mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-04 03:25:30 +08:00
Compare commits
8 Commits
f4324e89d9
...
fc46d6bb87
| Author | SHA1 | Date | |
|---|---|---|---|
| fc46d6bb87 | |||
| 8252b1c5c0 | |||
| c802a6ffdd | |||
| 9b06734ced | |||
| 6ab4c1a6e9 | |||
| f631073ac2 | |||
| 8aabc2807c | |||
| d931c33ced |
@ -1,3 +1,19 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import argparse
|
||||
import base64
|
||||
|
||||
|
||||
@ -1,3 +1,18 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import signal
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from functools import wraps
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import logging
|
||||
import threading
|
||||
from enum import Enum
|
||||
@ -35,7 +52,8 @@ class BaseConfig(BaseModel):
|
||||
detail_func_name: str
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port, 'service_type': self.service_type}
|
||||
return {'id': self.id, 'name': self.name, 'host': self.host, 'port': self.port,
|
||||
'service_type': self.service_type}
|
||||
|
||||
|
||||
class MetaConfig(BaseConfig):
|
||||
|
||||
@ -0,0 +1,15 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
@ -1,15 +1,34 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import jsonify
|
||||
|
||||
def success_response(data=None, message="Success", code = 0):
|
||||
|
||||
def success_response(data=None, message="Success", code=0):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 200
|
||||
|
||||
|
||||
def error_response(message="Error", code=-1, data=None):
|
||||
return jsonify({
|
||||
"code": code,
|
||||
"message": message,
|
||||
"data": data
|
||||
}), 400
|
||||
}), 400
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import Blueprint, request
|
||||
|
||||
from auth import login_verify
|
||||
@ -42,7 +59,7 @@ def create_user():
|
||||
res = UserMgr.create_user(username, password, role)
|
||||
if res["success"]:
|
||||
user_info = res["user_info"]
|
||||
user_info.pop("password") # do not return password
|
||||
user_info.pop("password") # do not return password
|
||||
return success_response(user_info, "User created successfully")
|
||||
else:
|
||||
return error_response("create user failed")
|
||||
@ -102,6 +119,7 @@ def alter_user_activate_status(username):
|
||||
except Exception as e:
|
||||
return error_response(str(e), 500)
|
||||
|
||||
|
||||
@admin_bp.route('/users/<username>', methods=['GET'])
|
||||
@login_verify
|
||||
def get_user_details(username):
|
||||
@ -114,6 +132,7 @@ def get_user_details(username):
|
||||
except Exception as e:
|
||||
return error_response(str(e), 500)
|
||||
|
||||
|
||||
@admin_bp.route('/users/<username>/datasets', methods=['GET'])
|
||||
@login_verify
|
||||
def get_user_datasets(username):
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import re
|
||||
from werkzeug.security import check_password_hash
|
||||
from api.db import ActiveEnum
|
||||
@ -12,13 +29,15 @@ from api.utils import health_utils
|
||||
from api.common.exceptions import AdminException, UserAlreadyExistsError, UserNotFoundError
|
||||
from config import SERVICE_CONFIGS
|
||||
|
||||
|
||||
class UserMgr:
|
||||
@staticmethod
|
||||
def get_all_users():
|
||||
users = UserService.get_all_users()
|
||||
result = []
|
||||
for user in users:
|
||||
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date, 'is_active': user.is_active})
|
||||
result.append({'email': user.email, 'nickname': user.nickname, 'create_date': user.create_date,
|
||||
'is_active': user.is_active})
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
@ -112,6 +131,7 @@ class UserMgr:
|
||||
UserService.update_user(usr.id, {"is_active": target_status})
|
||||
return f"Turn {_activate_status} user activate status successfully!"
|
||||
|
||||
|
||||
class UserServiceMgr:
|
||||
|
||||
@staticmethod
|
||||
@ -150,6 +170,7 @@ class UserServiceMgr:
|
||||
'canvas_category': r['canvas_category']
|
||||
} for r in res]
|
||||
|
||||
|
||||
class ServiceMgr:
|
||||
|
||||
@staticmethod
|
||||
|
||||
@ -121,7 +121,7 @@ class Retrieval(ToolBase, ABC):
|
||||
|
||||
if kbs:
|
||||
query = re.sub(r"^user[::\s]*", "", query, flags=re.IGNORECASE)
|
||||
kbinfos = settings.retrievaler.retrieval(
|
||||
kbinfos = settings.retriever.retrieval(
|
||||
query,
|
||||
embd_mdl,
|
||||
[kb.tenant_id for kb in kbs],
|
||||
@ -135,7 +135,7 @@ class Retrieval(ToolBase, ABC):
|
||||
rank_feature=label_question(query, kbs),
|
||||
)
|
||||
if self._param.use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(query,
|
||||
ck = settings.kg_retriever.retrieval(query,
|
||||
[kb.tenant_id for kb in kbs],
|
||||
kb_ids,
|
||||
embd_mdl,
|
||||
@ -146,7 +146,7 @@ class Retrieval(ToolBase, ABC):
|
||||
kbinfos = {"chunks": [], "doc_aggs": []}
|
||||
|
||||
if self._param.use_kg and kbs:
|
||||
ck = settings.kg_retrievaler.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(query, [kb.tenant_id for kb in kbs], filtered_kb_ids, embd_mdl, LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ck["content"] = ck["content_with_weight"]
|
||||
del ck["content_with_weight"]
|
||||
|
||||
@ -536,7 +536,7 @@ def list_chunks():
|
||||
)
|
||||
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
|
||||
|
||||
res = settings.retrievaler.chunk_list(doc_id, tenant_id, kb_ids)
|
||||
res = settings.retriever.chunk_list(doc_id, tenant_id, kb_ids)
|
||||
res = [
|
||||
{
|
||||
"content": res_item["content_with_weight"],
|
||||
@ -884,7 +884,7 @@ def retrieval():
|
||||
if req.get("keyword", False):
|
||||
chat_mdl = LLMBundle(kbs[0].tenant_id, LLMType.CHAT)
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
|
||||
ranks = settings.retriever.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
|
||||
similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight= highlight,
|
||||
rank_feature=label_question(question, kbs))
|
||||
|
||||
@ -60,7 +60,7 @@ def list_chunk():
|
||||
}
|
||||
if "available_int" in req:
|
||||
query["available_int"] = int(req["available_int"])
|
||||
sres = settings.retrievaler.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
||||
sres = settings.retriever.search(query, search.index_name(tenant_id), kb_ids, highlight=True)
|
||||
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -346,7 +346,7 @@ def retrieval_test():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
labels = label_question(question, [kb])
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
||||
ranks = settings.retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, page, size,
|
||||
float(req.get("similarity_threshold", 0.0)),
|
||||
float(req.get("vector_similarity_weight", 0.3)),
|
||||
top,
|
||||
@ -354,7 +354,7 @@ def retrieval_test():
|
||||
rank_feature=labels
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question,
|
||||
ck = settings.kg_retriever.retrieval(question,
|
||||
tenant_ids,
|
||||
kb_ids,
|
||||
embd_mdl,
|
||||
@ -384,7 +384,7 @@ def knowledge_graph():
|
||||
"doc_ids": [doc_id],
|
||||
"knowledge_graph_kwd": ["graph", "mind_map"]
|
||||
}
|
||||
sres = settings.retrievaler.search(req, search.index_name(tenant_id), kb_ids)
|
||||
sres = settings.retriever.search(req, search.index_name(tenant_id), kb_ids)
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
for id in sres.ids[:2]:
|
||||
ty = sres.field[id]["knowledge_graph_kwd"]
|
||||
|
||||
@ -282,7 +282,7 @@ def list_tags(kb_id):
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retrievaler.all_tags(tenant["tenant_id"], [kb_id])
|
||||
tags += settings.retriever.all_tags(tenant["tenant_id"], [kb_id])
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -301,7 +301,7 @@ def list_tags_from_kbs():
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retrievaler.all_tags(tenant["tenant_id"], kb_ids)
|
||||
tags += settings.retriever.all_tags(tenant["tenant_id"], kb_ids)
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -362,7 +362,7 @@ def knowledge_graph(kb_id):
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
|
||||
return get_json_result(data=obj)
|
||||
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [kb_id])
|
||||
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [kb_id])
|
||||
if not len(sres.ids):
|
||||
return get_json_result(data=obj)
|
||||
|
||||
|
||||
@ -1,8 +1,26 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
from flask import Response
|
||||
from flask_login import login_required
|
||||
from api.utils.api_utils import get_json_result
|
||||
from plugin import GlobalPluginManager
|
||||
|
||||
|
||||
@manager.route('/llm_tools', methods=['GET']) # noqa: F821
|
||||
@login_required
|
||||
def llm_tools() -> Response:
|
||||
|
||||
@ -25,6 +25,7 @@ from api.utils.api_utils import get_data_error_result, get_error_data_result, ge
|
||||
from api.utils.api_utils import get_result
|
||||
from flask import request
|
||||
|
||||
|
||||
@manager.route('/agents', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def list_agents(tenant_id):
|
||||
@ -41,7 +42,7 @@ def list_agents(tenant_id):
|
||||
desc = False
|
||||
else:
|
||||
desc = True
|
||||
canvas = UserCanvasService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,title)
|
||||
canvas = UserCanvasService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, title)
|
||||
return get_result(data=canvas)
|
||||
|
||||
|
||||
@ -93,7 +94,7 @@ def update_agent(tenant_id: str, agent_id: str):
|
||||
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
|
||||
|
||||
req["dsl"] = json.loads(req["dsl"])
|
||||
|
||||
|
||||
if req.get("title") is not None:
|
||||
req["title"] = req["title"].strip()
|
||||
|
||||
|
||||
@ -215,7 +215,8 @@ def delete(tenant_id):
|
||||
continue
|
||||
kb_id_instance_pairs.append((kb_id, kb))
|
||||
if len(error_kb_ids) > 0:
|
||||
return get_error_permission_result(message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
|
||||
return get_error_permission_result(
|
||||
message=f"""User '{tenant_id}' lacks permission for datasets: '{", ".join(error_kb_ids)}'""")
|
||||
|
||||
errors = []
|
||||
success_count = 0
|
||||
@ -232,7 +233,8 @@ def delete(tenant_id):
|
||||
]
|
||||
)
|
||||
File2DocumentService.delete_by_document_id(doc.id)
|
||||
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
|
||||
FileService.filter_delete(
|
||||
[File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kb.name])
|
||||
if not KnowledgebaseService.delete_by_id(kb_id):
|
||||
errors.append(f"Delete dataset error for {kb_id}")
|
||||
continue
|
||||
@ -329,7 +331,8 @@ def update(tenant_id, dataset_id):
|
||||
try:
|
||||
kb = KnowledgebaseService.get_or_none(id=dataset_id, tenant_id=tenant_id)
|
||||
if kb is None:
|
||||
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
|
||||
return get_error_permission_result(
|
||||
message=f"User '{tenant_id}' lacks permission for dataset '{dataset_id}'")
|
||||
|
||||
if req.get("parser_config"):
|
||||
req["parser_config"] = deep_merge(kb.parser_config, req["parser_config"])
|
||||
@ -341,7 +344,8 @@ def update(tenant_id, dataset_id):
|
||||
del req["parser_config"]
|
||||
|
||||
if "name" in req and req["name"].lower() != kb.name.lower():
|
||||
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)
|
||||
exists = KnowledgebaseService.get_or_none(name=req["name"], tenant_id=tenant_id,
|
||||
status=StatusEnum.VALID.value)
|
||||
if exists:
|
||||
return get_error_data_result(message=f"Dataset name '{req['name']}' already exists")
|
||||
|
||||
@ -349,7 +353,8 @@ def update(tenant_id, dataset_id):
|
||||
if not req["embd_id"]:
|
||||
req["embd_id"] = kb.embd_id
|
||||
if kb.chunk_num != 0 and req["embd_id"] != kb.embd_id:
|
||||
return get_error_data_result(message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
|
||||
return get_error_data_result(
|
||||
message=f"When chunk_num ({kb.chunk_num}) > 0, embedding_model must remain {kb.embd_id}")
|
||||
ok, err = verify_embedding_availability(req["embd_id"], tenant_id)
|
||||
if not ok:
|
||||
return err
|
||||
@ -359,10 +364,12 @@ def update(tenant_id, dataset_id):
|
||||
return get_error_argument_result(message="'pagerank' can only be set when doc_engine is elasticsearch")
|
||||
|
||||
if req["pagerank"] > 0:
|
||||
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]}, search.index_name(kb.tenant_id), kb.id)
|
||||
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
else:
