t,
flags=re.IGNORECASE | re.MULTILINE,
)
if not re.search(r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE):
continue continue
txts.append(t) txts.append(t)
if txts:
ans[id] = "...".join(txts) ans[id] = "...".join(txts)
else:
ans[id] = txt
return ans return ans
def getAggregation(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fieldnm: str): def getAggregation(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fieldnm: str):

View File

@ -91,20 +91,6 @@ class RedisDB:
if self.REDIS.get(a) == b: if self.REDIS.get(a) == b:
return True return True
def info(self):
info = self.REDIS.info()
return {
'redis_version': info["redis_version"],
'server_mode': info["server_mode"],
'used_memory': info["used_memory_human"],
'total_system_memory': info["total_system_memory_human"],
'mem_fragmentation_ratio': info["mem_fragmentation_ratio"],
'connected_clients': info["connected_clients"],
'blocked_clients': info["blocked_clients"],
'instantaneous_ops_per_sec': info["instantaneous_ops_per_sec"],
'total_commands_processed': info["total_commands_processed"]
}
def is_alive(self): def is_alive(self):
return self.REDIS is not None return self.REDIS is not None

View File

@ -33,52 +33,35 @@ class Session(Base):
self.__session_type = "agent" self.__session_type = "agent"
super().__init__(rag, res_dict) super().__init__(rag, res_dict)
def ask(self, question="", stream=True, **kwargs):
def ask(self, question="", stream=False, **kwargs):
"""
Ask a question to the session. If stream=True, yields Message objects as they arrive (SSE streaming).
If stream=False, returns a single Message object for the final answer.
"""
if self.__session_type == "agent": if self.__session_type == "agent":
res = self._ask_agent(question, stream) res = self._ask_agent(question, stream)
elif self.__session_type == "chat": elif self.__session_type == "chat":
res = self._ask_chat(question, stream, **kwargs) res = self._ask_chat(question, stream, **kwargs)
else:
raise Exception(f"Unknown session type: {self.__session_type}")
if stream: if stream:
for line in res.iter_lines(decode_unicode=True): for line in res.iter_lines():
if not line: line = line.decode("utf-8")
continue # Skip empty lines if line.startswith("{"):
line = line.strip() json_data = json.loads(line)
raise Exception(json_data["message"])
if line.startswith("data:"): if not line.startswith("data:"):
content = line[len("data:"):].strip() continue
if content == "[DONE]": json_data = json.loads(line[5:])
break # End of stream if json_data["data"] is True or json_data["data"].get("running_status"):
else: continue
content = line message = self._structure_answer(json_data)
yield message
try:
json_data = json.loads(content)
except json.JSONDecodeError:
continue # Skip lines that are not valid JSON
event = json_data.get("event")
if event == "message":
yield self._structure_answer(json_data)
elif event == "message_end":
return # End of message stream
else: else:
try: try:
json_data = res.json() json_data = json.loads(res.text)
except ValueError: except ValueError:
raise Exception(f"Invalid response {res}") raise Exception(f"Invalid response {res}")
yield self._structure_answer(json_data["data"]) return self._structure_answer(json_data)
def _structure_answer(self, json_data): def _structure_answer(self, json_data):
answer = json_data["data"]["content"] answer = json_data["data"]["answer"]
reference = json_data["data"].get("reference", {}) reference = json_data["data"].get("reference", {})
temp_dict = { temp_dict = {
"content": answer, "content": answer,

7025
uv.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -3,7 +3,6 @@ import path from 'path';
const config: StorybookConfig = { const config: StorybookConfig = {
stories: ['../src/**/*.mdx', '../src/**/*.stories.@(js|jsx|mjs|ts|tsx)'], stories: ['../src/**/*.mdx', '../src/**/*.stories.@(js|jsx|mjs|ts|tsx)'],
staticDirs: ['../public'],
addons: [ addons: [
'@storybook/addon-webpack5-compiler-swc', '@storybook/addon-webpack5-compiler-swc',
'@storybook/addon-docs', '@storybook/addon-docs',

