mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-02-02 00:25:06 +08:00
Compare commits
7 Commits
dad97869b6
...
a0d630365c
| Author | SHA1 | Date | |
|---|---|---|---|
| a0d630365c | |||
| b5b8032a56 | |||
| ccb9f0b0d7 | |||
| a0ab619aeb | |||
| 32349481ef | |||
| 2b9ed935f3 | |||
| 188c0f614b |
@ -484,7 +484,7 @@ class Canvas:
|
||||
threads.append(exe.submit(FileService.parse, file["name"], FileService.get_blob(file["created_by"], file["id"]), True, file["created_by"]))
|
||||
return [th.result() for th in threads]
|
||||
|
||||
def tool_use_callback(self, agent_id: str, func_name: str, params: dict, result: Any):
|
||||
def tool_use_callback(self, agent_id: str, func_name: str, params: dict, result: Any, elapsed_time=None):
|
||||
agent_ids = agent_id.split("-->")
|
||||
agent_name = self.get_component_name(agent_ids[0])
|
||||
path = agent_name if len(agent_ids) < 2 else agent_name+"-->"+"-->".join(agent_ids[1:])
|
||||
@ -493,16 +493,16 @@ class Canvas:
|
||||
if bin:
|
||||
obj = json.loads(bin.encode("utf-8"))
|
||||
if obj[-1]["component_id"] == agent_ids[0]:
|
||||
obj[-1]["trace"].append({"path": path, "tool_name": func_name, "arguments": params, "result": result})
|
||||
obj[-1]["trace"].append({"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time})
|
||||
else:
|
||||
obj.append({
|
||||
"component_id": agent_ids[0],
|
||||
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result}]
|
||||
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time}]
|
||||
})
|
||||
else:
|
||||
obj = [{
|
||||
"component_id": agent_ids[0],
|
||||
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result}]
|
||||
"trace": [{"path": path, "tool_name": func_name, "arguments": params, "result": result, "elapsed_time": elapsed_time}]
|
||||
}]
|
||||
REDIS_CONN.set_obj(f"{self.task_id}-{self.message_id}-logs", obj, 60*10)
|
||||
except Exception as e:
|
||||
|
||||
@ -22,7 +22,7 @@ from functools import partial
|
||||
from typing import Any
|
||||
|
||||
import json_repair
|
||||
|
||||
from timeit import default_timer as timer
|
||||
from agent.tools.base import LLMToolPluginCallSession, ToolParamBase, ToolBase, ToolMeta
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.tenant_llm_service import TenantLLMService
|
||||
@ -215,8 +215,9 @@ class Agent(LLM, ToolBase):
|
||||
hist = deepcopy(history)
|
||||
last_calling = ""
|
||||
if len(hist) > 3:
|
||||
st = timer()
|
||||
user_request = full_question(messages=history, chat_mdl=self.chat_mdl)
|
||||
self.callback("Multi-turn conversation optimization", {}, user_request)
|
||||
self.callback("Multi-turn conversation optimization", {}, user_request, elapsed_time=timer()-st)
|
||||
else:
|
||||
user_request = history[-1]["content"]
|
||||
|
||||
@ -263,12 +264,13 @@ class Agent(LLM, ToolBase):
|
||||
if not need2cite or cited:
|
||||
return
|
||||
|
||||
st = timer()
|
||||
txt = ""
|
||||
for delta_ans in self._gen_citations(entire_txt):
|
||||
yield delta_ans, 0
|
||||
txt += delta_ans
|
||||
|
||||
self.callback("gen_citations", {}, txt)
|
||||
self.callback("gen_citations", {}, txt, elapsed_time=timer()-st)
|
||||
|
||||
def append_user_content(hist, content):
|
||||
if hist[-1]["role"] == "user":
|
||||
@ -276,8 +278,9 @@ class Agent(LLM, ToolBase):
|
||||
else:
|
||||
hist.append({"role": "user", "content": content})
|
||||
|
||||
st = timer()
|
||||
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas)
|
||||
self.callback("analyze_task", {}, task_desc)
|
||||
self.callback("analyze_task", {}, task_desc, elapsed_time=timer()-st)
|
||||
for _ in range(self._param.max_rounds + 1):
|
||||
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc)
