Compare commits

...

12 Commits

Author SHA1 Message Date
6fee60e110 Docs: What is RAG & What is Agent context engine (#12341)
### Type of change

- [x] Documentation Update
2025-12-30 21:29:21 +08:00
52f91c2388 Refine: image/table context. (#12336)
### What problem does this PR solve?

#12303

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-30 20:24:27 +08:00
348265afc1 Feat: Display mode at the begin node #10427 (#12326)
### What problem does this PR solve?

Feat: Display mode at the begin node #10427
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 19:53:24 +08:00
a7e466142d Fix: Dataset parse logic (#12330)
### What problem does this PR solve?

Fix: Dataset  logic of parser

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-30 19:53:00 +08:00
2fccf3924d Feat: Adapt the theme of the documentation page. #10427 (#12337)
### What problem does this PR solve?

Feat: Adapt the theme of the documentation page. #10427
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 19:35:44 +08:00
4705d07e11 fix: malformed dynamic translation key chunk.docType.${chunkType} (#12329)
### What problem does this PR solve?

Back-end may returns empty array on `"doc_type_kwd"` property which
causes translation key malformed.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-12-30 19:33:20 +08:00
68be3b9a3d Update release workflow (#12335)
### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 19:06:27 +08:00
e2d17d808b Potential fix for code scanning alert no. 62: Workflow does not contain permissions (#12334)
Potential fix for
[https://github.com/infiniflow/ragflow/security/code-scanning/62](https://github.com/infiniflow/ragflow/security/code-scanning/62)

In general, the fix is to explicitly declare a `permissions:` block so
the GITHUB_TOKEN used by this workflow only has the scopes required:
read access to repository contents and write access to
contents/releases. Since this workflow creates or moves tags and
creates/overwrites releases via `softprops/action-gh-release`, it needs
`contents: write`. There is no evidence that it needs other elevated
scopes (issues, pull-requests, actions, etc.), so these should remain at
their default of `none` by omission.

The best minimal fix without changing existing functionality is to add a
workflow-level `permissions:` block near the top of
`.github/workflows/release.yml`, after `name:` and before `on:` (or
anywhere at the root level, but this is conventional). This will apply
to all jobs (there is only `jobs.release`) and ensure that the
GITHUB_TOKEN has only `contents: write`. No additional imports or
methods are needed because this is a YAML configuration change only.

Concretely:
- Edit `.github/workflows/release.yml`.
- Insert:

```yaml
permissions:
  contents: write
```

between line 2 (empty line after `name: release`) and line 3 (`on:`). No
other lines need to be changed.


_Suggested fixes powered by Copilot Autofix. Review carefully before
merging._

Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
2025-12-30 18:59:51 +08:00
95edbd43ba Update model providers (#12333)
### What problem does this PR solve?

As title

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 18:51:35 +08:00
b96d553cd8 Update release workflow (#12327)
### What problem does this PR solve?

As title.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
2025-12-30 17:25:27 +08:00
bffdb5fb11 Feat: add IMAP data source integration with configuration and sync capabilities (#12316)
### What problem does this PR solve?
issue:
#12217 [#12313](https://github.com/infiniflow/ragflow/issues/12313)
change:
add IMAP data source integration with configuration and sync
capabilities

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 17:09:13 +08:00
109e782493 Feat: On the agent page and chat page, you can only select knowledge bases that use the same embedding model. #12320 (#12321)
### What problem does this PR solve?

Feat: On the agent page and chat page, you can only select knowledge
bases that use the same embedding model. #12320

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-12-30 17:08:30 +08:00
37 changed files with 1587 additions and 337 deletions

View File

@ -10,6 +10,12 @@ on:
tags:
- "v*.*.*" # normal release
permissions:
contents: write
actions: read
checks: read
statuses: read
# https://docs.github.com/en/actions/using-jobs/using-concurrency
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
@ -76,6 +82,14 @@ jobs:
# The body field does not support environment variable substitution directly.
body_path: release_body.md
- name: Build and push image
run: |
sudo docker login --username infiniflow --password-stdin <<< ${{ secrets.DOCKERHUB_TOKEN }}
sudo docker build --build-arg NEED_MIRROR=1 --build-arg HTTPS_PROXY=${HTTPS_PROXY} --build-arg HTTP_PROXY=${HTTP_PROXY} -t infiniflow/ragflow:${RELEASE_TAG} -f Dockerfile .
sudo docker tag infiniflow/ragflow:${RELEASE_TAG} infiniflow/ragflow:latest
sudo docker push infiniflow/ragflow:${RELEASE_TAG}
sudo docker push infiniflow/ragflow:latest
- name: Build and push ragflow-sdk
if: startsWith(github.ref, 'refs/tags/v')
run: |
@ -85,11 +99,3 @@ jobs:
if: startsWith(github.ref, 'refs/tags/v')
run: |
cd admin/client && uv build && uv publish --token ${{ secrets.PYPI_API_TOKEN }}
- name: Build and push image
run: |
sudo docker login --username infiniflow --password-stdin <<< ${{ secrets.DOCKERHUB_TOKEN }}
sudo docker build --build-arg NEED_MIRROR=1 --build-arg HTTPS_PROXY=${HTTPS_PROXY} --build-arg HTTP_PROXY=${HTTP_PROXY} -t infiniflow/ragflow:${RELEASE_TAG} -f Dockerfile .
sudo docker tag infiniflow/ragflow:${RELEASE_TAG} infiniflow/ragflow:latest
sudo docker push infiniflow/ragflow:${RELEASE_TAG}
sudo docker push infiniflow/ragflow:latest

View File

@ -132,7 +132,8 @@ class FileSource(StrEnum):
ASANA = "asana"
GITHUB = "github"
GITLAB = "gitlab"
IMAP = "imap"
class PipelineTaskType(StrEnum):
PARSE = "Parse"
DOWNLOAD = "Download"

View File

@ -38,6 +38,7 @@ from .webdav_connector import WebDAVConnector
from .moodle_connector import MoodleConnector
from .airtable_connector import AirtableConnector
from .asana_connector import AsanaConnector
from .imap_connector import ImapConnector
from .config import BlobType, DocumentSource
from .models import Document, TextSection, ImageSection, BasicExpertInfo
from .exceptions import (
@ -75,4 +76,5 @@ __all__ = [
"UnexpectedValidationError",
"AirtableConnector",
"AsanaConnector",
"ImapConnector"
]

View File

@ -1,6 +1,6 @@
from datetime import datetime, timezone
import logging
from typing import Any
from typing import Any, Generator
import requests
@ -8,8 +8,8 @@ from pyairtable import Api as AirtableApi
from common.data_source.config import AIRTABLE_CONNECTOR_SIZE_THRESHOLD, INDEX_BATCH_SIZE, DocumentSource
from common.data_source.exceptions import ConnectorMissingCredentialError
from common.data_source.interfaces import LoadConnector
from common.data_source.models import Document, GenerateDocumentsOutput
from common.data_source.interfaces import LoadConnector, PollConnector
from common.data_source.models import Document, GenerateDocumentsOutput, SecondsSinceUnixEpoch
from common.data_source.utils import extract_size_bytes, get_file_ext
class AirtableClientNotSetUpError(PermissionError):
@ -19,7 +19,7 @@ class AirtableClientNotSetUpError(PermissionError):
)
class AirtableConnector(LoadConnector):
class AirtableConnector(LoadConnector, PollConnector):
"""
Lightweight Airtable connector.
@ -132,6 +132,26 @@ class AirtableConnector(LoadConnector):
if batch:
yield batch
def poll_source(self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch) -> Generator[list[Document], None, None]:
"""Poll source to get documents"""
start_dt = datetime.fromtimestamp(start, tz=timezone.utc)
end_dt = datetime.fromtimestamp(end, tz=timezone.utc)
for batch in self.load_from_state():
filtered: list[Document] = []
for doc in batch:
if not doc.doc_updated_at:
continue
doc_dt = doc.doc_updated_at.astimezone(timezone.utc)
if start_dt <= doc_dt < end_dt:
filtered.append(doc)
if filtered:
yield filtered
if __name__ == "__main__":
import os

View File

@ -57,6 +57,7 @@ class DocumentSource(str, Enum):
ASANA = "asana"
GITHUB = "github"
GITLAB = "gitlab"
IMAP = "imap"
class FileOrigin(str, Enum):
@ -266,6 +267,10 @@ ASANA_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("ASANA_CONNECTOR_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
IMAP_CONNECTOR_SIZE_THRESHOLD = int(
os.environ.get("IMAP_CONNECTOR_SIZE_THRESHOLD", 10 * 1024 * 1024)
)
_USER_NOT_FOUND = "Unknown Confluence User"
_COMMENT_EXPANSION_FIELDS = ["body.storage.value"]