|
||||
# Elasticsearch requires PAGERANK_FLD be non-zero!
|
||||
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD}, search.index_name(kb.tenant_id), kb.id)
|
||||
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
|
||||
if not KnowledgebaseService.update_by_id(kb.id, req):
|
||||
return get_error_data_result(message="Update dataset error.(Database error)")
|
||||
@ -454,7 +461,7 @@ def list_datasets(tenant_id):
|
||||
return get_error_permission_result(message=f"User '{tenant_id}' lacks permission for dataset '{name}'")
|
||||
|
||||
tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
|
||||
kbs = KnowledgebaseService.get_list(
|
||||
kbs, total = KnowledgebaseService.get_list(
|
||||
[m["tenant_id"] for m in tenants],
|
||||
tenant_id,
|
||||
args["page"],
|
||||
@ -468,14 +475,15 @@ def list_datasets(tenant_id):
|
||||
response_data_list = []
|
||||
for kb in kbs:
|
||||
response_data_list.append(remap_dictionary_keys(kb))
|
||||
return get_result(data=response_data_list)
|
||||
return get_result(data=response_data_list, total=total)
|
||||
except OperationalError as e:
|
||||
logging.exception(e)
|
||||
return get_error_data_result(message="Database operation failed")
|
||||
|
||||
|
||||
@manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def knowledge_graph(tenant_id,dataset_id):
|
||||
def knowledge_graph(tenant_id, dataset_id):
|
||||
if not KnowledgebaseService.accessible(dataset_id, tenant_id):
|
||||
return get_result(
|
||||
data=False,
|
||||
@ -491,7 +499,7 @@ def knowledge_graph(tenant_id,dataset_id):
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), dataset_id):
|
||||
return get_result(data=obj)
|
||||
sres = settings.retrievaler.search(req, search.index_name(kb.tenant_id), [dataset_id])
|
||||
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [dataset_id])
|
||||
if not len(sres.ids):
|
||||
return get_result(data=obj)
|
||||
|
||||
@ -507,14 +515,16 @@ def knowledge_graph(tenant_id,dataset_id):
|
||||
if "nodes" in obj["graph"]:
|
||||
obj["graph"]["nodes"] = sorted(obj["graph"]["nodes"], key=lambda x: x.get("pagerank", 0), reverse=True)[:256]
|
||||
if "edges" in obj["graph"]:
|
||||
node_id_set = { o["id"] for o in obj["graph"]["nodes"] }
|
||||
filtered_edges = [o for o in obj["graph"]["edges"] if o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
|
||||
node_id_set = {o["id"] for o in obj["graph"]["nodes"]}
|
||||
filtered_edges = [o for o in obj["graph"]["edges"] if
|
||||
o["source"] != o["target"] and o["source"] in node_id_set and o["target"] in node_id_set]
|
||||
obj["graph"]["edges"] = sorted(filtered_edges, key=lambda x: x.get("weight", 0), reverse=True)[:128]
|
||||
return get_result(data=obj)
|
||||
|
||||
|
||||
@manager.route('/datasets/<dataset_id>/knowledge_graph', methods=['DELETE']) # noqa: F821
|
||||
@token_required
|
||||
def delete_knowledge_graph(tenant_id,dataset_id):
|
||||
def delete_knowledge_graph(tenant_id, dataset_id):
|
||||
if not KnowledgebaseService.accessible(dataset_id, tenant_id):
|
||||
return get_result(
|
||||
data=False,
|
||||
@ -522,6 +532,7 @@ def delete_knowledge_graph(tenant_id,dataset_id):
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
_, kb = KnowledgebaseService.get_by_id(dataset_id)
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), dataset_id)
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]},
|
||||
search.index_name(kb.tenant_id), dataset_id)
|
||||
|
||||
return get_result(data=True)
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
#
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -38,9 +38,9 @@ def retrieval(tenant_id):
|
||||
retrieval_setting = req.get("retrieval_setting", {})
|
||||
similarity_threshold = float(retrieval_setting.get("score_threshold", 0.0))
|
||||
top = int(retrieval_setting.get("top_k", 1024))
|
||||
metadata_condition = req.get("metadata_condition",{})
|
||||
metadata_condition = req.get("metadata_condition", {})
|
||||
metas = DocumentService.get_meta_by_kbs([kb_id])
|
||||
|
||||
|
||||
doc_ids = []
|
||||
try:
|
||||
|
||||
@ -50,12 +50,12 @@ def retrieval(tenant_id):
|
||||
|
||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
||||
print(metadata_condition)
|
||||
print("after",convert_conditions(metadata_condition))
|
||||
# print("after", convert_conditions(metadata_condition))
|
||||
doc_ids.extend(meta_filter(metas, convert_conditions(metadata_condition)))
|
||||
print("doc_ids",doc_ids)
|
||||
# print("doc_ids", doc_ids)
|
||||
if not doc_ids and metadata_condition is not None:
|
||||
doc_ids = ['-999']
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question,
|
||||
embd_mdl,
|
||||
kb.tenant_id,
|
||||
@ -70,17 +70,17 @@ def retrieval(tenant_id):
|
||||
)
|
||||
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question,
|
||||
[tenant_id],
|
||||
[kb_id],
|
||||
embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question,
|
||||
[tenant_id],
|
||||
[kb_id],
|
||||
embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
records = []
|
||||
for c in ranks["chunks"]:
|
||||
e, doc = DocumentService.get_by_id( c["doc_id"])
|
||||
e, doc = DocumentService.get_by_id(c["doc_id"])
|
||||
c.pop("vector", None)
|
||||
meta = getattr(doc, 'meta_fields', {})
|
||||
meta["doc_id"] = c["doc_id"]
|
||||
@ -100,5 +100,3 @@ def retrieval(tenant_id):
|
||||
)
|
||||
logging.exception(e)
|
||||
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)
|
||||
|
||||
|
||||
|
||||
@ -982,7 +982,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
|
||||
_ = Chunk(**final_chunk)
|
||||
|
||||
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
|
||||
sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
|
||||
sres = settings.retriever.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
|
||||
res["total"] = sres.total
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -1446,7 +1446,7 @@ def retrieval_test(tenant_id):
|
||||
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question,
|
||||
embd_mdl,
|
||||
tenant_ids,
|
||||
@ -1462,7 +1462,7 @@ def retrieval_test(tenant_id):
|
||||
rank_feature=label_question(question, kbs),
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question, [k.tenant_id for k in kbs], kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import pathlib
|
||||
import re
|
||||
|
||||
@ -17,7 +34,8 @@ from api.utils.api_utils import get_json_result
|
||||
from api.utils.file_utils import filename_type
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
@manager.route('/file/upload', methods=['POST']) # noqa: F821
|
||||
|
||||
@manager.route('/file/upload', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def upload(tenant_id):
|
||||
"""
|
||||
@ -97,12 +115,14 @@ def upload(tenant_id):
|
||||
e, file = FileService.get_by_id(file_id_list[len_id_list - 1])
|
||||
if not e:
|
||||
return get_json_result(data=False, message="Folder not found!", code=404)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names, len_id_list)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 1], file_obj_names,
|
||||
len_id_list)
|
||||
else:
|
||||
e, file = FileService.get_by_id(file_id_list[len_id_list - 2])
|
||||
if not e:
|
||||
return get_json_result(data=False, message="Folder not found!", code=404)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names, len_id_list)
|
||||
last_folder = FileService.create_folder(file, file_id_list[len_id_list - 2], file_obj_names,
|
||||
len_id_list)
|
||||
|
||||
filetype = filename_type(file_obj_names[file_len - 1])
|
||||
location = file_obj_names[file_len - 1]
|
||||
@ -129,7 +149,7 @@ def upload(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/create', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/create', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def create(tenant_id):
|
||||
"""
|
||||
@ -207,7 +227,7 @@ def create(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/list', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/list', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def list_files(tenant_id):
|
||||
"""
|
||||
@ -299,7 +319,7 @@ def list_files(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/root_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/root_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_root_folder(tenant_id):
|
||||
"""
|
||||
@ -335,7 +355,7 @@ def get_root_folder(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/parent_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/parent_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_parent_folder():
|
||||
"""
|
||||
@ -380,7 +400,7 @@ def get_parent_folder():
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/all_parent_folder', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/all_parent_folder', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get_all_parent_folders(tenant_id):
|
||||
"""
|
||||
@ -428,7 +448,7 @@ def get_all_parent_folders(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/rm', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/rm', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def rm(tenant_id):
|
||||
"""
|
||||
@ -502,7 +522,7 @@ def rm(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/rename', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/rename', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def rename(tenant_id):
|
||||
"""
|
||||
@ -542,7 +562,8 @@ def rename(tenant_id):
|
||||
if not e:
|
||||
return get_json_result(message="File not found!", code=404)
|
||||
|
||||
if file.type != FileType.FOLDER.value and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(file.name.lower()).suffix:
|
||||
if file.type != FileType.FOLDER.value and pathlib.Path(req["name"].lower()).suffix != pathlib.Path(
|
||||
file.name.lower()).suffix:
|
||||
return get_json_result(data=False, message="The extension of file can't be changed", code=400)
|
||||
|
||||
for existing_file in FileService.query(name=req["name"], pf_id=file.parent_id):
|
||||
@ -562,9 +583,9 @@ def rename(tenant_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/get/<file_id>', methods=['GET']) # noqa: F821
|
||||
@manager.route('/file/get/<file_id>', methods=['GET']) # noqa: F821
|
||||
@token_required
|
||||
def get(tenant_id,file_id):
|
||||
def get(tenant_id, file_id):
|
||||
"""
|
||||
Download a file.