View File

@ -1,7 +1,6 @@
import '@/locales/config'; import '@/locales/config';
import type { Preview } from '@storybook/react-webpack5'; import type { Preview } from '@storybook/react-webpack5';
import { createElement } from 'react'; import { createElement } from 'react';
import '../public/iconfont.js';
import { TooltipProvider } from '../src/components/ui/tooltip'; import { TooltipProvider } from '../src/components/ui/tooltip';
import '../tailwind.css'; import '../tailwind.css';

View File

@ -59,10 +59,6 @@
`<symbol id="icon-GitHub" viewBox="0 0 1024 1024"> `<symbol id="icon-GitHub" viewBox="0 0 1024 1024">
<path d="M512 42.666667C252.714667 42.666667 42.666667 252.714667 42.666667 512c0 207.658667 134.357333 383.104 320.896 445.269333 23.466667 4.096 32.256-9.941333 32.256-22.272 0-11.178667-0.554667-48.128-0.554667-87.424-117.930667 21.717333-148.437333-28.757333-157.824-55.125333-5.290667-13.525333-28.16-55.168-48.085333-66.304-16.426667-8.832-39.936-30.506667-0.597334-31.104 36.949333-0.597333 63.36 34.005333 72.149334 48.128 42.24 70.954667 109.696 51.029333 136.704 38.698667 4.096-30.506667 16.426667-51.029333 29.909333-62.762667-104.448-11.733333-213.546667-52.224-213.546667-231.765333 0-51.029333 18.176-93.269333 48.128-126.122667-4.736-11.733333-21.162667-59.818667 4.693334-124.373333 0 0 39.296-12.288 129.024 48.128a434.901333 434.901333 0 0 1 117.333333-15.829334c39.936 0 79.829333 5.248 117.333333 15.829334 89.770667-61.013333 129.066667-48.128 129.066667-48.128 25.813333 64.554667 9.429333 112.64 4.736 124.373333 29.909333 32.853333 48.085333 74.538667 48.085333 126.122667 0 180.138667-109.696 220.032-214.144 231.765333 17.024 14.677333 31.701333 42.837333 31.701334 86.826667 0 62.762667-0.597333 113.237333-0.597334 129.066666 0 12.330667 8.789333 26.965333 32.256 22.272C846.976 895.104 981.333333 719.104 981.333333 512c0-259.285333-210.005333-469.333333-469.333333-469.333333z"></path> <path d="M512 42.666667C252.714667 42.666667 42.666667 252.714667 42.666667 512c0 207.658667 134.357333 383.104 320.896 445.269333 23.466667 4.096 32.256-9.941333 32.256-22.272 0-11.178667-0.554667-48.128-0.554667-87.424-117.930667 21.717333-148.437333-28.757333-157.824-55.125333-5.290667-13.525333-28.16-55.168-48.085333-66.304-16.426667-8.832-39.936-30.506667-0.597334-31.104 36.949333-0.597333 63.36 34.005333 72.149334 48.128 42.24 70.954667 109.696 51.029333 136.704 38.698667 4.096-30.506667 16.426667-51.029333 29.909333-62.762667-104.448-11.733333-213.546667-52.224-213.546667-231.765333 0-51.029333 18.176-93.269333 48.128-126.122667-4.736-11.733333-21.162667-59.818667 4.693334-124.373333 0 0 39.296-12.288 129.024 48.128a434.901333 434.901333 0 0 1 117.333333-15.829334c39.936 0 79.829333 5.248 117.333333 15.829334 89.770667-61.013333 129.066667-48.128 129.066667-48.128 25.813333 64.554667 9.429333 112.64 4.736 124.373333 29.909333 32.853333 48.085333 74.538667 48.085333 126.122667 0 180.138667-109.696 220.032-214.144 231.765333 17.024 14.677333 31.701333 42.837333 31.701334 86.826667 0 62.762667-0.597333 113.237333-0.597334 129.066666 0 12.330667 8.789333 26.965333 32.256 22.272C846.976 895.104 981.333333 719.104 981.333333 512c0-259.285333-210.005333-469.333333-469.333333-469.333333z"></path>
</symbol>` + </symbol>` +
`<symbol id="icon-more" viewBox="0 0 1024 1024">
<path d="M0 0h1024v1024H0z" opacity=".01"></path>
<path d="M867.072 141.184H156.032a32 32 0 0 0 0 64h711.04a32 32 0 0 0 0-64z m0.832 226.368H403.2a32 32 0 0 0 0 64h464.704a32 32 0 0 0 0-64zM403.2 573.888h464.704a32 32 0 0 1 0 64H403.2a32 32 0 0 1 0-64z m464.704 226.368H156.864a32 32 0 0 0 0 64h711.04a32 32 0 0 0 0-64zM137.472 367.552v270.336l174.528-122.24-174.528-148.096z" ></path>
</symbol>` +
'</svg>'), '</svg>'),
((h) => { ((h) => {
var a = (l = (l = document.getElementsByTagName('script'))[ var a = (l = (l = document.getElementsByTagName('script'))[