View File

@ -0,0 +1,724 @@
import copy
import email
from email.header import decode_header
import imaplib
import logging
import os
import re
from datetime import datetime, timedelta
from datetime import timezone
from email.message import Message
from email.utils import collapse_rfc2231_value, parseaddr
from enum import Enum
from typing import Any
from typing import cast
import bs4
from pydantic import BaseModel
from common.data_source.config import IMAP_CONNECTOR_SIZE_THRESHOLD, DocumentSource
from common.data_source.interfaces import CheckpointOutput, CheckpointedConnectorWithPermSync, CredentialsConnector, CredentialsProviderInterface
from common.data_source.models import BasicExpertInfo, ConnectorCheckpoint, Document, ExternalAccess, SecondsSinceUnixEpoch
_DEFAULT_IMAP_PORT_NUMBER = int(os.environ.get("IMAP_PORT", 993))
_IMAP_OKAY_STATUS = "OK"
_PAGE_SIZE = 100
_USERNAME_KEY = "imap_username"
_PASSWORD_KEY = "imap_password"
class Header(str, Enum):
SUBJECT_HEADER = "subject"
FROM_HEADER = "from"
TO_HEADER = "to"
CC_HEADER = "cc"
DELIVERED_TO_HEADER = (
"Delivered-To" # Used in mailing lists instead of the "to" header.
)
DATE_HEADER = "date"
MESSAGE_ID_HEADER = "Message-ID"
class EmailHeaders(BaseModel):
"""
Model for email headers extracted from IMAP messages.
"""
id: str
subject: str
sender: str
recipients: str | None
cc: str | None
date: datetime
@classmethod
def from_email_msg(cls, email_msg: Message) -> "EmailHeaders":
def _decode(header: str, default: str | None = None) -> str | None:
value = email_msg.get(header, default)
if not value:
return None
decoded_fragments = decode_header(value)
decoded_strings: list[str] = []
for decoded_value, encoding in decoded_fragments:
if isinstance(decoded_value, bytes):
try:
decoded_strings.append(
decoded_value.decode(encoding or "utf-8", errors="replace")
)
except LookupError:
decoded_strings.append(
decoded_value.decode("utf-8", errors="replace")
)
elif isinstance(decoded_value, str):
decoded_strings.append(decoded_value)
else:
decoded_strings.append(str(decoded_value))
return "".join(decoded_strings)
def _parse_date(date_str: str | None) -> datetime | None:
if not date_str:
return None
try:
return email.utils.parsedate_to_datetime(date_str)
except (TypeError, ValueError):
return None
message_id = _decode(header=Header.MESSAGE_ID_HEADER)
if not message_id:
message_id = f"<generated-{uuid.uuid4()}@imap.local>"
# It's possible for the subject line to not exist or be an empty string.
subject = _decode(header=Header.SUBJECT_HEADER) or "Unknown Subject"
from_ = _decode(header=Header.FROM_HEADER)
to = _decode(header=Header.TO_HEADER)
if not to:
to = _decode(header=Header.DELIVERED_TO_HEADER)
cc = _decode(header=Header.CC_HEADER)
date_str = _decode(header=Header.DATE_HEADER)
date = _parse_date(date_str=date_str)
if not date:
date = datetime.now(tz=timezone.utc)
# If any of the above are `None`, model validation will fail.
# Therefore, no guards (i.e.: `if <header> is None: raise RuntimeError(..)`) were written.
return cls.model_validate(
{
"id": message_id,
"subject": subject,
"sender": from_,
"recipients": to,
"cc": cc,
"date": date,
}
)
class CurrentMailbox(BaseModel):
mailbox: str
todo_email_ids: list[str]
# An email has a list of mailboxes.
# Each mailbox has a list of email-ids inside of it.
#
# Usage:
# To use this checkpointer, first fetch all the mailboxes.
# Then, pop a mailbox and fetch all of its email-ids.
# Then, pop each email-id and fetch its content (and parse it, etc..).
# When you have popped all email-ids for this mailbox, pop the next mailbox and repeat the above process until you're done.
#
# For initial checkpointing, set both fields to `None`.
class ImapCheckpoint(ConnectorCheckpoint):
todo_mailboxes: list[str] | None = None
current_mailbox: CurrentMailbox | None = None
class LoginState(str, Enum):
LoggedIn = "logged_in"
LoggedOut = "logged_out"
class ImapConnector(
CredentialsConnector,
CheckpointedConnectorWithPermSync,
):
def __init__(
self,
host: str,
port: int = _DEFAULT_IMAP_PORT_NUMBER,
mailboxes: list[str] | None = None,
) -> None:
self._host = host
self._port = port
self._mailboxes = mailboxes
self._credentials: dict[str, Any] | None = None
@property
def credentials(self) -> dict[str, Any]:
if not self._credentials:
raise RuntimeError(
"Credentials have not been initialized; call `set_credentials_provider` first"
)
return self._credentials
def _get_mail_client(self) -> imaplib.IMAP4_SSL:
"""
Returns a new `imaplib.IMAP4_SSL` instance.
The `imaplib.IMAP4_SSL` object is supposed to be an "ephemeral" object; it's not something that you can login,
logout, then log back into again. I.e., the following will fail:
```py
mail_client.login(..)
mail_client.logout();
mail_client.login(..)
```
Therefore, you need a fresh, new instance in order to operate with IMAP. This function gives one to you.
# Notes
This function will throw an error if the credentials have not yet been set.
"""
def get_or_raise(name: str) -> str:
value = self.credentials.get(name)
if not value:
raise RuntimeError(f"Credential item {name=} was not found")
if not isinstance(value, str):
raise RuntimeError(
f"Credential item {name=} must be of type str, instead received {type(name)=}"
)
return value
username = get_or_raise(_USERNAME_KEY)
password = get_or_raise(_PASSWORD_KEY)
mail_client = imaplib.IMAP4_SSL(host=self._host, port=self._port)
status, _data = mail_client.login(user=username, password=password)
if status != _IMAP_OKAY_STATUS:
raise RuntimeError(f"Failed to log into imap server; {status=}")
return mail_client
def _load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ImapCheckpoint,
include_perm_sync: bool,
) -> CheckpointOutput[ImapCheckpoint]:
checkpoint = cast(ImapCheckpoint, copy.deepcopy(checkpoint))
checkpoint.has_more = True
mail_client = self._get_mail_client()
if checkpoint.todo_mailboxes is None:
# This is the dummy checkpoint.
# Fill it with mailboxes first.
if self._mailboxes:
checkpoint.todo_mailboxes = _sanitize_mailbox_names(self._mailboxes)
else:
fetched_mailboxes = _fetch_all_mailboxes_for_email_account(
mail_client=mail_client
)
if not fetched_mailboxes:
raise RuntimeError(
"Failed to find any mailboxes for this email account"
)
checkpoint.todo_mailboxes = _sanitize_mailbox_names(fetched_mailboxes)
return checkpoint
if (
not checkpoint.current_mailbox
or not checkpoint.current_mailbox.todo_email_ids
):
if not checkpoint.todo_mailboxes:
checkpoint.has_more = False
return checkpoint
mailbox = checkpoint.todo_mailboxes.pop()
email_ids = _fetch_email_ids_in_mailbox(
mail_client=mail_client,
mailbox=mailbox,
start=start,
end=end,
)
checkpoint.current_mailbox = CurrentMailbox(
mailbox=mailbox,
todo_email_ids=email_ids,
)
_select_mailbox(
mail_client=mail_client, mailbox=checkpoint.current_mailbox.mailbox
)
current_todos = cast(
list, copy.deepcopy(checkpoint.current_mailbox.todo_email_ids[:_PAGE_SIZE])
)
checkpoint.current_mailbox.todo_email_ids = (
checkpoint.current_mailbox.todo_email_ids[_PAGE_SIZE:]
)
for email_id in current_todos:
email_msg = _fetch_email(mail_client=mail_client, email_id=email_id)
if not email_msg:
logging.warning(f"Failed to fetch message {email_id=}; skipping")
continue
email_headers = EmailHeaders.from_email_msg(email_msg=email_msg)
msg_dt = email_headers.date
if msg_dt.tzinfo is None:
msg_dt = msg_dt.replace(tzinfo=timezone.utc)
else:
msg_dt = msg_dt.astimezone(timezone.utc)
start_dt = datetime.fromtimestamp(start, tz=timezone.utc)
end_dt = datetime.fromtimestamp(end, tz=timezone.utc)
if not (start_dt < msg_dt <= end_dt):
continue
email_doc = _convert_email_headers_and_body_into_document(
email_msg=email_msg,
email_headers=email_headers,
include_perm_sync=include_perm_sync,
)
yield email_doc
attachments = extract_attachments(email_msg)
for att in attachments:
yield attachment_to_document(email_doc, att, email_headers)
return checkpoint
# impls for BaseConnector
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
self._credentials = credentials
return None
def validate_connector_settings(self) -> None:
self._get_mail_client()
# impls for CredentialsConnector
def set_credentials_provider(
self, credentials_provider: CredentialsProviderInterface
) -> None:
self._credentials = credentials_provider.get_credentials()
# impls for CheckpointedConnector
def load_from_checkpoint(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ImapCheckpoint,
) -> CheckpointOutput[ImapCheckpoint]:
return self._load_from_checkpoint(
start=start, end=end, checkpoint=checkpoint, include_perm_sync=False
)
def build_dummy_checkpoint(self) -> ImapCheckpoint:
return ImapCheckpoint(has_more=True)
def validate_checkpoint_json(self, checkpoint_json: str) -> ImapCheckpoint:
return ImapCheckpoint.model_validate_json(json_data=checkpoint_json)
# impls for CheckpointedConnectorWithPermSync
def load_from_checkpoint_with_perm_sync(
self,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
checkpoint: ImapCheckpoint,
) -> CheckpointOutput[ImapCheckpoint]:
return self._load_from_checkpoint(
start=start, end=end, checkpoint=checkpoint, include_perm_sync=True
)
def _fetch_all_mailboxes_for_email_account(mail_client: imaplib.IMAP4_SSL) -> list[str]:
status, mailboxes_data = mail_client.list('""', "*")
if status != _IMAP_OKAY_STATUS:
raise RuntimeError(f"Failed to fetch mailboxes; {status=}")
mailboxes = []
for mailboxes_raw in mailboxes_data:
if isinstance(mailboxes_raw, bytes):
mailboxes_str = mailboxes_raw.decode()
elif isinstance(mailboxes_raw, str):
mailboxes_str = mailboxes_raw
else:
logging.warning(
f"Expected the mailbox data to be of type str, instead got {type(mailboxes_raw)=} {mailboxes_raw}; skipping"
)
continue
# The mailbox LIST response output can be found here:
# https://www.rfc-editor.org/rfc/rfc3501.html#section-7.2.2
#
# The general format is:
# `(<name-attributes>) <hierarchy-delimiter> <mailbox-name>`
#
# The below regex matches on that pattern; from there, we select the 3rd match (index 2), which is the mailbox-name.
match = re.match(r'\([^)]*\)\s+"([^"]+)"\s+"?(.+?)"?$', mailboxes_str)
if not match:
logging.warning(
f"Invalid mailbox-data formatting structure: {mailboxes_str=}; skipping"
)
continue
mailbox = match.group(2)
mailboxes.append(mailbox)
if not mailboxes:
logging.warning(
"No mailboxes parsed from LIST response; falling back to INBOX"
)
return ["INBOX"]
return mailboxes
def _select_mailbox(mail_client: imaplib.IMAP4_SSL, mailbox: str) -> bool:
try:
status, _ = mail_client.select(mailbox=mailbox, readonly=True)
if status != _IMAP_OKAY_STATUS:
return False
return True
except Exception:
return False
def _fetch_email_ids_in_mailbox(
mail_client: imaplib.IMAP4_SSL,
mailbox: str,
start: SecondsSinceUnixEpoch,
end: SecondsSinceUnixEpoch,
) -> list[str]:
if not _select_mailbox(mail_client, mailbox):
logging.warning(f"Skip mailbox: {mailbox}")
return []
start_dt = datetime.fromtimestamp(start, tz=timezone.utc)
end_dt = datetime.fromtimestamp(end, tz=timezone.utc) + timedelta(days=1)
start_str = start_dt.strftime("%d-%b-%Y")
end_str = end_dt.strftime("%d-%b-%Y")
search_criteria = f'(SINCE "{start_str}" BEFORE "{end_str}")'
status, email_ids_byte_array = mail_client.search(None, search_criteria)
if status != _IMAP_OKAY_STATUS or not email_ids_byte_array:
raise RuntimeError(f"Failed to fetch email ids; {status=}")
email_ids: bytes = email_ids_byte_array[0]
return [email_id.decode() for email_id in email_ids.split()]
def _fetch_email(mail_client: imaplib.IMAP4_SSL, email_id: str) -> Message | None:
status, msg_data = mail_client.fetch(message_set=email_id, message_parts="(RFC822)")
if status != _IMAP_OKAY_STATUS or not msg_data:
return None
data = msg_data[0]
if not isinstance(data, tuple):
raise RuntimeError(
f"Message data should be a tuple; instead got a {type(data)=} {data=}"
)
_, raw_email = data
return email.message_from_bytes(raw_email)
def _convert_email_headers_and_body_into_document(
email_msg: Message,
email_headers: EmailHeaders,
include_perm_sync: bool,
) -> Document:
sender_name, sender_addr = _parse_singular_addr(raw_header=email_headers.sender)
to_addrs = (
_parse_addrs(email_headers.recipients)
if email_headers.recipients
else []
)
cc_addrs = (
_parse_addrs(email_headers.cc)
if email_headers.cc
else []
)
all_participants = to_addrs + cc_addrs
expert_info_map = {
recipient_addr: BasicExpertInfo(
display_name=recipient_name, email=recipient_addr
)
for recipient_name, recipient_addr in all_participants
}
if sender_addr not in expert_info_map:
expert_info_map[sender_addr] = BasicExpertInfo(
display_name=sender_name, email=sender_addr
)
email_body = _parse_email_body(email_msg=email_msg, email_headers=email_headers)
primary_owners = list(expert_info_map.values())
external_access = (
ExternalAccess(
external_user_emails=set(expert_info_map.keys()),
external_user_group_ids=set(),
is_public=False,
)
if include_perm_sync
else None
)
return Document(
id=email_headers.id,
title=email_headers.subject,
blob=email_body,
size_bytes=len(email_body),
semantic_identifier=email_headers.subject,
metadata={},
extension='.txt',
doc_updated_at=email_headers.date,
source=DocumentSource.IMAP,
primary_owners=primary_owners,
external_access=external_access,
)
def extract_attachments(email_msg: Message, max_bytes: int = IMAP_CONNECTOR_SIZE_THRESHOLD):
attachments = []
if not email_msg.is_multipart():
return attachments
for part in email_msg.walk():
if part.get_content_maintype() == "multipart":
continue
disposition = (part.get("Content-Disposition") or "").lower()
filename = part.get_filename()
if not (
disposition.startswith("attachment")
or (disposition.startswith("inline") and filename)
):
continue
payload = part.get_payload(decode=True)
if not payload:
continue
if len(payload) > max_bytes:
continue
attachments.append({
"filename": filename or "attachment.bin",
"content_type": part.get_content_type(),
"content_bytes": payload,
"size_bytes": len(payload),
})
return attachments
def decode_mime_filename(raw: str | None) -> str | None:
if not raw:
return None
try:
raw = collapse_rfc2231_value(raw)
except Exception:
pass
parts = decode_header(raw)
decoded = []
for value, encoding in parts:
if isinstance(value, bytes):
decoded.append(value.decode(encoding or "utf-8", errors="replace"))
else:
decoded.append(value)
return "".join(decoded)
def attachment_to_document(
parent_doc: Document,
att: dict,
email_headers: EmailHeaders,
):
raw_filename = att["filename"]
filename = decode_mime_filename(raw_filename) or "attachment.bin"
ext = "." + filename.split(".")[-1] if "." in filename else ""
return Document(
id=f"{parent_doc.id}#att:{filename}",
source=DocumentSource.IMAP,
semantic_identifier=filename,
extension=ext,
blob=att["content_bytes"],
size_bytes=att["size_bytes"],
doc_updated_at=email_headers.date,
primary_owners=parent_doc.primary_owners,
metadata={
"parent_email_id": parent_doc.id,
"parent_subject": email_headers.subject,
"attachment_filename": filename,
"attachment_content_type": att["content_type"],
},
)
def _parse_email_body(
email_msg: Message,
email_headers: EmailHeaders,
) -> str:
body = None
for part in email_msg.walk():
if part.is_multipart():
# Multipart parts are *containers* for other parts, not the actual content itself.
# Therefore, we skip until we find the individual parts instead.
continue
charset = part.get_content_charset() or "utf-8"
try:
raw_payload = part.get_payload(decode=True)
if not isinstance(raw_payload, bytes):
logging.warning(
"Payload section from email was expected to be an array of bytes, instead got "
f"{type(raw_payload)=}, {raw_payload=}"
)
continue
body = raw_payload.decode(charset)
break
except (UnicodeDecodeError, LookupError) as e:
logging.warning(f"Could not decode part with charset {charset}. Error: {e}")
continue
if not body:
logging.warning(
f"Email with {email_headers.id=} has an empty body; returning an empty string"
)
return ""
soup = bs4.BeautifulSoup(markup=body, features="html.parser")
return " ".join(str_section for str_section in soup.stripped_strings)
def _sanitize_mailbox_names(mailboxes: list[str]) -> list[str]:
"""
Mailboxes with special characters in them must be enclosed by double-quotes, as per the IMAP protocol.
Just to be safe, we wrap *all* mailboxes with double-quotes.
"""
return [f'"{mailbox}"' for mailbox in mailboxes if mailbox]
def _parse_addrs(raw_header: str) -> list[tuple[str, str]]:
addrs = raw_header.split(",")
name_addr_pairs = [parseaddr(addr=addr) for addr in addrs if addr]
return [(name, addr) for name, addr in name_addr_pairs if addr]
def _parse_singular_addr(raw_header: str) -> tuple[str, str]:
addrs = _parse_addrs(raw_header=raw_header)
if not addrs:
return ("Unknown", "unknown@example.com")
elif len(addrs) >= 2:
raise RuntimeError(
f"Expected a singular address, but instead got multiple; {raw_header=} {addrs=}"
)
return addrs[0]
if __name__ == "__main__":
import time
import uuid
from types import TracebackType
from common.data_source.utils import load_all_docs_from_checkpoint_connector
class OnyxStaticCredentialsProvider(
CredentialsProviderInterface["OnyxStaticCredentialsProvider"]
):
"""Implementation (a very simple one!) to handle static credentials."""
def __init__(
self,
tenant_id: str | None,
connector_name: str,
credential_json: dict[str, Any],
):
self._tenant_id = tenant_id
self._connector_name = connector_name
self._credential_json = credential_json
self._provider_key = str(uuid.uuid4())
def __enter__(self) -> "OnyxStaticCredentialsProvider":
return self
def __exit__(
self,
exc_type: type[BaseException] | None,
exc_value: BaseException | None,
traceback: TracebackType | None,
) -> None:
pass
def get_tenant_id(self) -> str | None:
return self._tenant_id
def get_provider_key(self) -> str:
return self._provider_key
def get_credentials(self) -> dict[str, Any]:
return self._credential_json
def set_credentials(self, credential_json: dict[str, Any]) -> None:
self._credential_json = credential_json
def is_dynamic(self) -> bool:
return False
# from tests.daily.connectors.utils import load_all_docs_from_checkpoint_connector
# from onyx.connectors.credentials_provider import OnyxStaticCredentialsProvider
host = os.environ.get("IMAP_HOST")
mailboxes_str = os.environ.get("IMAP_MAILBOXES","INBOX")
username = os.environ.get("IMAP_USERNAME")
password = os.environ.get("IMAP_PASSWORD")
mailboxes = (
[mailbox.strip() for mailbox in mailboxes_str.split(",")]
if mailboxes_str
else []
)
if not host:
raise RuntimeError("`IMAP_HOST` must be set")
imap_connector = ImapConnector(
host=host,
mailboxes=mailboxes,
)
imap_connector.set_credentials_provider(
OnyxStaticCredentialsProvider(
tenant_id=None,
connector_name=DocumentSource.IMAP,
credential_json={
_USERNAME_KEY: username,
_PASSWORD_KEY: password,
},
)
)
END = time.time()
START = END - 1 * 24 * 60 * 60
for doc in load_all_docs_from_checkpoint_connector(
connector=imap_connector,
start=START,
end=END,
):
print(doc.id,doc.extension)