|
||||
---
|
||||
@ -610,7 +631,7 @@ def get(tenant_id,file_id):
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/mv', methods=['POST']) # noqa: F821
|
||||
@manager.route('/file/mv', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def move(tenant_id):
|
||||
"""
|
||||
@ -669,6 +690,7 @@ def move(tenant_id):
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/file/convert', methods=['POST']) # noqa: F821
|
||||
@token_required
|
||||
def convert(tenant_id):
|
||||
@ -735,4 +757,4 @@ def convert(tenant_id):
|
||||
file2documents.append(file2document.to_json())
|
||||
return get_json_result(data=file2documents)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
return server_error_response(e)
|
||||
|
||||
@ -36,7 +36,8 @@ from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.search_service import SearchService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, get_result, server_error_response, token_required, validate_request
|
||||
from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_data_result, get_json_result, \
|
||||
get_result, server_error_response, token_required, validate_request
|
||||
from rag.app.tag import label_question
|
||||
from rag.prompts.template import load_prompt
|
||||
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
|
||||
@ -88,7 +89,8 @@ def create_agent_session(tenant_id, agent_id):
|
||||
canvas.reset()
|
||||
|
||||
cvs.dsl = json.loads(str(canvas))
|
||||
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
||||
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id,
|
||||
"message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
|
||||
API4ConversationService.save(**conv)
|
||||
conv["agent_id"] = conv.pop("dialog_id")
|
||||
return get_result(data=conv)
|
||||
@ -279,7 +281,7 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
reasoning_match = re.search(r"<think>(.*?)</think>", answer, flags=re.DOTALL)
|
||||
if reasoning_match:
|
||||
reasoning_part = reasoning_match.group(1)
|
||||
content_part = answer[reasoning_match.end() :]
|
||||
content_part = answer[reasoning_match.end():]
|
||||
else:
|
||||
reasoning_part = ""
|
||||
content_part = answer
|
||||
@ -324,7 +326,8 @@ def chat_completion_openai_like(tenant_id, chat_id):
|
||||
response["choices"][0]["delta"]["content"] = None
|
||||
response["choices"][0]["delta"]["reasoning_content"] = None
|
||||
response["choices"][0]["finish_reason"] = "stop"
|
||||
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used, "total_tokens": len(prompt) + token_used}
|
||||
response["usage"] = {"prompt_tokens": len(prompt), "completion_tokens": token_used,
|
||||
"total_tokens": len(prompt) + token_used}
|
||||
if need_reference:
|
||||
response["choices"][0]["delta"]["reference"] = chunks_format(last_ans.get("reference", []))
|
||||
response["choices"][0]["delta"]["final_content"] = last_ans.get("answer", "")
|
||||
@ -559,7 +562,8 @@ def list_agent_session(tenant_id, agent_id):
|
||||
desc = True
|
||||
# dsl defaults to True in all cases except for False and false
|
||||
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
|
||||
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
|
||||
total, convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id,
|
||||
user_id, include_dsl)
|
||||
if not convs:
|
||||
return get_result(data=[])
|
||||
for conv in convs:
|
||||
@ -581,7 +585,8 @@ def list_agent_session(tenant_id, agent_id):
|
||||
if message_num != 0 and messages[message_num]["role"] != "user":
|
||||
chunk_list = []
|
||||
# Add boundary and type checks to prevent KeyError
|
||||
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
|
||||
if chunk_num < len(conv["reference"]) and conv["reference"][chunk_num] is not None and isinstance(
|
||||
conv["reference"][chunk_num], dict) and "chunks" in conv["reference"][chunk_num]:
|
||||
chunks = conv["reference"][chunk_num]["chunks"]
|
||||
for chunk in chunks:
|
||||
# Ensure chunk is a dictionary before calling get method
|
||||
@ -639,13 +644,16 @@ def delete(tenant_id, chat_id):
|
||||
|
||||
if errors:
|
||||
if success_count > 0:
|
||||
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
return get_result(data={"success_count": success_count, "errors": errors},
|
||||
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
else:
|
||||
return get_error_data_result(message="; ".join(errors))
|
||||
|
||||
if duplicate_messages:
|
||||
if success_count > 0:
|
||||
return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
|
||||
return get_result(
|
||||
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
|
||||
data={"success_count": success_count, "errors": duplicate_messages})
|
||||
else:
|
||||
return get_error_data_result(message=";".join(duplicate_messages))
|
||||
|
||||
@ -691,13 +699,16 @@ def delete_agent_session(tenant_id, agent_id):
|
||||
|
||||
if errors:
|
||||
if success_count > 0:
|
||||
return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
return get_result(data={"success_count": success_count, "errors": errors},
|
||||
message=f"Partially deleted {success_count} sessions with {len(errors)} errors")
|
||||
else:
|
||||
return get_error_data_result(message="; ".join(errors))
|
||||
|
||||
if duplicate_messages:
|
||||
if success_count > 0:
|
||||
return get_result(message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors", data={"success_count": success_count, "errors": duplicate_messages})
|
||||
return get_result(
|
||||
message=f"Partially deleted {success_count} sessions with {len(duplicate_messages)} errors",
|
||||
data={"success_count": success_count, "errors": duplicate_messages})
|
||||
else:
|
||||
return get_error_data_result(message=";".join(duplicate_messages))
|
||||
|
||||
@ -730,7 +741,9 @@ def ask_about(tenant_id):
|
||||
for ans in ask(req["question"], req["kb_ids"], uid):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps(
|
||||
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||||
ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||||
|
||||
resp = Response(stream(), mimetype="text/event-stream")
|
||||
@ -882,7 +895,9 @@ def begin_inputs(agent_id):
|
||||
return get_error_data_result(f"Can't find agent by ID: {agent_id}")
|
||||
|
||||
canvas = Canvas(json.dumps(cvs.dsl), objs[0].tenant_id)
|
||||
return get_result(data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"), "prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
|
||||
return get_result(
|
||||
data={"title": cvs.title, "avatar": cvs.avatar, "inputs": canvas.get_component_input_form("begin"),
|
||||
"prologue": canvas.get_prologue(), "mode": canvas.get_mode()})
|
||||
|
||||
|
||||
@manager.route("/searchbots/ask", methods=["POST"]) # noqa: F821
|
||||
@ -911,7 +926,9 @@ def ask_about_embedded():
|
||||
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps(
|
||||
{"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
|
||||
ensure_ascii=False) + "\n\n"
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
|
||||
|
||||
resp = Response(stream(), mimetype="text/event-stream")
|
||||
@ -978,7 +995,8 @@ def retrieval_test_embedded():
|
||||
tenant_ids.append(tenant.tenant_id)
|
||||
break
|
||||
else:
|
||||
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
||||
return get_json_result(data=False, message="Only owner of knowledgebase authorized for this operation.",
|
||||
code=settings.RetCode.OPERATING_ERROR)
|
||||
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
||||
if not e:
|
||||
@ -998,11 +1016,13 @@ def retrieval_test_embedded():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
labels = label_question(question, [kb])
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
|
||||
ranks = settings.retriever.retrieval(
|
||||
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
|
||||
)
|
||||
if use_kg:
|
||||
ck = settings.kg_retrievaler.retrieval(question, tenant_ids, kb_ids, embd_mdl, LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
ck = settings.kg_retriever.retrieval(question, tenant_ids, kb_ids, embd_mdl,
|
||||
LLMBundle(kb.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
ranks["chunks"].insert(0, ck)
|
||||
|
||||
@ -1013,7 +1033,8 @@ def retrieval_test_embedded():
|
||||
return get_json_result(data=ranks)
|
||||
except Exception as e:
|
||||
if str(e).find("not_found") > 0:
|
||||
return get_json_result(data=False, message="No chunk found! Check the chunk status please!", code=settings.RetCode.DATA_ERROR)
|
||||
return get_json_result(data=False, message="No chunk found! Check the chunk status please!",
|
||||
code=settings.RetCode.DATA_ERROR)
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@ -1082,7 +1103,8 @@ def detail_share_embedded():
|
||||
if SearchService.query(tenant_id=tenant.tenant_id, id=search_id):
|
||||
break
|
||||
else:
|
||||
return get_json_result(data=False, message="Has no permission for this operation.", code=settings.RetCode.OPERATING_ERROR)
|
||||
return get_json_result(data=False, message="Has no permission for this operation.",
|
||||
code=settings.RetCode.OPERATING_ERROR)
|
||||
|
||||
search = SearchService.get_detail(search_id)
|
||||
if not search:
|
||||
|
||||
@ -39,6 +39,7 @@ from rag.utils.redis_conn import REDIS_CONN
|
||||
from flask import jsonify
|
||||
from api.utils.health_utils import run_health_checks
|
||||
|
||||
|
||||
@manager.route("/version", methods=["GET"]) # noqa: F821
|
||||
@login_required
|
||||
def version():
|
||||
@ -161,7 +162,7 @@ def status():
|
||||
task_executors = REDIS_CONN.smembers("TASKEXE")
|
||||
now = datetime.now().timestamp()
|
||||
for task_executor_id in task_executors:
|
||||
heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60*30, now)
|
||||
heartbeats = REDIS_CONN.zrangebyscore(task_executor_id, now - 60 * 30, now)
|
||||
heartbeats = [json.loads(heartbeat) for heartbeat in heartbeats]
|
||||
task_executor_heartbeats[task_executor_id] = heartbeats
|
||||
except Exception:
|
||||
@ -273,7 +274,8 @@ def token_list():
|
||||
objs = [o.to_dict() for o in objs]
|
||||
for o in objs:
|
||||
if not o["beta"]:
|
||||
o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace("ragflow-", "")[:32]
|
||||
o["beta"] = generate_confirmation_token(generate_confirmation_token(tenants[0].tenant_id)).replace(
|
||||
"ragflow-", "")[:32]
|
||||
APITokenService.filter_update([APIToken.tenant_id == tenant_id, APIToken.token == o["token"]], o)
|
||||
return get_json_result(data=objs)
|
||||
except Exception as e:
|
||||
|
||||
@ -70,7 +70,8 @@ def create(tenant_id):
|
||||
return get_data_error_result(message=f"{invite_user_email} is already in the team.")