View File

@ -1,5 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!-- Generated by Pixelmator Pro 3.5.5 -->
<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<path id="path1" fill="#447eec" stroke="none" d="M 4.043384 3 C 4.218303 3.131369 4.218303 3.131369 4.245634 3.344843 C 4.235589 3.689968 4.120566 4.019037 4.020153 4.354485 C 3.648397 5.639093 3.772068 7.16324 4.721537 8.292472 C 4.834668 8.405636 4.834668 8.405636 5.092898 8.451808 C 5.099438 8.407101 5.105977 8.362394 5.112713 8.316334 C 5.266371 7.465536 5.643018 6.500875 6.492251 5.890116 C 6.722516 5.834181 6.722516 5.834181 6.929549 5.82443 C 7.088069 5.89422 7.088069 5.89422 7.191927 6.021484 C 7.238566 6.266672 7.182186 6.450504 7.071671 6.678328 C 6.587966 7.729729 6.728653 8.892773 7.366847 9.896866 C 7.683047 10.36898 8.067978 10.728178 8.59128 11.079185 C 8.649906 11.121605 8.70853 11.164025 8.768932 11.207732 C 9.66402 11.807772 10.937032 12.285625 12.156346 12.257288 C 13.377048 12.176717 14.726612 11.651421 15.533382 10.972448 C 15.588738 10.922069 15.644094 10.871689 15.701127 10.819783 C 15.850423 10.685079 15.850423 10.685079 16.08547 10.524973 C 16.383444 10.276995 16.547771 10.004078 16.725018 9.699812 C 16.759743 9.646976 16.794468 9.594141 16.830244 9.539706 C 17.098297 9.063352 17.108864 8.602456 17.113121 8.090544 C 17.114 8.021955 17.114882 7.953365 17.115789 7.882698 C 17.109453 7.451891 17.02879 7.068714 16.870663 6.654499 C 16.778524 6.380194 16.726711 6.084627 16.899937 5.82443 C 17.474003 5.873095 17.771864 6.159414 18.124371 6.481276 C 18.275856 6.67165 18.378973 6.862965 18.474209 7.072435 C 18.510059 7.143305 18.510059 7.143305 18.546637 7.215607 C 18.731159 7.597385 18.826818 7.985786 18.911507 8.386124 C 19.354362 8.235567 19.496134 8.016235 19.671312 7.692331 C 19.697708 7.645218 19.724104 7.598103 19.751299 7.549561 C 19.94206 7.198732 20.071728 6.857859 20.135941 6.481276 C 20.153978 6.410828 20.172018 6.340384 20.190603 6.267801 C 20.311863 5.357117 20.176548 4.488987 19.832565 3.61451 C 19.773235 3.416943 19.797062 3.258942 19.873562 3.065685 C 20.343493 3.074291 20.545094 3.203472 20.855154 3.445213 C 21.137327 3.710249 21.304079 4.011683 21.480631 4.321899 C 21.518852 4.385996 21.557068 4.45009 21.596447 4.51613 C 21.93461 5.092474 21.990692 5.56271 21.994455 6.1898 C 21.997162 6.299852 21.997162 6.299852 21.999922 6.412127 C 22.004002 7.072449 21.84753 7.669481 21.491564 8.275281 C 21.453457 8.340647 21.415352 8.406013 21.376089 8.473361 C 21.342043 8.531276 21.307995 8.58919 21.272915 8.648861 C 21.233231 