View File

@ -476,11 +476,13 @@ class RAGFlowPdfParser:
self.boxes = bxs
def _naive_vertical_merge(self, zoomin=3):
bxs = self._assign_column(self.boxes, zoomin)
#bxs = self._assign_column(self.boxes, zoomin)
bxs = self.boxes
grouped = defaultdict(list)
for b in bxs:
grouped[(b["page_number"], b.get("col_id", 0))].append(b)
# grouped[(b["page_number"], b.get("col_id", 0))].append(b)
grouped[(b["page_number"], "x")].append(b)
merged_boxes = []
for (pg, col), bxs in grouped.items():
@ -551,7 +553,7 @@ class RAGFlowPdfParser:
merged_boxes.extend(bxs)
self.boxes = sorted(merged_boxes, key=lambda x: (x["page_number"], x.get("col_id", 0), x["top"]))
#self.boxes = sorted(merged_boxes, key=lambda x: (x["page_number"], x.get("col_id", 0), x["top"]))
def _final_reading_order_merge(self, zoomin=3):
if not self.boxes:
@ -1206,7 +1208,7 @@ class RAGFlowPdfParser:
start = timer()
self._text_merge()
self._concat_downward()
#self._naive_vertical_merge(zoomin)
self._naive_vertical_merge(zoomin)
if callback:
callback(0.92, "Text merged ({:.2f}s)".format(timer() - start))

View File

@ -0,0 +1,8 @@
{
"label": "Basics",
"position": 2,
"link": {
"type": "generated-index",
"description": "Basic concepts."
}
}

View File

@ -0,0 +1,61 @@
---
sidebar_position: 2
slug: /what_is_agent_context_engine
---
# What is Agent context engine?
From 2025, a silent revolution began beneath the dazzling surface of AI Agents. While the world marveled at agents that could write code, analyze data, and automate workflows, a fundamental bottleneck emerged: why do even the most advanced agents still stumble on simple questions, forget previous conversations, or misuse available tools?
The answer lies not in the intelligence of the Large Language Model (LLM) itself, but in the quality of the Context it receives. An LLM, no matter how powerful, is only as good as the information we feed it. Todays cutting-edge agents are often crippled by a cumbersome, manual, and error-prone process of context assembly—a process known as Context Engineering.
This is where the Agent Context Engine comes in. It is not merely an incremental improvement but a foundational shift, representing the evolution of RAG from a singular technique into the core data and intelligence substrate for the entire Agent ecosystem.
## Beyond the hype: The reality of today's "intelligent" Agents
Today, the “intelligence” behind most AI Agents hides a mountain of human labor. Developers must:
- Hand-craft elaborate prompt templates
- Hard-code document-retrieval logic for every task
- Juggle tool descriptions, conversation history, and knowledge snippets inside a tiny context window
- Repeat the whole process for each new scenario
This pattern is called Context Engineering. It is deeply tied to expert know-how, almost impossible to scale, and prohibitively expensive to maintain. When an enterprise needs to keep dozens of distinct agents alive, the artisanal workshop model collapses under its own weight.
The mission of an Agent Context Engine is to turn Context Engineering from an “art” into an industrial-grade science.
Deconstructing the Agent Context Engine
So, what exactly is an Agent Context Engine? It is a unified, intelligent, and automated platform responsible for the end-to-end process of assembling the optimal context for an LLM or Agent at the moment of inference. It moves from artisanal crafting to industrialized production.
At its core, an Agent Context Engine is built on a triumvirate of next-generation retrieval capabilities, seamlessly integrated into a single service layer:
1. The Knowledge Core (Advanced RAG): This is the evolution of traditional RAG. It moves beyond simple chunk-and-embed to intelligently process static, private enterprise knowledge. Techniques like TreeRAG (building LLM-generated document outlines for "locate-then-expand" retrieval) and GraphRAG (extracting entity networks to find semantically distant connections) work to close the "semantic gap." The engines Ingestion Pipeline acts as the ETL for unstructured data, parsing multi-format documents and using LLMs to enrich content with summaries, metadata, and structure before indexing.
2. The Memory Layer: An Agents intelligence is defined by its ability to learn from interaction. The Memory Layer is a specialized retrieval system for dynamic, episodic data: conversation history, user preferences, and the agents own internal state (e.g., "waiting for human input"). It manages the lifecycle of this data—storing raw dialogue, triggering summarization into semantic memory, and retrieving relevant past interactions to provide continuity and personalization. Technologically, it is a close sibling to RAG, but focused on a temporal stream of data.
3. The Tool Orchestrator: As MCP (Model Context Protocol) enables the connection of hundreds of internal services as tools, a new problem arises: tool selection. The Context Engine solves this with Tool Retrieval. Instead of dumping all tool descriptions into the prompt, it maintains an index of tools and—critically—an index of Playbooks or Guidelines (best practices on when and how to use tools). For a given task, it retrieves only the most relevant tools and instructions, transforming the LLMs job from "searching a haystack" to "following a recipe."
## Why we need a dedicated engine? The case for a unified substrate
The necessity of an Agent Context Engine becomes clear when we examine the alternative: siloed, manually wired components.
- The Data Silo Problem: Knowledge, memory, and tools reside in separate systems, requiring complex integration for each new agent.
- The Assembly Line Bottleneck: Developers spend more time on context plumbing than on agent logic, slowing innovation to a crawl.
- The "Context Ownership" Dilemma: In manually engineered systems, context logic is buried in code, owned by developers, and opaque to business users. An Engine makes context a configurable, observable, and customer-owned asset.
The shift from Context Engineering to a Context Platform/Engine marks the maturation of enterprise AI, as summarized in the table below:
| Dimension | Context engineering (present) | Context engineering/Platform (future) |
| ------------------- | -------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------- |
| Context creation | Manual, artisanal work by developers and prompt engineers. | Automated, driven by intelligent ingestion pipelines and configurable rules. |
| Context delivery | Hard-coded prompts and static retrieval logic embedded in agent workflows. | Dynamic, real-time retrieval and assembly based on the agent's live state and intent. |
| Context maintenance | A development and operational burden, logic locked in code. | A manageable platform function, with visibility and control returned to the business. |
## RAGFlow: A resolute march toward the context engine of Agents
This is the future RAGFlow is forging.
We left behind the label of “yet another RAG system” long ago. From DeepDoc—our deeply-optimized, multimodal document parser—to the bleeding-edge architectures that bridge semantic chasms in complex RAG scenarios, all the way to a full-blown, enterprise-grade ingestion pipeline, every evolutionary step RAGFlow takes is a deliberate stride toward the ultimate form: an Agentic Context Engine.
We believe tomorrows enterprise AI advantage will hinge not on who owns the largest model, but on who can feed that model the highest-quality, most real-time, and most relevant context. An Agentic Context Engine is the critical infrastructure that turns this vision into reality.
In the paradigm shift from “hand-crafted prompts” to “intelligent context,” RAGFlow is determined to be the most steadfast propeller and enabler. We invite every developer, enterprise, and researcher who cares about the future of AI agents to follow RAGFlows journey—so together we can witness and build the cornerstone of the next-generation AI stack.