|
||||
if user_tenant_role == UserTenantRole.OWNER:
|
||||
return get_data_error_result(message=f"{invite_user_email} is the owner of the team.")
|
||||
return get_data_error_result(message=f"{invite_user_email} is in the team, but the role: {user_tenant_role} is invalid.")
|
||||
return get_data_error_result(
|
||||
message=f"{invite_user_email} is in the team, but the role: {user_tenant_role} is invalid.")
|
||||
|
||||
UserTenantService.save(
|
||||
id=get_uuid(),
|
||||
@ -132,7 +133,8 @@ def tenant_list():
|
||||
@login_required
|
||||
def agree(tenant_id):
|
||||
try:
|
||||
UserTenantService.filter_update([UserTenant.tenant_id == tenant_id, UserTenant.user_id == current_user.id], {"role": UserTenantRole.NORMAL})
|
||||
UserTenantService.filter_update([UserTenant.tenant_id == tenant_id, UserTenant.user_id == current_user.id],
|
||||
{"role": UserTenantRole.NORMAL})
|
||||
return get_json_result(data=True)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
@ -1,3 +1,20 @@
|
||||
#
|
||||
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
class AdminException(Exception):
|
||||
def __init__(self, message, code=400):
|
||||
super().__init__(message)
|
||||
@ -18,4 +35,4 @@ class UserAlreadyExistsError(AdminException):
|
||||
|
||||
class CannotDeleteAdminError(AdminException):
|
||||
def __init__(self):
|
||||
super().__init__("Cannot delete admin account", 403)
|
||||
super().__init__("Cannot delete admin account", 403)
|
||||
|
||||
@ -370,7 +370,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
chat_mdl.bind_tools(toolcall_session, tools)
|
||||
bind_models_ts = timer()
|
||||
|
||||
retriever = settings.retrievaler
|
||||
retriever = settings.retriever
|
||||
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
|
||||
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else []
|
||||
if "doc_ids" in messages[-1]:
|
||||
@ -472,7 +472,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
kbinfos["chunks"].extend(tav_res["chunks"])
|
||||
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
|
||||
if prompt_config.get("use_kg"):
|
||||
ck = settings.kg_retrievaler.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
|
||||
ck = settings.kg_retriever.retrieval(" ".join(questions), tenant_ids, dialog.kb_ids, embd_mdl,
|
||||
LLMBundle(dialog.tenant_id, LLMType.CHAT))
|
||||
if ck["content_with_weight"]:
|
||||
kbinfos["chunks"].insert(0, ck)
|
||||
@ -658,7 +658,7 @@ Please write the SQL, only SQL, without any other explanations or text.
|
||||
|
||||
logging.debug(f"{question} get SQL(refined): {sql}")
|
||||
tried_times += 1
|
||||
return settings.retrievaler.sql_retrieval(sql, format="json"), sql
|
||||
return settings.retriever.sql_retrieval(sql, format="json"), sql
|
||||
|
||||
tbl, sql = get_table()
|
||||
if tbl is None:
|
||||
@ -752,7 +752,7 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
|
||||
embedding_list = list(set([kb.embd_id for kb in kbs]))
|
||||
|
||||
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
|
||||
retriever = settings.retriever if not is_knowledge_graph else settings.kg_retriever
|
||||
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_llm_name)
|
||||
@ -848,7 +848,7 @@ def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question=question,
|
||||
embd_mdl=embd_mdl,
|
||||
tenant_ids=tenant_ids,
|
||||
|
||||
@ -379,6 +379,7 @@ class KnowledgebaseService(CommonService):
|
||||
# name: Optional name filter
|
||||
# Returns:
|
||||
# List of knowledge bases
|
||||
# Total count of knowledge bases
|
||||
kbs = cls.model.select()
|
||||
if id:
|
||||
kbs = kbs.where(cls.model.id == id)
|
||||
@ -390,6 +391,7 @@ class KnowledgebaseService(CommonService):
|
||||
cls.model.tenant_id == user_id))
|
||||
& (cls.model.status == StatusEnum.VALID.value)
|
||||
)
|
||||
|
||||
if desc:
|
||||
kbs = kbs.order_by(cls.model.getter_by(orderby).desc())
|
||||
else:
|
||||
@ -397,7 +399,7 @@ class KnowledgebaseService(CommonService):
|
||||
|
||||
kbs = kbs.paginate(page_number, items_per_page)
|
||||
|
||||
return list(kbs.dicts())
|
||||
return list(kbs.dicts()), kbs.count()
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
|
||||
@ -33,7 +33,8 @@ class MCPServerService(CommonService):
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_servers(cls, tenant_id: str, id_list: list[str] | None, page_number, items_per_page, orderby, desc, keywords):
|
||||
def get_servers(cls, tenant_id: str, id_list: list[str] | None, page_number, items_per_page, orderby, desc,
|
||||
keywords):
|
||||
"""Retrieve all MCP servers associated with a tenant.
|
||||
|
||||
This method fetches all MCP servers for a given tenant, ordered by creation time.
|
||||
|
||||
@ -94,7 +94,8 @@ class SearchService(CommonService):
|
||||
query = (
|
||||
cls.model.select(*fields)
|
||||
.join(User, on=(cls.model.tenant_id == User.id))
|
||||
.where(((cls.model.tenant_id.in_(joined_tenant_ids)) | (cls.model.tenant_id == user_id)) & (cls.model.status == StatusEnum.VALID.value))
|
||||
.where(((cls.model.tenant_id.in_(joined_tenant_ids)) | (cls.model.tenant_id == user_id)) & (
|
||||
cls.model.status == StatusEnum.VALID.value))
|
||||
)
|
||||
|
||||
if keywords:
|
||||
|
||||
@ -165,7 +165,7 @@ class TaskService(CommonService):
|
||||
]
|
||||
tasks = (
|
||||
cls.model.select(*fields).order_by(cls.model.from_page.asc(), cls.model.create_time.desc())
|
||||
.where(cls.model.doc_id == doc_id)
|
||||
.where(cls.model.doc_id == doc_id)
|
||||
)
|
||||
tasks = list(tasks.dicts())
|
||||
if not tasks:
|
||||
@ -205,18 +205,18 @@ class TaskService(CommonService):
|
||||
cls.model.select(
|
||||
*[Document.id, Document.kb_id, Document.location, File.parent_id]
|
||||
)
|
||||
.join(Document, on=(cls.model.doc_id == Document.id))
|
||||
.join(
|
||||
.join(Document, on=(cls.model.doc_id == Document.id))
|
||||
.join(
|
||||
File2Document,
|
||||
on=(File2Document.document_id == Document.id),
|
||||
join_type=JOIN.LEFT_OUTER,
|
||||
)
|
||||
.join(
|
||||
.join(
|
||||
File,
|
||||
on=(File2Document.file_id == File.id),
|
||||
join_type=JOIN.LEFT_OUTER,
|
||||
)
|
||||
.where(
|
||||
.where(
|
||||
Document.status == StatusEnum.VALID.value,
|
||||
Document.run == TaskStatus.RUNNING.value,
|
||||
~(Document.type == FileType.VIRTUAL.value),
|
||||
@ -294,8 +294,8 @@ class TaskService(CommonService):
|
||||
cls.model.update(progress=prog).where(
|
||||
(cls.model.id == id) &
|
||||
(
|
||||
(cls.model.progress != -1) &
|
||||
((prog == -1) | (prog > cls.model.progress))
|
||||
(cls.model.progress != -1) &
|
||||
((prog == -1) | (prog > cls.model.progress))
|
||||
)
|
||||
).execute()
|
||||
else:
|
||||
@ -343,6 +343,7 @@ def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
|
||||
- Task digests are calculated for optimization and reuse
|
||||
- Previous task chunks may be reused if available
|
||||
"""
|
||||
|
||||
def new_task():
|
||||
return {
|
||||
"id": get_uuid(),
|
||||
@ -515,7 +516,7 @@ def queue_dataflow(tenant_id:str, flow_id:str, task_id:str, doc_id:str=CANVAS_DE
|
||||
task["file"] = file
|
||||
|
||||
if not REDIS_CONN.queue_product(
|
||||
get_svr_queue_name(priority), message=task
|
||||
get_svr_queue_name(priority), message=task
|
||||
):
|
||||
return False, "Can't access Redis. Please check the Redis' status."
|
||||
|
||||
|
||||
@ -57,8 +57,10 @@ class TenantLLMService(CommonService):
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_my_llms(cls, tenant_id):
|
||||
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
|
||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
||||
fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name,
|
||||
cls.model.used_tokens]
|
||||
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
|
||||
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
||||
|
||||
return list(objs)
|
||||
|
||||
@ -122,7 +124,8 @@ class TenantLLMService(CommonService):
|
||||
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
|
||||
if not model_config:
|
||||
if mdlnm == "flag-embedding":
|
||||
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
|
||||
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name,
|
||||
"api_base": ""}
|
||||
else:
|
||||
if not mdlnm:
|
||||
raise LookupError(f"Type of {llm_type} model is not set.")