|
||||
# self.callback("next_step", {}, str(response)[:256]+"...")
|
||||
@ -303,9 +306,10 @@ class Agent(LLM, ToolBase):
|
||||
|
||||
thr.append(executor.submit(use_tool, name, args))
|
||||
|
||||
st = timer()
|
||||
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr])
|
||||
append_user_content(hist, reflection)
|
||||
self.callback("reflection", {}, str(reflection))
|
||||
self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st)
|
||||
|
||||
except Exception as e:
|
||||
logging.exception(msg=f"Wrong JSON argument format in LLM ReAct response: {e}")
|
||||
|
||||
@ -24,6 +24,7 @@ from api.utils import hash_str2int
|
||||
from rag.llm.chat_model import ToolCallSession
|
||||
from rag.prompts.prompts import kb_prompt
|
||||
from rag.utils.mcp_tool_call_conn import MCPToolCallSession
|
||||
from timeit import default_timer as timer
|
||||
|
||||
|
||||
class ToolParameter(TypedDict):
|
||||
@ -49,12 +50,13 @@ class LLMToolPluginCallSession(ToolCallSession):
|
||||
|
||||
def tool_call(self, name: str, arguments: dict[str, Any]) -> Any:
|
||||
assert name in self.tools_map, f"LLM tool {name} does not exist"
|
||||
st = timer()
|
||||
if isinstance(self.tools_map[name], MCPToolCallSession):
|
||||
resp = self.tools_map[name].tool_call(name, arguments, 60)
|
||||
else:
|
||||
resp = self.tools_map[name].invoke(**arguments)
|
||||
|
||||
self.callback(name, arguments, resp)
|
||||
self.callback(name, arguments, resp, elapsed_time=timer()-st)
|
||||
return resp
|
||||
|
||||
def get_tool_obj(self, name):
|
||||
|
||||
@ -79,6 +79,17 @@ class ExeSQL(ToolBase, ABC):
|
||||
|
||||
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 60))
|
||||
def _invoke(self, **kwargs):
|
||||
|
||||
def convert_decimals(obj):
|
||||
from decimal import Decimal
|
||||
if isinstance(obj, Decimal):
|
||||
return float(obj) # 或 str(obj)
|
||||
elif isinstance(obj, dict):
|
||||
return {k: convert_decimals(v) for k, v in obj.items()}
|
||||
elif isinstance(obj, list):
|
||||
return [convert_decimals(item) for item in obj]
|
||||
return obj
|
||||
|
||||
sql = kwargs.get("sql")
|
||||
if not sql:
|
||||
raise Exception("SQL for `ExeSQL` MUST not be empty.")
|
||||
@ -122,7 +133,11 @@ class ExeSQL(ToolBase, ABC):
|
||||
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.max_records)])
|
||||
single_res.columns = [i[0] for i in cursor.description]
|
||||
|
||||
sql_res.append(single_res.to_dict(orient='records'))
|
||||
for col in single_res.columns:
|
||||
if pd.api.types.is_datetime64_any_dtype(single_res[col]):
|
||||
single_res[col] = single_res[col].dt.strftime('%Y-%m-%d')
|
||||
|
||||
sql_res.append(convert_decimals(single_res.to_dict(orient='records')))
|
||||
formalized_content.append(single_res.to_markdown(index=False, floatfmt=".6f"))
|
||||
|
||||
self.set_output("json", sql_res)
|
||||
@ -130,4 +145,4 @@ class ExeSQL(ToolBase, ABC):
|
||||
return self.output("formalized_content")
|
||||
|
||||
def thoughts(self) -> str:
|
||||
return "Query sent—waiting for the data."
|
||||
return "Query sent—waiting for the data."
|
||||
|
||||
@ -86,10 +86,16 @@ class Retrieval(ToolBase, ABC):
|
||||
kb_ids.append(id)
|
||||
continue
|
||||
kb_nm = self._canvas.get_variable_value(id)
|
||||
e, kb = KnowledgebaseService.get_by_name(kb_nm, self._canvas._tenant_id)
|
||||
if not e:
|
||||
raise Exception(f"Dataset({kb_nm}) does not exist.")
|
||||
kb_ids.append(kb.id)
|
||||
# if kb_nm is a list
|
||||
kb_nm_list = kb_nm if isinstance(kb_nm, list) else [kb_nm]
|
||||
for nm_or_id in kb_nm_list:
|
||||
e, kb = KnowledgebaseService.get_by_name(nm_or_id,
|
||||
self._canvas._tenant_id)
|
||||
if not e:
|
||||
e, kb = KnowledgebaseService.get_by_id(nm_or_id)
|
||||
if not e:
|
||||
raise Exception(f"Dataset({nm_or_id}) does not exist.")