107
docs/basics/rag.md Normal file
View File

@ -0,0 +1,107 @@
---
sidebar_position: 1
slug: /what_is_rag
---
# What is Retreival-Augmented-Generation (RAG)
Since large language models (LLMs) became the focus of technology, their ability to handle general knowledge has been astonishing. However, when questions shift to internal corporate documents, proprietary knowledge bases, or real-time data, the limitations of LLMs become glaringly apparent: they cannot access private information outside their training data. Retrieval-Augmented Generation (RAG) was born precisely to address this core need. Before an LLM generates an answer, it first retrieves the most relevant context from an external knowledge base and inputs it as "reference material" to the LLM, thereby guiding it to produce accurate answers. In short, RAG elevates LLMs from "relying on memory" to "having evidence to rely on," significantly improving their accuracy and trustworthiness in specialized fields and real-time information queries.
## Why RAG is important?
Although LLMs excel in language understanding and generation, they have inherent limitations:
- Static Knowledge: The model's knowledge is based on a data snapshot from its training time and cannot be automatically updated, making it difficult to perceive the latest information.
- Blind Spot to External Data: They cannot directly access corporate private documents, real-time information streams, or domain-specific content.
- Hallucination Risk: When lacking accurate evidence, they may still fabricate plausible-sounding but false answers to maintain conversational fluency.
The introduction of RAG provides LLMs with real-time, credible "factual grounding." Its core mechanism is divided into two stages:
- Retrieval Stage: Based on the user's question, quickly retrieve the most relevant documents or data fragments from an external knowledge base.
- Generation Stage: The LLM organizes and generates the final answer by incorporating the retrieved information as context, combined with its own linguistic capabilities.
This upgrades LLMs from "speaking from memory" to "speaking with documentation," significantly enhancing reliability in professional and enterprise-level applications.
## How RAG works?
Retrieval-Augmented Generation enables LLMs to generate higher-quality responses by leveraging real-time, external, or private data sources through the introduction of an information retrieval mechanism. Its workflow can be divided into following key steps:
### Data processing and vectorization
The knowledge required by RAG comes from unstructured data in various formats, such as documents, database records, or API return content. This data typically needs to be chunked, then transformed into vectors via an embedding model, and stored in a vector database.
Why is Chunking Needed? Indexing entire documents directly faces the following problems:
- Decreased Retrieval Precision: Vectorizing long documents leads to semantic "averaging," losing details.
- Context Length Limitation: LLMs have a finite context window, requiring filtering of the most relevant parts for input.
- Cost and Efficiency: Embedding computation and retrieval costs are higher for long texts.
Therefore, an intelligent chunking strategy is key to balancing information integrity, retrieval granularity, and computational efficiency.
### Retrieve relevant information
The user's query is also converted into a vector to perform semantic relevance searches (e.g., calculating cosine similarity) in the vector database, matching and recalling the most relevant text fragments.
### Context construction and answer generation
The retrieved relevant content is added to the LLM's context as factual grounding, and the LLM finally generates the answer. Therefore, RAG can be seen as Context Engineering 1.0 for automated context construction.
## Deep dive into existing RAG architecture: beyond vector retrieval
An industrial-grade RAG system is far from being as simple as "vector search + LLM"; its complexity and challenges are primarily embedded in the retrieval process.
### Data complexity: multimodal document processing
Core Challenge: Corporate knowledge mostly exists in the form of multimodal documents containing text, charts, tables, and formulas. Simple OCR extraction loses a large amount of semantic information.
Advanced Practice: Leading solutions, such as RAGFlow, tend to use Visual Language Models (VLM) or specialized parsing models like DeepDoc to "translate" multimodal documents into unimodal text rich in structural and semantic information. Converting multimodal information into high-quality unimodal text has become standard practice for advanced RAG.
### The complexity of chunking: the trade-off between precision and context
A simple "chunk-embed-retrieve" pipeline has an inherent contradiction:
- Semantic Matching requires small text chunks to ensure clear semantic focus.
- Context Understanding requires large text chunks to ensure complete and coherent information.
This forces system design into a difficult trade-off between "precise but fragmented" and "complete but vague."
Advanced Practice: Leading solutions, such as RAGFlow, employ semantic enhancement techniques like constructing semantic tables of contents and knowledge graphs. These not only address semantic fragmentation caused by physical chunking but also enable the discovery of relevant content across documents based on entity-relationship networks.
### Why is a vector database insufficient for serving RAG?
Vector databases excel at semantic similarity search, but RAG requires precise and reliable answers, demanding more capabilities from the retrieval system:
- Hybrid Search: Relying solely on vector retrieval may miss exact keyword matches (e.g., product codes, regulation numbers). Hybrid search, combining vector retrieval with keyword retrieval (BM25), ensures both semantic breadth and keyword precision.
- Tensor or Multi-Vector Representation: To support cross-modal data, employing tensor or multi-vector representation has become an important trend.
- Metadata Filtering: Filtering based on attributes like date, department, and type is a rigid requirement in business scenarios.
Therefore, the retrieval layer of RAG is a composite system based on vector search but must integrate capabilities like full-text search, re-ranking, and metadata filtering.
## RAG and memory: Retrieval from the same source but different streams
Within the agent framework, the essence of the memory mechanism is the same as RAG: both retrieve relevant information from storage based on current needs. The key difference lies in the data source:
- RAG: Targets pre-existing static or dynamic private data provided by the user in advance (e.g., documents, databases).
- Memory: Targets dynamic data generated or perceived by the agent in real-time during interaction (e.g., conversation history, environmental state, tool execution results).
They are highly consistent at the technical base (e.g., vector retrieval, keyword matching) and can be seen as the same retrieval capability applied in different scenarios ("existing knowledge" vs. "interaction memory"). A complete agent system often includes both an RAG module for inherent knowledge and a Memory module for interaction history.
## RAG applications
RAG has demonstrated clear value in several typical scenarios:
1. Enterprise Knowledge Q&A and Internal Search
By vectorizing corporate private data and combining it with an LLM, RAG can directly return natural language answers based on authoritative sources, rather than document lists. While meeting intelligent Q&A needs, it inherently aligns with corporate requirements for data security, access control, and compliance.
2. Complex Document Understanding and Professional Q&A
For structurally complex documents like contracts and regulations, the value of RAG lies in its ability to generate accurate, verifiable answers while maintaining context integrity. Its system accuracy largely depends on text chunking and semantic understanding strategies.
3. Dynamic Knowledge Fusion and Decision Support
In business scenarios requiring the synthesis of information from multiple sources, RAG evolves into a knowledge orchestration and reasoning support system for business decisions. Through a multi-path recall mechanism, it fuses knowledge from different systems and formats, maintaining factual consistency and logical controllability during the generation phase.
## The future of RAG
The evolution of RAG is unfolding along several clear paths:
1. RAG as the data foundation for Agents
RAG and agents have an architecture vs. scenario relationship. For agents to achieve autonomous and reliable decision-making and execution, they must rely on accurate and timely knowledge. RAG provides them with a standardized capability to access private domain knowledge and is an inevitable choice for building knowledge-aware agents.
2. Advanced RAG: Using LLMs to optimize retrieval itself
The core feature of next-generation RAG is fully utilizing the reasoning capabilities of LLMs to optimize the retrieval process, such as rewriting queries, summarizing or fusing results, or implementing intelligent routing. Empowering every aspect of retrieval with LLMs is key to breaking through current performance bottlenecks.
3. Towards context engineering 2.0
Current RAG can be viewed as Context Engineering 1.0, whose core is assembling static knowledge context for single Q&A tasks. The forthcoming Context Engineering 2.0 will extend with RAG technology at its core, becoming a system that automatically and dynamically assembles comprehensive context for agents. The context fused by this system will come not only from documents but also include interaction memory, available tools/skills, and real-time environmental information. This marks the transition of agent development from a "handicraft workshop" model to the industrial starting point of automated context engineering.
The essence of RAG is to build a dedicated, efficient, and trustworthy external data interface for large language models; its core is Retrieval, not Generation. Starting from the practical need to solve private data access, its technical depth is reflected in the optimization of retrieval for complex unstructured data. With its deep integration into agent architectures and its development towards automated context engineering, RAG is evolving from a technology that improves Q&A quality into the core infrastructure for building the next generation of trustworthy, controllable, and scalable intelligent applications.