|
||||
@ -137,27 +140,33 @@ class TenantLLMService(CommonService):
|
||||
if llm_type == LLMType.EMBEDDING.value:
|
||||
if model_config["llm_factory"] not in EmbeddingModel:
|
||||
return
|
||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
||||
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"])
|
||||
|
||||
if llm_type == LLMType.RERANK:
|
||||
if model_config["llm_factory"] not in RerankModel:
|
||||
return
|
||||
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
||||
return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"])
|
||||
|
||||
if llm_type == LLMType.IMAGE2TEXT.value:
|
||||
if model_config["llm_factory"] not in CvModel:
|
||||
return
|
||||
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
|
||||
return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang,
|
||||
base_url=model_config["api_base"], **kwargs)
|
||||
|
||||
if llm_type == LLMType.CHAT.value:
|
||||
if model_config["llm_factory"] not in ChatModel:
|
||||
return
|
||||
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
|
||||
return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"],
|
||||
base_url=model_config["api_base"], **kwargs)
|
||||
|
||||
if llm_type == LLMType.SPEECH2TEXT:
|
||||
if model_config["llm_factory"] not in Seq2txtModel:
|
||||
return
|
||||
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
|
||||
return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"],
|
||||
model_name=model_config["llm_name"], lang=lang,
|
||||
base_url=model_config["api_base"])
|
||||
if llm_type == LLMType.TTS:
|
||||
if model_config["llm_factory"] not in TTSModel:
|
||||
return
|
||||
@ -194,11 +203,14 @@ class TenantLLMService(CommonService):
|
||||
try:
|
||||
num = (
|
||||
cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
|
||||
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
|
||||
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name,
|
||||
cls.model.llm_factory == llm_factory if llm_factory else True)
|
||||
.execute()
|
||||
)
|
||||
except Exception:
|
||||
logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
|
||||
logging.exception(
|
||||
"TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s",
|
||||
tenant_id, llm_name)
|
||||
return 0
|
||||
|
||||
return num
|
||||
@ -206,7 +218,9 @@ class TenantLLMService(CommonService):
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def get_openai_models(cls):
|
||||
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
|
||||
objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"),
|
||||
~(cls.model.llm_name == "text-embedding-3-small"),
|
||||
~(cls.model.llm_name == "text-embedding-3-large")).dicts()
|
||||
return list(objs)
|
||||
|
||||
@classmethod
|
||||
@ -250,8 +264,9 @@ class LLM4Tenant:
|
||||
langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
|
||||
self.langfuse = None
|
||||
if langfuse_keys:
|
||||
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
|
||||
langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key,
|
||||
host=langfuse_keys.host)
|
||||
if langfuse.auth_check():
|
||||
self.langfuse = langfuse
|
||||
trace_id = self.langfuse.create_trace_id()
|
||||
self.trace_context = {"trace_id": trace_id}
|
||||
self.trace_context = {"trace_id": trace_id}
|
||||
|
||||
@ -2,22 +2,22 @@ from api.db.db_models import UserCanvasVersion, DB
|
||||
from api.db.services.common_service import CommonService
|
||||
from peewee import DoesNotExist
|
||||
|
||||
|
||||
class UserCanvasVersionService(CommonService):
|
||||
model = UserCanvasVersion
|
||||
|
||||
|
||||
|
||||
@classmethod
|
||||
@DB.connection_context()
|
||||
def list_by_canvas_id(cls, user_canvas_id):
|
||||
try:
|
||||
user_canvas_version = cls.model.select(
|
||||
*[cls.model.id,
|
||||
cls.model.create_time,
|
||||
cls.model.title,
|
||||
cls.model.create_date,
|
||||
cls.model.update_date,
|
||||
cls.model.user_canvas_id,
|
||||
cls.model.update_time]
|
||||
*[cls.model.id,
|
||||
cls.model.create_time,
|
||||
cls.model.title,
|
||||
cls.model.create_date,
|
||||
cls.model.update_date,
|
||||
cls.model.user_canvas_id,
|
||||
cls.model.update_time]
|
||||
).where(cls.model.user_canvas_id == user_canvas_id)
|
||||
return user_canvas_version
|
||||
except DoesNotExist:
|
||||
@ -46,18 +46,16 @@ class UserCanvasVersionService(CommonService):
|
||||
@DB.connection_context()
|
||||
def delete_all_versions(cls, user_canvas_id):
|
||||
try:
|
||||
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(cls.model.create_time.desc())
|
||||
user_canvas_version = cls.model.select().where(cls.model.user_canvas_id == user_canvas_id).order_by(
|
||||
cls.model.create_time.desc())
|
||||
if user_canvas_version.count() > 20:
|
||||
delete_ids = []
|
||||
for i in range(20, user_canvas_version.count()):
|
||||
delete_ids.append(user_canvas_version[i].id)
|
||||
|
||||
|
||||
cls.delete_by_ids(delete_ids)
|
||||
return True
|
||||
except DoesNotExist:
|
||||
return None
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
|
||||
|
||||
@ -65,8 +65,8 @@ OAUTH_CONFIG = None
|
||||
DOC_ENGINE = None
|
||||
docStoreConn = None
|
||||
|
||||
retrievaler = None
|
||||
kg_retrievaler = None
|
||||
retriever = None
|
||||
kg_retriever = None
|
||||
|
||||
# user registration switch
|
||||
REGISTER_ENABLED = 1
|
||||
@ -174,7 +174,7 @@ def init_settings():
|
||||
|
||||
OAUTH_CONFIG = get_base_config("oauth", {})
|
||||
|
||||
global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
|
||||
global DOC_ENGINE, docStoreConn, retriever, kg_retriever
|
||||
DOC_ENGINE = os.environ.get("DOC_ENGINE", "elasticsearch")
|
||||
# DOC_ENGINE = os.environ.get('DOC_ENGINE', "opensearch")
|
||||
lower_case_doc_engine = DOC_ENGINE.lower()
|
||||
@ -187,10 +187,10 @@ def init_settings():
|
||||
else:
|
||||
raise Exception(f"Not supported doc engine: {DOC_ENGINE}")
|
||||
|
||||
retrievaler = search.Dealer(docStoreConn)
|
||||
retriever = search.Dealer(docStoreConn)
|
||||
from graphrag import search as kg_search
|
||||
|
||||
kg_retrievaler = kg_search.KGSearch(docStoreConn)
|
||||
kg_retriever = kg_search.KGSearch(docStoreConn)
|
||||
|
||||
if int(os.environ.get("SANDBOX_ENABLED", "0")):
|
||||
global SANDBOX_HOST
|
||||
|
||||
@ -60,6 +60,7 @@ from rag.utils.mcp_tool_call_conn import MCPToolCallSession, close_multiple_mcp_
|
||||
|
||||
requests.models.complexjson.dumps = functools.partial(json.dumps, cls=CustomJSONEncoder)
|
||||
|
||||
|
||||
def serialize_for_json(obj):
|
||||
"""
|
||||
Recursively serialize objects to make them JSON serializable.
|
||||
@ -68,8 +69,8 @@ def serialize_for_json(obj):
|
||||
if hasattr(obj, '__dict__'):
|
||||
# For objects with __dict__, try to serialize their attributes
|
||||
try:
|
||||
return {key: serialize_for_json(value) for key, value in obj.__dict__.items()
|
||||
if not key.startswith('_')}
|
||||
return {key: serialize_for_json(value) for key, value in obj.__dict__.items()
|
||||
if not key.startswith('_')}
|
||||
except (AttributeError, TypeError):
|
||||
return str(obj)
|
||||
elif hasattr(obj, '__name__'):
|
||||
@ -85,6 +86,7 @@ def serialize_for_json(obj):
|
||||
# Fallback: convert to string representation
|
||||
return str(obj)
|
||||
|
||||
|
||||
def request(**kwargs):
|
||||
sess = requests.Session()
|
||||
stream = kwargs.pop("stream", sess.stream)
|
||||
@ -105,7 +107,8 @@ def request(**kwargs):
|
||||
settings.HTTP_APP_KEY.encode("ascii"),
|
||||
prepped.path_url.encode("ascii"),
|
||||
prepped.body if kwargs.get("json") else b"",
|
||||
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode("ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
|
||||
urlencode(sorted(kwargs["data"].items()), quote_via=quote, safe="-._~").encode(
|
||||
"ascii") if kwargs.get("data") and isinstance(kwargs["data"], dict) else b"",
|
||||
]
|
||||
),
|
||||
"sha1",
|
||||
@ -127,7 +130,7 @@ def request(**kwargs):
|
||||
def get_exponential_backoff_interval(retries, full_jitter=False):
|
||||
"""Calculate the exponential backoff wait time."""
|
||||
# Will be zero if factor equals 0
|
||||
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2**retries))
|
||||
countdown = min(REQUEST_MAX_WAIT_SEC, REQUEST_WAIT_SEC * (2 ** retries))
|
||||
# Full jitter according to
|
||||
# https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
|
||||
if full_jitter:
|
||||
@ -158,11 +161,12 @@ def server_error_response(e):
|
||||
if len(e.args) > 1:
|
||||
try:
|
||||
serialized_data = serialize_for_json(e.args[1])
|
||||
return get_json_result(code= settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=serialized_data)
|
||||
except Exception:
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e.args[0]), data=None)
|
||||
if repr(e).find("index_not_found_exception") >= 0:
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message="No chunk found, please upload file and parse it.")
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR,
|
||||
message="No chunk found, please upload file and parse it.")
|
||||
|
||||
return get_json_result(code=settings.RetCode.EXCEPTION_ERROR, message=repr(e))
|
||||
|
||||
@ -207,7 +211,8 @@ def validate_request(*args, **kwargs):
|
||||
if no_arguments:
|
||||
error_string += "required argument are missing: {}; ".format(",".join(no_arguments))
|
||||
if error_arguments:
|
||||
error_string += "required argument values: {}".format(",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
|
||||
error_string += "required argument values: {}".format(
|
||||
",".join(["{}={}".format(a[0], a[1]) for a in error_arguments]))
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=error_string)
|
||||
return func(*_args, **_kwargs)
|
||||
|
||||
@ -222,7 +227,8 @@ def not_allowed_parameters(*params):
|
||||
input_arguments = flask_request.json or flask_request.form.to_dict()
|
||||
for param in params:
|
||||
if param in input_arguments:
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"Parameter {param} isn't allowed")
|
||||
return get_json_result(code=settings.RetCode.ARGUMENT_ERROR,
|
||||
message=f"Parameter {param} isn't allowed")
|
||||
return f(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
@ -239,6 +245,7 @@ def active_required(f):
|
||||
if not usr or not usr.is_active == ActiveEnum.ACTIVE.value:
|
||||
return get_json_result(code=settings.RetCode.FORBIDDEN, message="User isn't active, please activate first.")