8.726082 21.193544 8.803303 21.152658 8.882862 C 20.590042 9.776692 19.648251 10.593391 18.513157 11.107153 C 17.735565 11.48311 16.590176 12.039842 16.28772 12.721296 C 16.708294 12.597325 17.125742 12.472708 17.534019 12.327189 C 18.42695 12.030186 19.416105 11.804957 20.398319 11.933083 C 20.650791 12.052649 20.650791 12.052649 20.835617 12.195821 C 20.889799 12.745177 20.433676 13.369287 19.976738 13.786102 C 19.068974 14.416512 17.830204 14.815967 16.637558 15.020251 C 16.405041 15.058423 16.405041 15.058423 16.20026 15.15162 C 16.092342 15.326459 16.092342 15.326459 16.047207 15.537517 C 16.0268 15.614313 16.006393 15.691111 15.985371 15.770234 C 15.941998 15.985131 15.916471 16.195107 15.899619 16.41194 C 15.85338 16.919502 15.635668 17.317726 15.243672 17.729734 C 14.687399 18.330616 14.487684 19.071302 14.284009 19.776215 C 14.139319 20.134537 13.878259 20.395561 13.527279 20.656797 C 13.476657 20.695154 13.426036 20.733509 13.373882 20.773027 C 13.044217 20.98155 12.615493 20.960649 12.204453 20.981113 C 12.136414 20.985601 12.068374 20.990088 11.998274 20.994713 C 11.372272 21.025297 10.929299 20.924742 10.406066 20.652691 C 9.956832 20.315306 9.780399 19.975595 9.646261 19.51553 C 9.45176 18.889639 9.236951 18.265442 8.766199 17.721523 C 8.338652 17.217646 8.153504 16.619122 7.973939 16.041952 C 7.951638 15.970907 7.951638 15.970907 7.928885 15.898428 C 7.901113 15.807971 7.874589 15.717293 7.84954 15.62639 C 7.766208 15.349351 7.674052 15.189289 7.366847 15.020251 C 7.084245 14.934055 7.084245 14.934055 6.765562 14.868356 C 5.556292 14.586564 4.309259 14.177955 3.62556 13.33837 C 3.34536 12.926235 3.155031 12.517895 3.343707 12.064452 C 3.860229 11.811237 4.491402 11.904243 5.064542 11.990557 C 5.992092 12.14533 6.804541 12.365472 7.629225 12.721296 C 7.549964 12.200433 7.008167 11.934837 6.498059 11.6257 C 6.238734 11.478328 5.973781 11.345892 5.699649 11.21466 C 5.246062 10.99374 4.881122 10.743555 4.511429 10.448256 C 4.305137 10.283882 4.305137 10.283882 4.043384 10.135485 C 3.752214 9.943573 3.574499 9.753546 3.376505 9.506865 C 3.311633 9.428246 3.246722 9.349648 3.181771 9.271068 C 3.150556 9.232649 3.11934 9.194228 3.087179 9.154644 C 2.999125 9.049258 2.904421 8.947053 2.809384 8.845145 C 1.856228 7.713696 1.874341 6.082378 2.206733 4.810427 C 2.455393 4.168301 3.071521 3.532841 3.693546 3.065685 C 3.872223 3.013599 3.872223 3.013599 4.043384 3 Z"/>
</svg>

Before

Width:  |  Height:  |  Size: 4.9 KiB

Some files were not shown because too many files have changed in this diff Show More