View File

@ -13,61 +13,58 @@ A complete list of models supported by RAGFlow, which will continue to expand.
<APITable>
```
| Provider | Chat | Embedding | Rerank | Img2txt | Speech2txt | TTS |
| --------------------- | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
| Anthropic | :heavy_check_mark: | | | | | |
| Azure-OpenAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | |
| BAAI | | :heavy_check_mark: | :heavy_check_mark: | | | |
| BaiChuan | :heavy_check_mark: | :heavy_check_mark: | | | | |
| BaiduYiyan | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Bedrock | :heavy_check_mark: | :heavy_check_mark: | | | | |
| Cohere | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| DeepSeek | :heavy_check_mark: | | | | | |
| FastEmbed | | :heavy_check_mark: | | | | |
| Fish Audio | | | | | | :heavy_check_mark: |
| Gemini | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| Google Cloud | :heavy_check_mark: | | | | | |
| GPUStack | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: |
| Groq | :heavy_check_mark: | | | | | |
| HuggingFace | :heavy_check_mark: | :heavy_check_mark: | | | | |
| Jina | | :heavy_check_mark: | :heavy_check_mark: | | | |
| LeptonAI | :heavy_check_mark: | | | | | |
| LocalAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| LM-Studio | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| MiniMax | :heavy_check_mark: | | | | | |
| Mistral | :heavy_check_mark: | :heavy_check_mark: | | | | |
| ModelScope | :heavy_check_mark: | | | | | |
| Moonshot | :heavy_check_mark: | | | :heavy_check_mark: | | |
| Novita AI | :heavy_check_mark: | :heavy_check_mark: | | | | |
| NVIDIA | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Ollama | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| OpenAI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| OpenAI-API-Compatible | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| OpenRouter | :heavy_check_mark: | | | :heavy_check_mark: | | |
| PerfXCloud | :heavy_check_mark: | :heavy_check_mark: | | | | |
| Replicate | :heavy_check_mark: | :heavy_check_mark: | | | | |
| PPIO | :heavy_check_mark: | | | | | |
| SILICONFLOW | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| StepFun | :heavy_check_mark: | | | | | |
| Tencent Hunyuan | :heavy_check_mark: | | | | | |
| Tencent Cloud | | | | | :heavy_check_mark: | |
| TogetherAI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Tongyi-Qianwen | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Upstage | :heavy_check_mark: | :heavy_check_mark: | | | | |
| VLLM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| VolcEngine | :heavy_check_mark: | | | | | |
| Voyage AI | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| Xinference | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| XunFei Spark | :heavy_check_mark: | | | | | :heavy_check_mark: |
| xAI | :heavy_check_mark: | | | :heavy_check_mark: | | |
| Youdao | | :heavy_check_mark: | :heavy_check_mark: | | | |
| ZHIPU-AI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| 01.AI | :heavy_check_mark: | | | | | |
| DeepInfra | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: |
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| CometAPI | :heavy_check_mark: | :heavy_check_mark: | | | | |
| DeerAPI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | :heavy_check_mark: |
| Jiekou.AI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | | |
| Provider | LLM | Image2Text | Speech2text | TTS | Embedding | Rerank | OCR |
| --------------------- | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
| Anthropic | :heavy_check_mark: | | | | | | |
| Azure-OpenAI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | |
| BaiChuan | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| BaiduYiyan | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| Bedrock | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| Cohere | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| DeepSeek | :heavy_check_mark: | | | | | | |
| Fish Audio | | | | :heavy_check_mark: | | | |
| Gemini | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| Google Cloud | :heavy_check_mark: | | | | | | |
| GPUStack | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| Groq | :heavy_check_mark: | | | | | | |
| HuggingFace | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| Jina | | | | | :heavy_check_mark: | :heavy_check_mark: | |
| LocalAI | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| LongCat | :heavy_check_mark: | | | | | | |
| LM-Studio | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| MiniMax | :heavy_check_mark: | | | | | | |
| MinerU | | | | | | | :heavy_check_mark: |
| Mistral | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| ModelScope | :heavy_check_mark: | | | | | | |
| Moonshot | :heavy_check_mark: | :heavy_check_mark: | | | | | |
| NovitaAI | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| NVIDIA | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| Ollama | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| OpenAI | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| OpenAI-API-Compatible | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| OpenRouter | :heavy_check_mark: | :heavy_check_mark: | | | | | |
| Replicate | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| PPIO | :heavy_check_mark: | | | | | | |
| SILICONFLOW | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| StepFun | :heavy_check_mark: | | | | | | |
| Tencent Hunyuan | :heavy_check_mark: | | | | | | |
| Tencent Cloud | | | :heavy_check_mark: | | | | |
| TogetherAI | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| TokenPony | :heavy_check_mark: | | | | | | |
| Tongyi-Qianwen | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| Upstage | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| VLLM | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| VolcEngine | :heavy_check_mark: | | | | | | |
| Voyage AI | | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| Xinference | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
| XunFei Spark | :heavy_check_mark: | | | :heavy_check_mark: | | | |
| xAI | :heavy_check_mark: | :heavy_check_mark: | | | | | |
| ZHIPU-AI | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | | |
| DeepInfra | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | |
| 302.AI | :heavy_check_mark: | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | |
| CometAPI | :heavy_check_mark: | | | | :heavy_check_mark: | | |
| DeerAPI | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | | |
| Jiekou.AI | :heavy_check_mark: | | | | :heavy_check_mark: | :heavy_check_mark: | |
```mdx-code-block
</APITable>

View File

@ -40,7 +40,7 @@ from deepdoc.parser.docling_parser import DoclingParser
from deepdoc.parser.tcadp_parser import TCADPParser
from common.parser_config_utils import normalize_layout_recognizer
from rag.nlp import concat_img, find_codec, naive_merge, naive_merge_with_images, naive_merge_docx, rag_tokenizer, \
tokenize_chunks, tokenize_chunks_with_images, tokenize_table, attach_media_context
tokenize_chunks, tokenize_chunks_with_images, tokenize_table, attach_media_context, append_context2table_image4pdf
def by_deepdoc(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls=None,
@ -487,7 +487,7 @@ class Pdf(PdfParser):
tbls = self._extract_table_figure(True, zoomin, True, True)
self._naive_vertical_merge()
self._concat_downward()
self._final_reading_order_merge()
# self._final_reading_order_merge()
# self._filter_forpages()
logging.info("layouts cost: {}s".format(timer() - first_start))
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes], tbls
@ -776,6 +776,9 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
if not sections and not tables:
return []
if table_context_size or image_context_size:
tables = append_context2table_image4pdf(sections, tables, image_context_size)
if name in ["tcadp", "docling", "mineru"]:
parser_config["chunk_token_num"] = 0
@ -1006,8 +1009,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
res.extend(embed_res)
if url_res:
res.extend(url_res)
if table_context_size or image_context_size:
attach_media_context(res, table_context_size, image_context_size)
#if table_context_size or image_context_size:
# attach_media_context(res, table_context_size, image_context_size)
return res

View File

@ -16,7 +16,7 @@
import logging
import random
from collections import Counter
from collections import Counter, defaultdict
from common.token_utils import num_tokens_from_string
import re
@ -667,6 +667,94 @@ def attach_media_context(chunks, table_context_size=0, image_context_size=0):
return chunks
def append_context2table_image4pdf(sections: list, tabls: list, table_context_size=0):
from deepdoc.parser import PdfParser
if table_context_size <=0:
return tabls
page_bucket = defaultdict(list)
for i, (txt, poss) in enumerate(sections):
poss = PdfParser.extract_positions(poss)
for page, left, right, top, bottom in poss:
page = page[0]
page_bucket[page].append(((left, top, right, bottom), txt))
def upper_context(page, i):
txt = ""
if page not in page_bucket:
i = -1
while num_tokens_from_string(txt) < table_context_size:
if i < 0:
page -= 1
if page < 0 or page not in page_bucket:
break
i = len(page_bucket[page]) -1
blks = page_bucket[page]
(_, _, _, _), cnt = blks[i]
txts = re.split(r"([。!?\n]|\. )", cnt, flags=re.DOTALL)[::-1]
for j in range(0, len(txts), 2):
txt = (txts[j+1] if j+1<len(txts) else "") + txts[j] + txt
if num_tokens_from_string(txt) > table_context_size:
break
i -= 1
return txt
def lower_context(page, i):
txt = ""
if page not in page_bucket:
return txt
while num_tokens_from_string(txt) < table_context_size:
if i >= len(page_bucket[page]):
page += 1
if page not in page_bucket:
break
i = 0
blks = page_bucket[page]
(_, _, _, _), cnt = blks[i]
txts = re.split(r"([。!?\n]|\. )", cnt, flags=re.DOTALL)
for j in range(0, len(txts), 2):
txt += txts[j] + (txts[j+1] if j+1<len(txts) else "")
if num_tokens_from_string(txt) > table_context_size:
break
i += 1
return txt
res = []
for (img, tb), poss in tabls:
page, left, top, right, bott = poss[0]
_page, _left, _top, _right, _bott = poss[-1]
if isinstance(tb, list):
tb = "\n".join(tb)
i = 0
blks = page_bucket.get(page, [])
_tb = tb
while i < len(blks):
if i + 1 >= len(blks):
if _page > page:
page += 1
i = 0
blks = page_bucket.get(page, [])
continue
tb = upper_context(page, i) + tb + lower_context(page+1, 0)
break
(_, t, r, b), txt = blks[i]
if b > top:
break
(_, _t, _r, _b), _txt = blks[i+1]
if _t < _bott:
i += 1
continue
tb = upper_context(page, i) + tb + lower_context(page, i)
break
if _tb == tb:
tb = upper_context(page, -1) + tb + lower_context(page+1, 0)
res.append(((img, tb), poss))
return res
def add_positions(d, poss):
if not poss:
return

View File

@ -729,6 +729,8 @@ TOC_FROM_TEXT_USER = load_prompt("toc_from_text_user")
# Generate TOC from text chunks with text llms
async def gen_toc_from_text(txt_info: dict, chat_mdl, callback=None):
if callback:
callback(msg="")
try:
ans = await gen_json(
PROMPT_JINJA_ENV.from_string(TOC_FROM_TEXT_SYSTEM).render(),
@ -738,8 +740,6 @@ async def gen_toc_from_text(txt_info: dict, chat_mdl, callback=None):
gen_conf={"temperature": 0.0, "top_p": 0.9}
)
txt_info["toc"] = ans if ans and not isinstance(ans, str) else []
if callback:
callback(msg="")
except Exception as e:
logging.exception(e)

View File

@ -39,16 +39,17 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from common import settings
from common.config_utils import show_configs
from common.data_source import (
BlobStorageConnector,
NotionConnector,
DiscordConnector,
GoogleDriveConnector,
MoodleConnector,
JiraConnector,
DropboxConnector,
WebDAVConnector,
AirtableConnector,
BlobStorageConnector,
NotionConnector,
DiscordConnector,
GoogleDriveConnector,
MoodleConnector,
JiraConnector,
DropboxConnector,
WebDAVConnector,
AirtableConnector,
AsanaConnector,
ImapConnector
)
from common.constants import FileSource, TaskStatus
from common.data_source.config import INDEX_BATCH_SIZE
@ -915,6 +916,70 @@ class Github(SyncBase):
return async_wrapper()
class IMAP(SyncBase):
SOURCE_NAME: str = FileSource.IMAP
async def _generate(self, task):
from common.data_source.config import DocumentSource
from common.data_source.interfaces import StaticCredentialsProvider
self.connector = ImapConnector(
host=self.conf.get("imap_host"),
port=self.conf.get("imap_port"),
mailboxes=self.conf.get("imap_mailbox"),
)
credentials_provider = StaticCredentialsProvider(tenant_id=task["tenant_id"], connector_name=DocumentSource.IMAP, credential_json=self.conf["credentials"])
self.connector.set_credentials_provider(credentials_provider)
end_time = datetime.now(timezone.utc).timestamp()
if task["reindex"] == "1" or not task["poll_range_start"]:
start_time = end_time - self.conf.get("poll_range",30) * 24 * 60 * 60
begin_info = "totally"
else:
start_time = task["poll_range_start"].timestamp()
begin_info = f"from {task['poll_range_start']}"
raw_batch_size = self.conf.get("sync_batch_size") or self.conf.get("batch_size") or INDEX_BATCH_SIZE
try:
batch_size = int(raw_batch_size)
except (TypeError, ValueError):
batch_size = INDEX_BATCH_SIZE
if batch_size <= 0:
batch_size = INDEX_BATCH_SIZE
def document_batches():
checkpoint = self.connector.build_dummy_checkpoint()
pending_docs = []
iterations = 0
iteration_limit = 100_000
while checkpoint.has_more:
wrapper = CheckpointOutputWrapper()
doc_generator = wrapper(self.connector.load_from_checkpoint(start_time, end_time, checkpoint))
for document, failure, next_checkpoint in doc_generator:
if failure is not None:
logging.warning("IMAP connector failure: %s", getattr(failure, "failure_message", failure))
continue
if document is not None:
pending_docs.append(document)
if len(pending_docs) >= batch_size:
yield pending_docs
pending_docs = []
if next_checkpoint is not None:
checkpoint = next_checkpoint
iterations += 1
if iterations > iteration_limit:
raise RuntimeError("Too many iterations while loading IMAP documents.")
if pending_docs:
yield pending_docs
logging.info(
"Connect to IMAP: host(%s) port(%s) user(%s) folder(%s) %s",
self.conf["imap_host"],
self.conf["imap_port"],
self.conf["credentials"]["imap_username"],
self.conf["imap_mailbox"],
begin_info
)
return document_batches()
class Gitlab(SyncBase):
@ -977,6 +1042,7 @@ func_factory = {
FileSource.BOX: BOX,
FileSource.AIRTABLE: Airtable,
FileSource.ASANA: Asana,
FileSource.IMAP: IMAP,
FileSource.GITHUB: Github,
FileSource.GITLAB: Gitlab,
}