|
||||
return f(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
@ -259,7 +266,7 @@ def send_file_in_mem(data, filename):
|
||||
return send_file(f, as_attachment=True, attachment_filename=filename)
|
||||
|
||||
|
||||
def get_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
|
||||
def get_json_result(code: settings.RetCode = settings.RetCode.SUCCESS, message="success", data=None):
|
||||
response = {"code": code, "message": message, "data": data}
|
||||
return jsonify(response)
|
||||
|
||||
@ -314,7 +321,7 @@ def construct_result(code=settings.RetCode.DATA_ERROR, message="data is missing"
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
def construct_json_result(code=settings.RetCode.SUCCESS, message="success", data=None):
|
||||
def construct_json_result(code: settings.RetCode = settings.RetCode.SUCCESS, message="success", data=None):
|
||||
if data is None:
|
||||
return jsonify({"code": code, "message": message})
|
||||
else:
|
||||
@ -347,27 +354,39 @@ def token_required(func):
|
||||
token = authorization_list[1]
|
||||
objs = APIToken.query(token=token)
|
||||
if not objs:
|
||||
return get_json_result(data=False, message="Authentication error: API key is invalid!", code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
return get_json_result(data=False, message="Authentication error: API key is invalid!",
|
||||
code=settings.RetCode.AUTHENTICATION_ERROR)
|
||||
kwargs["tenant_id"] = objs[0].tenant_id
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return decorated_function
|
||||
|
||||
|
||||
def get_result(code=settings.RetCode.SUCCESS, message="", data=None):
|
||||
if code == 0:
|
||||
def get_result(code=settings.RetCode.SUCCESS, message="", data=None, total=None):
|
||||
"""
|
||||
Standard API response format:
|
||||
{
|
||||
"code": 0,
|
||||
"data": [...], # List or object, backward compatible
|
||||
"total": 47, # Optional field for pagination
|
||||
"message": "..." # Error or status message
|
||||
}
|
||||
"""
|
||||
response = {"code": code}
|
||||
|
||||
if code == settings.RetCode.SUCCESS:
|
||||
if data is not None:
|
||||
response = {"code": code, "data": data}
|
||||
else:
|
||||
response = {"code": code}
|
||||
response["data"] = data
|
||||
if total is not None:
|
||||
response["total_datasets"] = total
|
||||
else:
|
||||
response = {"code": code, "message": message}
|
||||
response["message"] = message or "Error"
|
||||
|
||||
return jsonify(response)
|
||||
|
||||
|
||||
def get_error_data_result(
|
||||
message="Sorry! Data missing!",
|
||||
code=settings.RetCode.DATA_ERROR,
|
||||
message="Sorry! Data missing!",
|
||||
code=settings.RetCode.DATA_ERROR,
|
||||
):
|
||||
result_dict = {"code": code, "message": message}
|
||||
response = {}
|
||||
@ -402,7 +421,8 @@ def get_parser_config(chunk_method, parser_config):
|
||||
|
||||
# Define default configurations for each chunking method
|
||||
key_mapping = {
|
||||
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC", "raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"naive": {"chunk_token_num": 512, "delimiter": r"\n", "html4excel": False, "layout_recognize": "DeepDOC",
|
||||
"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"qa": {"raptor": {"use_raptor": False}, "graphrag": {"use_graphrag": False}},
|
||||
"tag": None,
|
||||
"resume": None,
|
||||
@ -441,16 +461,16 @@ def get_parser_config(chunk_method, parser_config):
|
||||
|
||||
|
||||
def get_data_openai(
|
||||
id=None,
|
||||
created=None,
|
||||
model=None,
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
content=None,
|
||||
finish_reason=None,
|
||||
object="chat.completion",
|
||||
param=None,
|
||||
stream=False
|
||||
id=None,
|
||||
created=None,
|
||||
model=None,
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
content=None,
|
||||
finish_reason=None,
|
||||
object="chat.completion",
|
||||
param=None,
|
||||
stream=False
|
||||
):
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
@ -562,7 +582,9 @@ def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, R
|
||||
in_llm_service = bool(LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding"))
|
||||
|
||||
tenant_llms = TenantLLMService.get_my_llms(tenant_id=tenant_id)
|
||||
is_tenant_model = any(llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for llm in tenant_llms)
|
||||
is_tenant_model = any(
|
||||
llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for
|
||||
llm in tenant_llms)
|
||||
|
||||
is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS
|
||||
if not (is_builtin_model or is_tenant_model or in_llm_service):
|
||||
@ -793,7 +815,9 @@ async def is_strong_enough(chat_model, embedding_model):
|
||||
_ = await trio.to_thread.run_sync(lambda: embedding_model.encode(["Are you strong enough!?"]))
|
||||
if chat_model:
|
||||
with trio.fail_after(30):
|
||||
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user", "content": "Are you strong enough!?"}], {}))
|
||||
res = await trio.to_thread.run_sync(lambda: chat_model.chat("Nothing special.", [{"role": "user",
|
||||
"content": "Are you strong enough!?"}],
|
||||
{}))
|
||||
if res.find("**ERROR**") >= 0:
|
||||
raise Exception(res)
|
||||
|
||||
|
||||
@ -84,7 +84,8 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
def cuda_is_available():
|
||||
try:
|
||||
import torch
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > device_id:
|
||||
target_id = 0 if device_id is None else device_id
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > target_id:
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
@ -100,10 +101,13 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
# Shrink GPU memory after execution
|
||||
run_options = ort.RunOptions()
|
||||
if cuda_is_available():
|
||||
gpu_mem_limit_mb = int(os.environ.get("OCR_GPU_MEM_LIMIT_MB", "2048"))
|
||||
arena_strategy = os.environ.get("OCR_ARENA_EXTEND_STRATEGY", "kNextPowerOfTwo")
|
||||
provider_device_id = 0 if device_id is None else device_id
|
||||
cuda_provider_options = {
|
||||
"device_id": device_id, # Use specific GPU
|
||||
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
|
||||
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
|
||||
"device_id": provider_device_id, # Use specific GPU
|
||||
"gpu_mem_limit": max(gpu_mem_limit_mb, 0) * 1024 * 1024,
|
||||
"arena_extend_strategy": arena_strategy, # gpu memory allocation strategy
|
||||
}
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
@ -111,8 +115,8 @@ def load_model(model_dir, nm, device_id: int | None = None):
|
||||
providers=['CUDAExecutionProvider'],
|
||||
provider_options=[cuda_provider_options]
|
||||
)
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(device_id))
|
||||
logging.info(f"load_model {model_file_path} uses GPU")
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:" + str(provider_device_id))
|
||||
logging.info(f"load_model {model_file_path} uses GPU (device {provider_device_id}, gpu_mem_limit={cuda_provider_options['gpu_mem_limit']}, arena_strategy={arena_strategy})")
|
||||
else:
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
|
||||
@ -77,7 +77,7 @@ services:
|
||||
container_name: ragflow-infinity
|
||||
profiles:
|
||||
- infinity
|
||||
image: infiniflow/infinity:v0.6.0-dev5
|
||||
image: infiniflow/infinity:v0.6.0-dev7
|
||||
volumes:
|
||||
- infinity_data:/var/infinity
|
||||
- ./infinity_conf.toml:/infinity_conf.toml
|
||||
|
||||
@ -830,7 +830,8 @@ Success:
|
||||
"update_time": 1728533243536,
|
||||
"vector_similarity_weight": 0.3
|
||||
}
|
||||
]
|
||||
],
|
||||
"total": 1
|
||||
}
|
||||
```
|
||||
|
||||
@ -1280,7 +1281,7 @@ Success:
|
||||
"update_time": 1728897061948
|
||||
}
|
||||
],
|
||||
"total": 1
|
||||
"total_datasets": 1
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@ -55,7 +55,7 @@ async def run_graphrag(
|
||||
start = trio.current_time()
|
||||
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]
|
||||
chunks = []
|
||||
for d in settings.retrievaler.chunk_list(doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"], sort_by_position=True):
|
||||
for d in settings.retriever.chunk_list(doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"], sort_by_position=True):
|
||||
chunks.append(d["content_with_weight"])
|
||||
|
||||
with trio.fail_after(max(120, len(chunks) * 60 * 10) if enable_timeout_assertion else 10000000000):
|
||||
@ -170,7 +170,7 @@ async def run_graphrag_for_kb(
|
||||
chunks = []
|
||||
current_chunk = ""
|
||||
|
||||
for d in settings.retrievaler.chunk_list(
|
||||
for d in settings.retriever.chunk_list(
|
||||
doc_id,
|
||||
tenant_id,
|
||||
[kb_id],
|
||||
|
||||
@ -62,7 +62,7 @@ async def main():
|
||||
|
||||
chunks = [
|
||||
d["content_with_weight"]
|
||||
for d in settings.retrievaler.chunk_list(
|
||||
for d in settings.retriever.chunk_list(
|
||||
args.doc_id,
|
||||
args.tenant_id,
|
||||
[kb_id],
|
||||
|
||||
@ -63,7 +63,7 @@ async def main():
|
||||
|
||||
chunks = [
|
||||
d["content_with_weight"]
|
||||
for d in settings.retrievaler.chunk_list(
|
||||
for d in settings.retriever.chunk_list(
|
||||
args.doc_id,
|
||||
args.tenant_id,
|
||||
[kb_id],
|
||||
|
||||
@ -341,7 +341,7 @@ def get_relation(tenant_id, kb_id, from_ent_name, to_ent_name, size=1):
|
||||
ents = list(set(ents))
|
||||
conds = {"fields": ["content_with_weight"], "size": size, "from_entity_kwd": ents, "to_entity_kwd": ents, "knowledge_graph_kwd": ["relation"]}
|
||||
res = []
|
||||
es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id)
|
||||
es_res = settings.retriever.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id)
|
||||
for id in es_res.ids:
|
||||
try:
|
||||
if size == 1:
|
||||
@ -398,7 +398,7 @@ async def does_graph_contains(tenant_id, kb_id, doc_id):
|
||||
|
||||
async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
|
||||
conds = {"fields": ["source_id"], "removed_kwd": "N", "size": 1, "knowledge_graph_kwd": ["graph"]}
|
||||
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
|
||||
res = await trio.to_thread.run_sync(lambda: settings.retriever.search(conds, search.index_name(tenant_id), [kb_id]))
|
||||
doc_ids = []
|
||||
if res.total == 0:
|
||||
return doc_ids
|
||||
@ -409,7 +409,7 @@ async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
|
||||
|
||||
async def get_graph(tenant_id, kb_id, exclude_rebuild=None):
|
||||
conds = {"fields": ["content_with_weight", "removed_kwd", "source_id"], "size": 1, "knowledge_graph_kwd": ["graph"]}
|
||||
res = await trio.to_thread.run_sync(settings.retrievaler.search, conds, search.index_name(tenant_id), [kb_id])
|
||||
res = await trio.to_thread.run_sync(settings.retriever.search, conds, search.index_name(tenant_id), [kb_id])
|
||||
if not res.total == 0:
|
||||
for id in res.ids:
|
||||
try:
|
||||
@ -562,7 +562,7 @@ def merge_tuples(list1, list2):
|
||||
|
||||
|
||||
async def get_entity_type2samples(idxnms, kb_ids: list):
|
||||
es_res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids, "size": 10000, "fields": ["content_with_weight"]}, idxnms, kb_ids))
|
||||
es_res = await trio.to_thread.run_sync(lambda: settings.retriever.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids, "size": 10000, "fields": ["content_with_weight"]}, idxnms, kb_ids))
|
||||
|
||||
res = defaultdict(list)
|
||||
for id in es_res.ids:
|
||||
|
||||
@ -96,7 +96,7 @@ ragflow:
|
||||
infinity:
|
||||
image:
|
||||
repository: infiniflow/infinity
|
||||
tag: v0.6.0-dev5
|
||||
tag: v0.6.0-dev7
|
||||
pullPolicy: IfNotPresent
|
||||
pullSecrets: []
|
||||
storage:
|
||||
|
||||
@ -46,7 +46,7 @@ dependencies = [
|
||||
"html-text==0.6.2",
|
||||
"httpx[socks]==0.27.2",
|
||||
"huggingface-hub>=0.25.0,<0.26.0",
|
||||
"infinity-sdk==0.6.0.dev5",
|
||||
"infinity-sdk==0.6.0.dev7",
|
||||
"infinity-emb>=0.0.66,<0.0.67",
|
||||
"itsdangerous==2.1.2",
|
||||
"json-repair==0.35.0",
|
||||
@ -133,6 +133,8 @@ dependencies = [
|
||||
"litellm>=1.74.15.post1",
|
||||
"flask-mail>=0.10.0",
|
||||
"lark>=1.2.2",
|
||||
"mammoth>=1.11.0",
|
||||
"markdownify>=1.2.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
@ -159,7 +161,7 @@ test = [
|
||||
]
|
||||
|
||||
[[tool.uv.index]]
|
||||
url = "https://mirrors.aliyun.com/pypi/simple"
|
||||
url = "https://pypi.tuna.tsinghua.edu.cn/simple"
|
||||
|
||||
[tool.setuptools]
|
||||
packages = [
|
||||
|
||||
@ -256,6 +256,49 @@ class Docx(DocxParser):
|
||||
tbls.append(((None, html), ""))
|
||||
return new_line, tbls
|
||||
|
||||
def to_markdown(self, filename=None, binary=None, inline_images: bool = True):
|
||||
"""
|
||||
This function uses mammoth, licensed under the BSD 2-Clause License.