View File

@ -332,6 +332,9 @@ async def build_chunks(task, progress_callback):
async def doc_keyword_extraction(chat_mdl, d, topn):
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "keywords", {"topn": topn})
if not cached:
if has_canceled(task["id"]):
progress_callback(-1, msg="Task has been canceled.")
return
async with chat_limiter:
cached = await keyword_extraction(chat_mdl, d["content_with_weight"], topn)
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "keywords", {"topn": topn})
@ -362,6 +365,9 @@ async def build_chunks(task, progress_callback):
async def doc_question_proposal(chat_mdl, d, topn):
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "question", {"topn": topn})
if not cached:
if has_canceled(task["id"]):
progress_callback(-1, msg="Task has been canceled.")
return
async with chat_limiter:
cached = await question_proposal(chat_mdl, d["content_with_weight"], topn)
set_llm_cache(chat_mdl.llm_name, d["content_with_weight"], cached, "question", {"topn": topn})
@ -392,6 +398,9 @@ async def build_chunks(task, progress_callback):
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], "metadata",
task["parser_config"]["metadata"])
if not cached:
if has_canceled(task["id"]):
progress_callback(-1, msg="Task has been canceled.")
return
async with chat_limiter:
cached = await gen_metadata(chat_mdl,
metadata_schema(task["parser_config"]["metadata"]),
@ -457,6 +466,9 @@ async def build_chunks(task, progress_callback):
async def doc_content_tagging(chat_mdl, d, topn_tags):
cached = get_llm_cache(chat_mdl.llm_name, d["content_with_weight"], all_tags, {"topn": topn_tags})
if not cached:
if has_canceled(task["id"]):
progress_callback(-1, msg="Task has been canceled.")
return
picked_examples = random.choices(examples, k=2) if len(examples) > 2 else examples
if not picked_examples:
picked_examples.append({"content": "This is an example", TAG_FLD: {'example': 1}})

View File

@ -0,0 +1,7 @@
<svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24"
stroke-linecap="round" stroke-linejoin="round"
class="text-text-04" height="32" width="32"
xmlns="http://www.w3.org/2000/svg">
<path d="M4 4h16c1.1 0 2 .9 2 2v12c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V6c0-1.1.9-2 2-2z"></path>
<polyline points="22,6 12,13 2,6"></polyline>
</svg>

After

Width:  |  Height:  |  Size: 360 B

View File

@ -1,3 +1,4 @@
import { useIsDarkTheme } from '@/components/theme-provider';
import { useSetModalState, useTranslate } from '@/hooks/common-hooks';
import { LangfuseCard } from '@/pages/user-setting/setting-model/langfuse';
import apiDoc from '@parent/docs/references/http_api_reference.md';
@ -28,6 +29,8 @@ const ApiContent = ({
const { handlePreview } = usePreviewChat(idKey);
const isDarkTheme = useIsDarkTheme();
return (
<div className="pb-2">
<Flex vertical gap={'middle'}>
@ -47,7 +50,10 @@ const ApiContent = ({
<div style={{ position: 'relative' }}>
<MarkdownToc content={apiDoc} />
</div>
<MarkdownPreview source={apiDoc}></MarkdownPreview>
<MarkdownPreview
source={apiDoc}
wrapperElement={{ 'data-color-mode': isDarkTheme ? 'dark' : 'light' }}
></MarkdownPreview>
</Flex>
{apiKeyVisible && (
<ChatApiKeyModal

View File

@ -1,79 +1,72 @@
import { DocumentParserType } from '@/constants/knowledge';
import { useTranslate } from '@/hooks/common-hooks';
import { useFetchKnowledgeList } from '@/hooks/use-knowledge-request';
import { IKnowledge } from '@/interfaces/database/knowledge';
import { useBuildQueryVariableOptions } from '@/pages/agent/hooks/use-get-begin-query';
import { UserOutlined } from '@ant-design/icons';
import { Avatar as AntAvatar, Form, Select, Space } from 'antd';
import { toLower } from 'lodash';
import { useMemo } from 'react';
import { useEffect, useMemo, useState } from 'react';
import { useFormContext } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { RAGFlowAvatar } from './ragflow-avatar';
import { FormControl, FormField, FormItem, FormLabel } from './ui/form';
import { MultiSelect } from './ui/multi-select';
interface KnowledgeBaseItemProps {
label?: string;
tooltipText?: string;
name?: string;
required?: boolean;
onChange?(): void;
}
const KnowledgeBaseItem = ({
label,
tooltipText,
name,
required = true,
onChange,
}: KnowledgeBaseItemProps) => {
const { t } = useTranslate('chat');
const { list: knowledgeList } = useFetchKnowledgeList(true);
const filteredKnowledgeList = knowledgeList.filter(
(x) => x.parser_id !== DocumentParserType.Tag,
);
const knowledgeOptions = filteredKnowledgeList.map((x) => ({
label: (
<Space>
<AntAvatar size={20} icon={<UserOutlined />} src={x.avatar} />
{x.name}
</Space>
),
value: x.id,
}));
return (
<Form.Item
label={label || t('knowledgeBases')}
name={name || 'kb_ids'}
tooltip={tooltipText || t('knowledgeBasesTip')}
rules={[
{
required,
message: t('knowledgeBasesMessage'),
type: 'array',
},
]}
>
<Select
mode="multiple"
options={knowledgeOptions}
placeholder={t('knowledgeBasesMessage')}
onChange={onChange}
></Select>
</Form.Item>
);
};
export default KnowledgeBaseItem;
import { MultiSelect, MultiSelectOptionType } from './ui/multi-select';
function buildQueryVariableOptionsByShowVariable(showVariable?: boolean) {
return showVariable ? useBuildQueryVariableOptions : () => [];
}
export function useDisableDifferenceEmbeddingDataset() {
const [datasetOptions, setDatasetOptions] = useState<MultiSelectOptionType[]>(
[],
);
const [datasetSelectEmbedId, setDatasetSelectEmbedId] = useState('');
const { list: datasetListOrigin } = useFetchKnowledgeList(true);
useEffect(() => {
const datasetListMap = datasetListOrigin
.filter((x) => x.parser_id !== DocumentParserType.Tag)
.map((item: IKnowledge) => {
return {
label: item.name,
icon: () => (
<RAGFlowAvatar
className="size-4"
avatar={item.avatar}
name={item.name}
/>
),
suffix: (
<div className="text-xs px-4 p-1 bg-bg-card text-text-secondary rounded-lg border border-bg-card">
{item.embd_id}
</div>
),
value: item.id,
disabled:
item.embd_id !== datasetSelectEmbedId &&
datasetSelectEmbedId !== '',
};
});
setDatasetOptions(datasetListMap);
}, [datasetListOrigin, datasetSelectEmbedId]);
const handleDatasetSelectChange = (
value: string[],
onChange: (value: string[]) => void,
) => {
if (value.length) {
const data = datasetListOrigin?.find((item) => item.id === value[0]);
setDatasetSelectEmbedId(data?.embd_id ?? '');
} else {
setDatasetSelectEmbedId('');
}
onChange?.(value);
};
return {
datasetOptions,
handleDatasetSelectChange,
};
}
export function KnowledgeBaseFormField({
showVariable = false,
}: {
@ -82,22 +75,12 @@ export function KnowledgeBaseFormField({
const form = useFormContext();
const { t } = useTranslation();
const { list: knowledgeList } = useFetchKnowledgeList(true);
const filteredKnowledgeList = knowledgeList.filter(
(x) => x.parser_id !== DocumentParserType.Tag,
);
const { datasetOptions, handleDatasetSelectChange } =
useDisableDifferenceEmbeddingDataset();
const nextOptions = buildQueryVariableOptionsByShowVariable(showVariable)();
const knowledgeOptions = filteredKnowledgeList.map((x) => ({
label: x.name,
value: x.id,
icon: () => (
<RAGFlowAvatar className="size-4 mr-2" avatar={x.avatar} name={x.name} />
),
}));
const knowledgeOptions = datasetOptions;
const options = useMemo(() => {
if (showVariable) {
return [
@ -140,11 +123,14 @@ export function KnowledgeBaseFormField({
<FormControl>
<MultiSelect
options={options}
onValueChange={field.onChange}
onValueChange={(value) => {
handleDatasetSelectChange(value, field.onChange);
}}
placeholder={t('chat.knowledgeBasesMessage')}
variant="inverted"
maxCount={100}
defaultValue={field.value}
showSelectAll={false}
{...field}
/>
</FormControl>

View File

@ -109,6 +109,19 @@ export const SelectWithSearch = forwardRef<
}
}, [options, value]);
const showSearch = useMemo(() => {
if (Array.isArray(options) && options.length > 5) {
return true;
}
if (Array.isArray(options)) {
const optionsNum = options.reduce((acc, option) => {
return acc + (option?.options?.length || 0);
}, 0);
return optionsNum > 5;
}
return false;
}, [options]);
const handleSelect = useCallback(
(val: string) => {
setValue(val);
@ -179,7 +192,7 @@ export const SelectWithSearch = forwardRef<
align="start"
>
<Command className="p-5">
{options && options.length > 5 && (
{showSearch && (
<CommandInput
placeholder={t('common.search') + '...'}
className=" placeholder:text-text-disabled"

View File

@ -1,35 +1,19 @@
import { toast } from 'sonner';
import { ExternalToast, toast } from 'sonner';
const duration = { duration: 2500 };
const configuration: ExternalToast = { duration: 2500, position: 'top-center' };
const message = {
success: (msg: string) => {
toast.success(msg, {
position: 'top-center',
closeButton: false,
...duration,
});
toast.success(msg, configuration);
},
error: (msg: string) => {
toast.error(msg, {
position: 'top-center',
closeButton: false,
...duration,
});
toast.error(msg, configuration);
},
warning: (msg: string) => {
toast.warning(msg, {
position: 'top-center',
closeButton: false,
...duration,
});
toast.warning(msg, configuration);
},
info: (msg: string) => {
toast.info(msg, {
position: 'top-center',
closeButton: false,
...duration,
});
toast.info(msg, configuration);
},
};
export default message;

View File

@ -116,7 +116,7 @@ export interface ITenantInfo {
tts_id: string;
}
export type ChunkDocType = 'image' | 'table';
export type ChunkDocType = 'image' | 'table' | 'text';
export interface IChunk {
available_int: number; // Whether to enable, 0: not enabled, 1: enabled

View File

@ -147,6 +147,8 @@ Procedural Memory: Learned skills, habits, and automated procedures.`,
action: 'Action',
},
config: {
memorySizeTooltip: `Accounts for each message's content + its embedding vector (≈ Content + Dimensions × 8 Bytes).
Example: A 1 KB message with 1024-dim embedding uses ~9 KB. The 5 MB default limit holds ~500 such messages.`,
avatar: 'Avatar',
description: 'Description',
memorySize: 'Memory size',
@ -939,6 +941,8 @@ Example: Virtual Hosted Style`,
'Connect GitLab to sync repositories, issues, merge requests, and related documentation.',
asanaDescription:
'Connect to Asana and synchronize files from a specified workspace.',
imapDescription:
'Connect to your IMAP mailbox to sync emails for knowledge retrieval.',
dropboxAccessTokenTip:
'Generate a long-lived access token in the Dropbox App Console with files.metadata.read, files.content.read, and sharing.read scopes.',
moodleDescription:

View File

@ -755,6 +755,8 @@ export default {
'Подключите GitLab для синхронизации репозиториев, задач, merge requests и связанной документации.',
asanaDescription:
'Подключите Asana и синхронизируйте файлы из рабочего пространства.',
imapDescription:
'Подключите почтовый ящик IMAP для синхронизации писем из указанных почтовых ящиков (mailboxes) с целью поиска и анализа знаний.',
google_driveDescription:
'Подключите ваш Google Drive через OAuth и синхронизируйте определенные папки или диски.',
gmailDescription:

View File

@ -124,7 +124,6 @@ export default {
forgetMessageTip: '确定遗忘吗?',
messageDescription: '记忆提取使用高级设置中的提示词和温度值进行配置。',
copied: '已复制!',
contentEmbed: '内容嵌入',
content: '内容',
delMessageWarn: `遗忘后,代理将无法检索此消息。`,
forgetMessage: '遗忘消息',
@ -138,6 +137,8 @@ export default {
action: '操作',
},
config: {
memorySizeTooltip: `记录每条消息的内容 + 其嵌入向量(≈ 内容 + 维度 × 8 字节)。
例如:一条带有 1024 维嵌入的 1 KB 消息大约使用 9 KB。5 MB 的默认限制大约可容纳 500 条此类消息。`,
avatar: '头像',
description: '描述',
memorySize: '记忆大小',
@ -867,6 +868,8 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
gitlabDescription:
'连接 GitLab同步仓库、Issue、合并请求MR及相关文档内容。',
asanaDescription: '连接 Asana同步工作区中的文件。',
imapDescription:
'连接你的 IMAP 邮箱同步指定mailboxes中的邮件用于知识检索与分析',
r2Description: '连接你的 Cloudflare R2 存储桶以导入和同步文件。',
dropboxAccessTokenTip:
'请在 Dropbox App Console 生成 Access Token并勾选 files.metadata.read、files.content.read、sharing.read 等必要权限。',

View File

@ -1,16 +1,18 @@
import { IBeginNode } from '@/interfaces/database/flow';
import { BaseNode } from '@/interfaces/database/flow';
import { cn } from '@/lib/utils';
import { NodeProps, Position } from '@xyflow/react';
import get from 'lodash/get';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import {
AgentDialogueMode,
BeginQueryType,
BeginQueryTypeIconMap,
NodeHandleId,
Operator,
} from '../../constant';
import { BeginQuery } from '../../interface';
import { BeginFormSchemaType } from '../../form/begin-form/schema';
import { useBuildWebhookUrl } from '../../hooks/use-build-webhook-url';
import OperatorIcon from '../../operator-icon';
import { LabelCard } from './card';
import { CommonHandle } from './handle';
@ -18,10 +20,19 @@ import { RightHandleStyle } from './handle-icon';
import styles from './index.less';
import { NodeWrapper } from './node-wrapper';
// TODO: do not allow other nodes to connect to this node
function InnerBeginNode({ data, id, selected }: NodeProps<IBeginNode>) {
function InnerBeginNode({
data,
id,
selected,
}: NodeProps<BaseNode<BeginFormSchemaType>>) {
const { t } = useTranslation();
const inputs: Record<string, BeginQuery> = get(data, 'form.inputs', {});
const inputs = get(data, 'form.inputs', {});
const mode = data.form?.mode;
const isWebhookMode = mode === AgentDialogueMode.Webhook;
const url = useBuildWebhookUrl();
return (
<NodeWrapper selected={selected} id={id}>
@ -40,23 +51,38 @@ function InnerBeginNode({ data, id, selected }: NodeProps<IBeginNode>) {
{t(`flow.begin`)}
</div>
</section>
<section className={cn(styles.generateParameters, 'flex gap-2 flex-col')}>
{Object.entries(inputs).map(([key, val], idx) => {
const Icon = BeginQueryTypeIconMap[val.type as BeginQueryType];
return (
<LabelCard key={idx} className={cn('flex gap-1.5 items-center')}>
<Icon className="size-3.5" />
<label htmlFor="" className="text-accent-primary text-sm italic">
{key}
</label>
<LabelCard className="py-0.5 truncate flex-1">
{val.name}
<div className="text-accent-primary mt-2 p-1 bg-bg-accent w-fit rounded-sm text-xs">
{t(`flow.${isWebhookMode ? 'webhook.name' : mode}`)}
</div>
{isWebhookMode ? (
<LabelCard className="mt-2 flex gap-1 items-center">
<span className="font-bold">URL</span>
<span className="flex-1 truncate">{url}</span>
</LabelCard>
) : (
<section
className={cn(styles.generateParameters, 'flex gap-2 flex-col')}
>
{Object.entries(inputs).map(([key, val], idx) => {
const Icon = BeginQueryTypeIconMap[val.type as BeginQueryType];
return (
<LabelCard key={idx} className={cn('flex gap-1.5 items-center')}>
<Icon className="size-3.5" />
<label
htmlFor=""
className="text-accent-primary text-sm italic"
>
{key}
</label>
<LabelCard className="py-0.5 truncate flex-1">
{val.name}
</LabelCard>
<span className="flex-1">{val.optional ? 'Yes' : 'No'}</span>
</LabelCard>
<span className="flex-1">{val.optional ? 'Yes' : 'No'}</span>
</LabelCard>
);
})}
</section>
);
})}
</section>
)}
</NodeWrapper>
);
}

View File

@ -3,13 +3,16 @@ import { CopyToClipboardWithText } from '@/components/copy-to-clipboard';
import NumberInput from '@/components/originui/number-input';
import { SelectWithSearch } from '@/components/originui/select-with-search';
import { RAGFlowFormItem } from '@/components/ragflow-form';
import { Label } from '@/components/ui/label';
import { MultiSelect } from '@/components/ui/multi-select';
import { Separator } from '@/components/ui/separator';
import { Textarea } from '@/components/ui/textarea';
import { useBuildWebhookUrl } from '@/pages/agent/hooks/use-build-webhook-url';
import { buildOptions } from '@/utils/form';
import { upperFirst } from 'lodash';
import { useCallback } from 'react';
import { useFormContext, useWatch } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
import { useParams } from 'umi';
import {
RateLimitPerList,
WebhookMaxBodySize,
@ -22,7 +25,10 @@ import { Auth } from './auth';
import { WebhookRequestSchema } from './request-schema';
import { WebhookResponse } from './response';
const RateLimitPerOptions = buildOptions(RateLimitPerList);
const RateLimitPerOptions = RateLimitPerList.map((x) => ({
value: x,
label: upperFirst(x),
}));
const RequestLimitMap = {
[WebhookRateLimitPer.Second]: 100,
@ -33,7 +39,6 @@ const RequestLimitMap = {
export function WebHook() {
const { t } = useTranslation();
const { id } = useParams();
const form = useFormContext();
const rateLimitPer = useWatch({
@ -45,7 +50,7 @@ export function WebHook() {
return RequestLimitMap[rateLimitPer as keyof typeof RequestLimitMap] ?? 100;
}, []);
const text = `${location.protocol}//${location.host}/api/v1/webhook/${id}`;
const text = useBuildWebhookUrl();
return (
<>
@ -74,33 +79,36 @@ export function WebHook() {
></SelectWithSearch>
</RAGFlowFormItem>
<Auth></Auth>
<RAGFlowFormItem
name="security.rate_limit.limit"
label={t('flow.webhook.limit')}
>
<NumberInput
max={getLimitRateLimitPerMax(rateLimitPer)}
className="w-full"
></NumberInput>
</RAGFlowFormItem>
<RAGFlowFormItem
name="security.rate_limit.per"
label={t('flow.webhook.per')}
>
{(field) => (
<SelectWithSearch
options={RateLimitPerOptions}
value={field.value}
onChange={(val) => {
field.onChange(val);
form.setValue(
'security.rate_limit.limit',
getLimitRateLimitPerMax(val),
);
}}
></SelectWithSearch>
)}
</RAGFlowFormItem>
<section>
<Label>{t('flow.webhook.limit')}</Label>
<div className="flex items-center mt-1 gap-2">
<RAGFlowFormItem
name="security.rate_limit.limit"
className="flex-1"
>
<NumberInput
max={getLimitRateLimitPerMax(rateLimitPer)}
className="w-full"
></NumberInput>
</RAGFlowFormItem>
<Separator className="w-2" />
<RAGFlowFormItem name="security.rate_limit.per">
{(field) => (
<SelectWithSearch
options={RateLimitPerOptions}
value={field.value}
onChange={(val) => {
field.onChange(val);
form.setValue(
'security.rate_limit.limit',
getLimitRateLimitPerMax(val),
);
}}
></SelectWithSearch>
)}
</RAGFlowFormItem>
</div>
</section>
<RAGFlowFormItem
name="security.max_body_size"
label={t('flow.webhook.maxBodySize')}

View File

@ -0,0 +1,8 @@
import { useParams } from 'umi';
export function useBuildWebhookUrl() {
const { id } = useParams();
const text = `${location.protocol}//${location.host}/api/v1/webhook/${id}`;
return text;
}

View File

@ -8,7 +8,7 @@ import {
TooltipContent,
TooltipTrigger,
} from '@/components/ui/tooltip';
import { IChunk } from '@/interfaces/database/knowledge';
import type { ChunkDocType, IChunk } from '@/interfaces/database/knowledge';
import { cn } from '@/lib/utils';
import { CheckedState } from '@radix-ui/react-checkbox';
import classNames from 'classnames';
@ -67,6 +67,10 @@ const ChunkCard = ({
setEnabled(available === 1);
}, [available]);
const chunkType =
((item.doc_type_kwd &&
String(item.doc_type_kwd)?.toLowerCase()) as ChunkDocType) || 'text';
return (
<Card
className={classNames('relative flex-none', styles.chunkCard, {
@ -81,9 +85,7 @@ const ChunkCard = ({
bg-bg-card rounded-bl-2xl rounded-tr-lg
border-l-0.5 border-b-0.5 border-border-button"
>
{t(
`chunk.docType.${item.doc_type_kwd ? String(item.doc_type_kwd).toLowerCase() : 'text'}`,
)}
{t(`chunk.docType.${chunkType}`)}
</span>
<div className="flex items-start justify-between gap-2">