|
||||
"""
|
||||
|
||||
import base64
|
||||
import uuid
|
||||
|
||||
import mammoth
|
||||
from markdownify import markdownify
|
||||
|
||||
docx_file = BytesIO(binary) if binary else open(filename, "rb")
|
||||
|
||||
def _convert_image_to_base64(image):
|
||||
try:
|
||||
with image.open() as image_file:
|
||||
image_bytes = image_file.read()
|
||||
encoded = base64.b64encode(image_bytes).decode("utf-8")
|
||||
base64_url = f"data:{image.content_type};base64,{encoded}"
|
||||
|
||||
alt_name = "image"
|
||||
alt_name = f"img_{uuid.uuid4().hex[:8]}"
|
||||
|
||||
return {"src": base64_url, "alt": alt_name}
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to convert image to base64: {e}")
|
||||
return {"src": "", "alt": "image"}
|
||||
|
||||
try:
|
||||
if inline_images:
|
||||
result = mammoth.convert_to_html(docx_file, convert_image=mammoth.images.img_element(_convert_image_to_base64))
|
||||
else:
|
||||
result = mammoth.convert_to_html(docx_file)
|
||||
|
||||
html = result.value
|
||||
|
||||
markdown_text = markdownify(html)
|
||||
return markdown_text
|
||||
|
||||
finally:
|
||||
if not binary:
|
||||
docx_file.close()
|
||||
|
||||
|
||||
class Pdf(PdfParser):
|
||||
def __init__(self):
|
||||
@ -512,7 +555,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
callback(0.2, "Visual model detected. Attempting to enhance figure extraction...")
|
||||
except Exception:
|
||||
vision_model = None
|
||||
|
||||
|
||||
if vision_model:
|
||||
# Process images for each section
|
||||
section_images = []
|
||||
|
||||
@ -133,14 +133,14 @@ def label_question(question, kbs):
|
||||
if tag_kb_ids:
|
||||
all_tags = get_tags_from_cache(tag_kb_ids)
|
||||
if not all_tags:
|
||||
all_tags = settings.retrievaler.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
|
||||
all_tags = settings.retriever.all_tags_in_portion(kb.tenant_id, tag_kb_ids)
|
||||
set_tags_to_cache(tags=all_tags, kb_ids=tag_kb_ids)
|
||||
else:
|
||||
all_tags = json.loads(all_tags)
|
||||
tag_kbs = KnowledgebaseService.get_by_ids(tag_kb_ids)
|
||||
if not tag_kbs:
|
||||
return tags
|
||||
tags = settings.retrievaler.tag_query(question,
|
||||
tags = settings.retriever.tag_query(question,
|
||||
list(set([kb.tenant_id for kb in tag_kbs])),
|
||||
tag_kb_ids,
|
||||
all_tags,
|
||||
|
||||
@ -52,7 +52,7 @@ class Benchmark:
|
||||
run = defaultdict(dict)
|
||||
query_list = list(qrels.keys())
|
||||
for query in query_list:
|
||||
ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
|
||||
ranks = settings.retriever.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
|
||||
0.0, self.vector_similarity_weight)
|
||||
if len(ranks["chunks"]) == 0:
|
||||
print(f"deleted query: {query}")
|
||||
|
||||
@ -52,6 +52,7 @@ class ParserParam(ProcessParamBase):
|
||||
],
|
||||
"word": [
|
||||
"json",
|
||||
"markdown",
|
||||
],
|
||||
"slides": [
|
||||
"json",
|
||||
@ -247,13 +248,15 @@ class Parser(ProcessBase):
|
||||
conf = self._param.setups["word"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
docx_parser = Docx()
|
||||
sections, tbls = docx_parser(name, binary=blob)
|
||||
sections = [{"text": section[0], "image": section[1]} for section in sections if section]
|
||||
sections.extend([{"text": tb, "image": None} for ((_,tb), _) in tbls])
|
||||
# json
|
||||
assert conf.get("output_format") == "json", "have to be json for doc"
|
||||
|
||||
if conf.get("output_format") == "json":
|
||||
sections, tbls = docx_parser(name, binary=blob)
|
||||
sections = [{"text": section[0], "image": section[1]} for section in sections if section]
|
||||
sections.extend([{"text": tb, "image": None} for ((_,tb), _) in tbls])
|
||||
self.set_output("json", sections)
|
||||
elif conf.get("output_format") == "markdown":
|
||||
markdown_text = docx_parser.to_markdown(name, binary=blob)
|
||||
self.set_output("markdown", markdown_text)
|
||||
|
||||
def _slides(self, name, blob):
|
||||
from deepdoc.parser.ppt_parser import RAGFlowPptParser as ppt_parser
|
||||
|
||||
@ -614,7 +614,7 @@ class NvidiaCV(Base):
|
||||
response = response.json()
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response),
|
||||
)
|
||||
|
||||
def _request(self, msg, gen_conf={}):
|
||||
@ -637,7 +637,7 @@ class NvidiaCV(Base):
|
||||
response = self._request(vision_prompt)
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response)
|
||||
)
|
||||
|
||||
def chat(self, system, history, gen_conf, images=[], **kwargs):
|
||||
@ -645,7 +645,7 @@ class NvidiaCV(Base):
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
return (
|
||||
response["choices"][0]["message"]["content"].strip(),
|
||||
response["usage"]["total_tokens"],
|
||||
total_token_count_from_response(response)
|
||||
)
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
@ -656,7 +656,7 @@ class NvidiaCV(Base):
|
||||
response = self._request(self._form_history(system, history, images), gen_conf)
|
||||
cnt = response["choices"][0]["message"]["content"]
|
||||
if "usage" in response and "total_tokens" in response["usage"]:
|
||||
total_tokens += response["usage"]["total_tokens"]
|
||||
total_tokens += total_token_count_from_response(response)
|
||||
for resp in cnt:
|
||||
yield resp
|
||||
except Exception as e:
|
||||
|
||||
118
rag/prompts/toc_relevance_system.md
Normal file
118
rag/prompts/toc_relevance_system.md
Normal file
@ -0,0 +1,118 @@
|
||||
# System Prompt: TOC Relevance Evaluation
|
||||
|
||||
You are an expert logical reasoning assistant specializing in hierarchical Table of Contents (TOC) relevance evaluation.
|
||||
|
||||
## GOAL
|
||||
You will receive:
|
||||
1. A JSON list of TOC items, each with fields:
|
||||
```json
|
||||
{
|
||||
"level": <integer>, // e.g., 1, 2, 3
|
||||
"title": <string> // section title
|
||||
}
|
||||
```
|
||||
2. A user query (natural language question).
|
||||
|
||||
You must assign a **relevance score** (integer) to every TOC entry, based on how related its `title` is to the `query`.
|
||||
|
||||
---
|
||||
|
||||
## RULES
|
||||
|
||||
### Scoring System
|
||||
- 5 → highly relevant (directly answers or matches the query intent)
|
||||
- 3 → somewhat related (same topic or partially overlaps)
|
||||
- 1 → weakly related (vague or tangential)
|
||||
- 0 → no clear relation
|
||||
- -1 → explicitly irrelevant or contradictory
|
||||
|
||||
### Hierarchy Traversal
|
||||
- The TOC is hierarchical: smaller `level` = higher layer (e.g., level 1 is top-level, level 2 is a subsection).
|
||||
- You must traverse in **hierarchical order** — interpret the structure based on levels (1 > 2 > 3).
|
||||
- If a high-level item (level 1) is strongly related (score 5), its child items (level 2, 3) are likely relevant too.
|
||||
- If a high-level item is unrelated (-1 or 0), its deeper children are usually less relevant unless the titles clearly match the query.
|
||||
- Lower (deeper) levels provide more specific content; prefer assigning higher scores if they directly match the query.
|
||||
|
||||
### Output Format
|
||||
Return a **JSON array**, preserving the input order but adding a new key `"score"`:
|
||||
|
||||
```json
|
||||
[
|
||||
{"level": 1, "title": "Introduction", "score": 0},
|
||||
{"level": 2, "title": "Definition of Sustainability", "score": 5}
|
||||
]
|
||||
```
|
||||
|
||||
### Constraints
|
||||
- Output **only the JSON array** — no explanations or reasoning text.
|
||||
|
||||
### EXAMPLES
|
||||
|
||||
#### Example 1
|
||||
Input TOC:
|
||||
[
|
||||
{"level": 1, "title": "Machine Learning Overview"},
|
||||
{"level": 2, "title": "Supervised Learning"},
|
||||
{"level": 2, "title": "Unsupervised Learning"},
|
||||
{"level": 3, "title": "Applications of Deep Learning"}
|
||||
]
|
||||
|
||||
Query:
|
||||
"How is deep learning used in image classification?"
|
||||
|
||||
Output:
|
||||
[
|
||||
{"level": 1, "title": "Machine Learning Overview", "score": 3},
|
||||
{"level": 2, "title": "Supervised Learning", "score": 3},
|
||||
{"level": 2, "title": "Unsupervised Learning", "score": 0},
|
||||
{"level": 3, "title": "Applications of Deep Learning", "score": 5}
|
||||
]
|
||||
|
||||
---
|
||||
|
||||
#### Example 2
|
||||
Input TOC:
|
||||
[
|
||||
{"level": 1, "title": "Marketing Basics"},
|
||||
{"level": 2, "title": "Consumer Behavior"},
|
||||
{"level": 2, "title": "Digital Marketing"},
|
||||
{"level": 3, "title": "Social Media Campaigns"},
|
||||
{"level": 3, "title": "SEO Optimization"}
|
||||
]
|
||||
|
||||
Query:
|
||||
"What are the best online marketing methods?"
|
||||
|
||||
Output:
|
||||
[
|
||||
{"level": 1, "title": "Marketing Basics", "score": 3},
|
||||
{"level": 2, "title": "Consumer Behavior", "score": 1},
|
||||
{"level": 2, "title": "Digital Marketing", "score": 5},
|
||||
{"level": 3, "title": "Social Media Campaigns", "score": 5},
|
||||
{"level": 3, "title": "SEO Optimization", "score": 5}
|
||||
]
|
||||
|
||||
---
|
||||
|
||||
#### Example 3
|
||||
Input TOC:
|
||||
[
|
||||
{"level": 1, "title": "Physics Overview"},
|
||||
{"level": 2, "title": "Classical Mechanics"},
|
||||
{"level": 3, "title": "Newton’s Laws"},
|
||||
{"level": 2, "title": "Thermodynamics"},
|
||||
{"level": 3, "title": "Entropy and Heat Transfer"}
|
||||
]
|
||||
|
||||
Query:
|
||||
"What is entropy?"
|
||||
|
||||
Output:
|
||||
[
|
||||
{"level": 1, "title": "Physics Overview", "score": 3},
|
||||
{"level": 2, "title": "Classical Mechanics", "score": 0},
|
||||
{"level": 3, "title": "Newton’s Laws", "score": -1},
|
||||
{"level": 2, "title": "Thermodynamics", "score": 5},
|
||||
{"level": 3, "title": "Entropy and Heat Transfer", "score": 5}
|
||||
]
|
||||
|
||||
17
rag/prompts/toc_relevance_user.md
Normal file
17
rag/prompts/toc_relevance_user.md
Normal file
@ -0,0 +1,17 @@
|
||||
# User Prompt: TOC Relevance Evaluation
|
||||
|
||||
You will now receive:
|
||||
1. A JSON list of TOC items (each with `level` and `title`)
|
||||
2. A user query string.
|
||||
|
||||
Traverse the TOC hierarchically based on level numbers and assign scores (5,3,1,0,-1) according to the rules in the system prompt.
|
||||
Output **only** the JSON array with the added `"score"` field.
|
||||
|
||||
---
|
||||
|
||||
**Input TOC:**
|
||||
{{ toc_json }}
|
||||
|
||||
**Query:**
|
||||
{{ query }}
|
||||
|
||||
@ -380,7 +380,7 @@ async def build_chunks(task, progress_callback):
|
||||
examples = []
|
||||
all_tags = get_tags_from_cache(kb_ids)
|
||||
if not all_tags:
|
||||
all_tags = settings.retrievaler.all_tags_in_portion(tenant_id, kb_ids, S)
|
||||
all_tags = settings.retriever.all_tags_in_portion(tenant_id, kb_ids, S)
|
||||
set_tags_to_cache(kb_ids, all_tags)
|
||||
else:
|
||||
all_tags = json.loads(all_tags)
|
||||
@ -393,7 +393,7 @@ async def build_chunks(task, progress_callback):
|
||||
if task_canceled:
|
||||
progress_callback(-1, msg="Task has been canceled.")
|
||||
return
|
||||
if settings.retrievaler.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
|
||||
if settings.retriever.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
|
||||
examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]})
|
||||
else:
|
||||
docs_to_tag.append(d)
|
||||
@ -645,7 +645,7 @@ async def run_raptor_for_kb(row, kb_parser_config, chat_mdl, embd_mdl, vector_si
|
||||
chunks = []
|
||||
vctr_nm = "q_%d_vec"%vector_size
|
||||
for doc_id in doc_ids:
|
||||
for d in settings.retrievaler.chunk_list(doc_id, row["tenant_id"], [str(row["kb_id"])],
|
||||
for d in settings.retriever.chunk_list(doc_id, row["tenant_id"], [str(row["kb_id"])],
|
||||
fields=["content_with_weight", vctr_nm],
|
||||
sort_by_position=True):
|
||||
chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
|
||||
|
||||
@ -41,7 +41,7 @@ export function HomeCard({
|
||||
<div className="flex flex-col justify-between gap-1 flex-1 h-full w-[calc(100%-50px)]">
|
||||
<section className="flex justify-between w-full">
|
||||
<section className="flex gap-1 items-center w-full">
|
||||
<div className="text-[20px] font-bold w-80% leading-5 text-ellipsis overflow-hidden">
|
||||
<div className="text-base font-bold w-80% text-ellipsis overflow-hidden leading-snug">
|
||||
{data.name}
|
||||
</div>
|
||||
{icon}
|
||||
|
||||
@ -116,6 +116,7 @@ export const useInitializeOperatorParams = () => {
|
||||
[Operator.UserFillUp]: initialUserFillUpValues,
|
||||
[Operator.StringTransform]: initialStringTransformValues,
|
||||
[Operator.TavilyExtract]: initialTavilyExtractValues,
|
||||
[Operator.Placeholder]: {},
|
||||
};
|
||||
}, [llmId]);
|
||||
|
||||
|
||||
@ -178,11 +178,17 @@ function DataFlowCanvas({ drawerVisible, hideDrawer, showLogSheet }: IProps) {
|
||||
};
|
||||
|
||||
const onConnectEnd: OnConnectEnd = (event, connectionState) => {
|
||||
const target = event.target as HTMLElement;
|
||||
const nodeId = connectionState.fromNode?.id;
|
||||
|
||||
// Events triggered by Handle are directly interrupted
|
||||
if (connectionState.toNode !== null || (nodeId && hasChildNode(nodeId))) {
|
||||
if (
|
||||
target?.classList.contains('react-flow__handle') ||
|
||||
(nodeId && hasChildNode(nodeId))
|
||||
) {
|
||||
return;
|
||||
}
|
||||
|
||||
if ('clientX' in event && 'clientY' in event) {
|
||||
const { clientX, clientY } = event;
|
||||
setDropdownPosition({ x: clientX, y: clientY });
|
||||
|
||||
@ -52,31 +52,33 @@ function OperatorItemList({
|
||||
const getNodeName = useGetNodeName();
|
||||
const getNodeDescription = useGetNodeDescription();
|
||||
|
||||
const handleClick = (operator: Operator) => {
|
||||
const contextData = handleContext || {
|
||||
nodeId: '',
|
||||
id: '',
|
||||
type: 'source' as const,
|
||||
position: Position.Right,
|
||||
isFromConnectionDrag: true,
|
||||
const handleClick =
|
||||
(operator: Operator): React.MouseEventHandler<HTMLElement> =>
|
||||
(e) => {
|
||||
const contextData = handleContext || {
|
||||
nodeId: '',
|
||||
id: '',
|
||||
type: 'source' as const,
|
||||
position: Position.Right,
|
||||
isFromConnectionDrag: true,
|
||||
};
|
||||
|
||||
const mockEvent = mousePosition
|
||||
? {
|
||||
clientX: mousePosition.x,
|
||||
clientY: mousePosition.y,
|
||||
}
|
||||
: e;
|
||||
|
||||
const newNodeId = addCanvasNode(operator, contextData)(mockEvent);
|
||||
|
||||
if (onNodeCreated && newNodeId) {
|
||||
onNodeCreated(newNodeId);
|
||||
}
|
||||
|
||||
hideModal?.();
|
||||
};
|
||||
|
||||
const mockEvent = mousePosition
|
||||
? {
|
||||
clientX: mousePosition.x,
|
||||
clientY: mousePosition.y,
|
||||
}
|
||||
: undefined;
|
||||
|
||||
const newNodeId = addCanvasNode(operator, contextData)(mockEvent);
|
||||
|
||||
if (onNodeCreated && newNodeId) {
|
||||
onNodeCreated(newNodeId);
|
||||
}
|
||||
|
||||
hideModal?.();
|
||||
};
|
||||
|
||||
const renderOperatorItem = (operator: Operator) => {
|
||||
const commonContent = (
|
||||
<div className="hover:bg-background-card py-1 px-3 cursor-pointer rounded-sm flex gap-2 items-center justify-start">
|
||||
@ -89,12 +91,12 @@ function OperatorItemList({
|
||||
<Tooltip key={operator}>
|
||||
<TooltipTrigger asChild>
|
||||
{isCustomDropdown ? (
|
||||
<li onClick={() => handleClick(operator)}>{commonContent}</li>
|
||||
<li onClick={handleClick(operator)}>{commonContent}</li>
|
||||
) : (
|
||||
<DropdownMenuItem
|
||||
key={operator}
|
||||
className="hover:bg-background-card py-1 px-3 cursor-pointer rounded-sm flex gap-2 items-center justify-start"
|
||||
onClick={() => handleClick(operator)}
|
||||
onClick={handleClick(operator)}
|
||||
onSelect={() => hideModal?.()}
|
||||
>
|
||||
<OperatorIcon name={operator} />
|
||||
|
||||
Reference in New Issue
Block a user