View File

@ -22,6 +22,7 @@ import { Switch } from '@/components/ui/switch';
import { Textarea } from '@/components/ui/textarea';
import { useFetchChunk } from '@/hooks/use-chunk-request';
import { IModalProps } from '@/interfaces/common';
import type { ChunkDocType } from '@/interfaces/database/knowledge';
import React, { useCallback, useEffect, useState } from 'react';
import { FieldValues, FormProvider, useForm } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
@ -151,20 +152,25 @@ const ChunkCreatingModal: React.FC<IModalProps<any> & kFProps> = ({
<FormField
control={form.control}
name="doc_type_kwd"
render={({ field }) => (
<FormItem>
<FormLabel>{t(`chunk.type`)}</FormLabel>
<FormControl>
<Input
type="text"
value={t(
`chunk.docType.${field.value ? String(field.value).toLowerCase() : 'text'}`,
)}
readOnly
/>
</FormControl>
</FormItem>
)}
render={({ field }) => {
const chunkType =
((field.value &&
String(field.value)?.toLowerCase()) as ChunkDocType) ||
'text';
return (
<FormItem>
<FormLabel>{t(`chunk.type`)}</FormLabel>
<FormControl>
<Input
type="text"
value={t(`chunk.docType.${chunkType}`)}
readOnly
/>
</FormControl>
</FormItem>
);
}}
/>
)}

View File

@ -79,6 +79,7 @@ export default function Dataset() {
useRowSelection();
const {
chunkNum,
list,
visible: reparseDialogVisible,
hideModal: hideReparseDialogModal,
@ -218,7 +219,7 @@ export default function Dataset() {
// hidden={isZeroChunk || isRunning}
hidden={true}
handleOperationIconClick={handleOperationIconClick}
chunk_num={0}
chunk_num={chunkNum}
visible={reparseDialogVisible}
hideModal={hideReparseDialogModal}
></ReparseDialog>

View File

@ -183,7 +183,7 @@ export function ParsingStatusCell({
)}
{reparseDialogVisible && (
<ReparseDialog
hidden={isZeroChunk || isRunning}
hidden={isRunning}
// hidden={false}
handleOperationIconClick={handleOperationIconClick}
chunk_num={chunk_num}

View File

@ -2,12 +2,14 @@ import { ConfirmDeleteDialog } from '@/components/confirm-delete-dialog';
import {
DynamicForm,
DynamicFormRef,
FormFieldConfig,
FormFieldType,
} from '@/components/dynamic-form';
import { Checkbox } from '@/components/ui/checkbox';
import { DialogProps } from '@radix-ui/react-dialog';
import { t } from 'i18next';
import { memo, useCallback, useEffect, useRef } from 'react';
import { memo, useCallback, useEffect, useRef, useState } from 'react';
import { ControllerRenderProps } from 'react-hook-form';
import { useTranslation } from 'react-i18next';
export const ReparseDialog = memo(
({
@ -26,18 +28,77 @@ export const ReparseDialog = memo(
hideModal: () => void;
hidden?: boolean;
}) => {
// const [formInstance, setFormInstance] = useState<DynamicFormRef | null>(
// null,
// );
const [defaultValues, setDefaultValues] = useState<any>(null);
const [fields, setFields] = useState<FormFieldConfig[]>([]);
const { t } = useTranslation();
const handleOperationIconClickRef = useRef(handleOperationIconClick);
const hiddenRef = useRef(hidden);
// const formCallbackRef = useCallback((node: DynamicFormRef | null) => {
// if (node) {
// setFormInstance(node);
// console.log('Form instance assigned:', node);
// } else {
// console.log('Form instance removed');
// }
// }, []);
useEffect(() => {
handleOperationIconClickRef.current = handleOperationIconClick;
hiddenRef.current = hidden;
});
useEffect(() => {
if (hiddenRef.current) {
handleOperationIconClickRef.current();
}
}, []);
useEffect(() => {
setDefaultValues({
delete: chunk_num > 0,
apply_kb: false,
});
const deleteField = {
name: 'delete',
label: '',
type: FormFieldType.Checkbox,
render: (fieldProps: ControllerRenderProps) => (
<div className="flex items-center text-text-secondary p-5 border border-border-button rounded-lg">
<Checkbox
{...fieldProps}
checked={fieldProps.value}
onCheckedChange={(checked: boolean) => {
fieldProps.onChange(checked);
}}
/>
<span className="ml-2">
{chunk_num > 0
? t(`knowledgeDetails.redo`, {
chunkNum: chunk_num,
})
: t('knowledgeDetails.redoAll')}
</span>
</div>
),
};
const applyKBField = {
name: 'apply_kb',
label: '',
type: FormFieldType.Checkbox,
defaultValue: false,
render: (fieldProps: ControllerRenderProps) => (
<div className="flex items-center text-text-secondary p-5 border border-border-button rounded-lg">
<Checkbox
{...fieldProps}
checked={fieldProps.value}
onCheckedChange={(checked: boolean) => {
fieldProps.onChange(checked);
}}
/>
<span className="ml-2">
{t('knowledgeDetails.applyAutoMetadataSettings')}
</span>
</div>
),
};
if (chunk_num > 0) {
setFields([deleteField, applyKBField]);
}
if (chunk_num <= 0) {
setFields([applyKBField]);
}
}, [chunk_num, t]);
const formCallbackRef = useRef<DynamicFormRef>(null);
@ -68,12 +129,6 @@ export const ReparseDialog = memo(
}
}, [formCallbackRef, handleOperationIconClick]);
useEffect(() => {
if (hidden) {
handleOperationIconClick();
}
}, []);
return (
<ConfirmDeleteDialog
title={t(`knowledgeDetails.parseFile`)}
@ -91,48 +146,8 @@ export const ReparseDialog = memo(
console.log('submit', data);
}}
ref={formCallbackRef}
fields={[
{
name: 'delete',
label: '',
type: FormFieldType.Checkbox,
render: (fieldProps) => (
<div className="flex items-center text-text-secondary p-5 border border-border-button rounded-lg">
<Checkbox
{...fieldProps}
onCheckedChange={(checked: boolean) => {
fieldProps.onChange(checked);
}}
/>
<span className="ml-2">
{chunk_num > 0
? t(`knowledgeDetails.redo`, {
chunkNum: chunk_num,
})
: t('knowledgeDetails.redoAll')}
</span>
</div>
),
},
{
name: 'apply_kb',
label: '',
type: FormFieldType.Checkbox,
render: (fieldProps) => (
<div className="flex items-center text-text-secondary p-5 border border-border-button rounded-lg">
<Checkbox
{...fieldProps}
onCheckedChange={(checked: boolean) => {
fieldProps.onChange(checked);
}}
/>
<span className="ml-2">
{t('knowledgeDetails.applyAutoMetadataSettings')}
</span>
</div>
),
},
]}
fields={fields}
defaultValues={defaultValues}
>
{/* <DynamicForm.CancelButton
handleCancel={() => handleOperationIconClick(false)}

View File

@ -10,7 +10,7 @@ import {
} from '@/hooks/use-document-request';
import { IDocumentInfo } from '@/interfaces/database/document';
import { Ban, CircleCheck, CircleX, Play, Trash2 } from 'lucide-react';
import { useCallback } from 'react';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { toast } from 'sonner';
import { DocumentType, RunningStatus } from './constant';
@ -32,6 +32,16 @@ export function useBulkOperateDataset({
const { setDocumentStatus } = useSetDocumentStatus();
const { removeDocument } = useRemoveDocument();
const { visible, showModal, hideModal } = useSetModalState();
const chunkNum = useMemo(() => {
if (!documents.length) {
return 0;
}
return documents.reduce((acc, cur) => {
return acc + cur.chunk_num;
}, 0);
}, [documents]);
const runDocument = useCallback(
async (run: number, option?: { delete: boolean; apply_kb: boolean }) => {
const nonVirtualKeys = selectedRowKeys.filter(
@ -132,5 +142,5 @@ export function useBulkOperateDataset({
},
];
return { list, visible, hideModal, showModal, handleRunClick };
return { chunkNum, list, visible, hideModal, showModal, handleRunClick };
}

View File

@ -38,21 +38,27 @@ interface ProcessLogModalProps {
}
const InfoItem: React.FC<{
overflowTip?: boolean;
label: string;
value: string | React.ReactNode;
className?: string;
}> = ({ label, value, className = '' }) => {
}> = ({ label, value, className = '', overflowTip = false }) => {
return (
<div className={`flex flex-col mb-4 ${className}`}>
<span className="text-text-secondary text-sm">{label}</span>
<Tooltip>
<TooltipTrigger asChild>
<span className="text-text-primary mt-1 truncate w-full">
{value}
</span>
</TooltipTrigger>
<TooltipContent>{value}</TooltipContent>
</Tooltip>
{overflowTip && (
<Tooltip>
<TooltipTrigger asChild>
<span className="text-text-primary mt-1 truncate w-full">
{value}
</span>
</TooltipTrigger>
<TooltipContent>{value}</TooltipContent>
</Tooltip>
)}
{!overflowTip && (
<span className="text-text-primary mt-1 truncate w-full">{value}</span>
)}
</div>
);
};
@ -139,6 +145,7 @@ const ProcessLogModal: React.FC<ProcessLogModalProps> = ({
return (
<div className="w-1/2" key={key}>
<InfoItem
overflowTip={true}
label={t(key)}
value={logInfo[key as keyof typeof logInfo]}
/>

View File

@ -92,6 +92,7 @@ export const MemoryModelForm = () => {
label: t('memory.config.memorySize') + ' (Bytes)',
type: FormFieldType.Number,
horizontal: true,
tooltip: t('memory.config.memorySizeTooltip'),
// placeholder: t('memory.config.memorySizePlaceholder'),
required: false,
}}

View File

@ -27,6 +27,7 @@ export enum DataSourceKey {
AIRTABLE = 'airtable',
GITLAB = 'gitlab',
ASANA = 'asana',
IMAP = 'imap',
GITHUB = 'github',
// SHAREPOINT = 'sharepoint',
// SLACK = 'slack',
@ -127,6 +128,11 @@ export const generateDataSourceInfo = (t: TFunction) => {
description: t(`setting.${DataSourceKey.GITHUB}Description`),
icon: <SvgIcon name={'data-source/github'} width={38} />,
},
[DataSourceKey.IMAP]: {
name: 'IMAP',
description: t(`setting.${DataSourceKey.IMAP}Description`),
icon: <SvgIcon name={'data-source/imap'} width={38} />,
},
};
};
@ -654,7 +660,7 @@ export const DataSourceFormFields = {
{
label: 'Access Token',
name: 'config.credentials.airtable_access_token',
type: FormFieldType.Text,
type: FormFieldType.Password,
required: true,
},
{
@ -722,7 +728,7 @@ export const DataSourceFormFields = {
{
label: 'API Token',
name: 'config.credentials.asana_api_token_secret',
type: FormFieldType.Text,
type: FormFieldType.Password,
required: true,
},
{
@ -778,6 +784,44 @@ export const DataSourceFormFields = {
defaultValue: false,
},
],
[DataSourceKey.IMAP]: [
{
label: 'Username',
name: 'config.credentials.imap_username',
type: FormFieldType.Text,
required: true,
},
{
label: 'Password',
name: 'config.credentials.imap_password',
type: FormFieldType.Password,
required: true,
},
{
label: 'Host',
name: 'config.imap_host',
type: FormFieldType.Text,
required: true,
},
{
label: 'Port',
name: 'config.imap_port',
type: FormFieldType.Number,
required: true,
},
{
label: 'Mailboxes',
name: 'config.imap_mailbox',
type: FormFieldType.Tag,
required: false,
},
{
label: 'Poll Range',
name: 'config.poll_range',
type: FormFieldType.Number,
required: false,
},
],
};
export const DataSourceFormDefaultValues = {
@ -1017,4 +1061,19 @@ export const DataSourceFormDefaultValues = {
},
},
},
[DataSourceKey.IMAP]: {
name: '',
source: DataSourceKey.IMAP,
config: {
name: '',
imap_host: '',
imap_port: 993,
imap_mailbox: [],
poll_range: 30,
credentials: {
imap_username: '',
imap_password: '',
},
},
},
};