|
||||
kb_ids.append(kb.id)
|
||||
|
||||
filtered_kb_ids: list[str] = list(set([kb_id for kb_id in kb_ids if kb_id]))
|
||||
|
||||
|
||||
@ -29,6 +29,7 @@ from api.db.services.conversation_service import ConversationService, structure_
|
||||
from api.db.services.dialog_service import DialogService, ask, chat
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.search_service import SearchService
|
||||
from api.db.services.tenant_llm_service import TenantLLMService
|
||||
from api.db.services.user_service import TenantService, UserTenantService
|
||||
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
|
||||
@ -344,10 +345,18 @@ def ask_about():
|
||||
req = request.json
|
||||
uid = current_user.id
|
||||
|
||||
search_id = req.get("search_id", "")
|
||||
search_app = None
|
||||
search_config = {}
|
||||
if search_id:
|
||||
search_app = SearchService.get_detail(search_id)
|
||||
if search_app:
|
||||
search_config = search_app.get("search_config", {})
|
||||
|
||||
def stream():
|
||||
nonlocal req, uid
|
||||
try:
|
||||
for ans in ask(req["question"], req["kb_ids"], uid):
|
||||
for ans in ask(req["question"], req["kb_ids"], uid, search_config=search_config):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
@ -366,15 +375,68 @@ def ask_about():
|
||||
@validate_request("question", "kb_ids")
|
||||
def mindmap():
|
||||
req = request.json
|
||||
|
||||
search_id = req.get("search_id", "")
|
||||
search_app = None
|
||||
search_config = {}
|
||||
if search_id:
|
||||
search_app = SearchService.get_detail(search_id)
|
||||
if search_app:
|
||||
search_config = search_app.get("search_config", {})
|
||||
|
||||
kb_ids = req["kb_ids"]
|
||||
if search_config.get("kb_ids", []):
|
||||
kb_ids = search_config.get("kb_ids", [])
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
||||
if not e:
|
||||
return get_data_error_result(message="Knowledgebase not found!")
|
||||
|
||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
|
||||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
||||
chat_id = ""
|
||||
similarity_threshold = 0.3,
|
||||
vector_similarity_weight = 0.3,
|
||||
top = 1024,
|
||||
doc_ids = []
|
||||
rerank_id = ""
|
||||
rerank_mdl = None
|
||||
|
||||
if search_config:
|
||||
if search_config.get("chat_id", ""):
|
||||
chat_id = search_config.get("chat_id", "")
|
||||
if search_config.get("similarity_threshold", 0.2):
|
||||
similarity_threshold = search_config.get("similarity_threshold", 0.2)
|
||||
if search_config.get("vector_similarity_weight", 0.3):
|
||||
vector_similarity_weight = search_config.get("vector_similarity_weight", 0.3)
|
||||
if search_config.get("top_k", 1024):
|
||||
top = search_config.get("top_k", 1024)
|
||||
if search_config.get("doc_ids", []):
|
||||
doc_ids = search_config.get("doc_ids", [])
|
||||
if search_config.get("rerank_id", ""):
|
||||
rerank_id = search_config.get("rerank_id", "")
|
||||
|
||||
tenant_id = kb.tenant_id
|
||||
if search_app and search_app.get("tenant_id", ""):
|
||||
tenant_id = search_app.get("tenant_id", "")
|
||||
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=chat_id)
|
||||
if rerank_id:
|
||||
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
|
||||
question = req["question"]
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12, 0.3, 0.3, aggs=False, rank_feature=label_question(question, [kb]))
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
question=question,
|
||||
embd_mdl=embd_mdl,
|
||||
tenant_ids=tenant_id,
|
||||
kb_ids=kb_ids,
|
||||
page=1,
|
||||
page_size=12,
|
||||
similarity_threshold=similarity_threshold,
|
||||
vector_similarity_weight=vector_similarity_weight,
|
||||
top=top,
|
||||
doc_ids=doc_ids,
|
||||
aggs=False,
|
||||
rerank_mdl=rerank_mdl,
|
||||
rank_feature=label_question(question, [kb]),
|
||||
)
|
||||
mindmap = MindMapExtractor(chat_mdl)
|
||||
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
|
||||
mind_map = mind_map.output
|
||||
@ -388,8 +450,19 @@ def mindmap():
|
||||
@validate_request("question")
|
||||
def related_questions():
|
||||
req = request.json
|
||||
|
||||
search_id = req.get("search_id", "")
|
||||
search_config = {}
|
||||
if search_id:
|
||||
if search_app := SearchService.get_detail(search_id):
|
||||
search_config = search_app.get("search_config", {})
|
||||
|
||||
question = req["question"]
|
||||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
|
||||
|
||||
chat_id = search_config.get("chat_id", "")
|
||||
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, chat_id)
|
||||
|
||||
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
|
||||
prompt = load_prompt("related_question")
|
||||
ans = chat_mdl.chat(
|
||||
prompt,
|
||||
@ -402,6 +475,6 @@ Related search terms:
|
||||
""",
|
||||
}
|
||||
],
|
||||
{"temperature": 0.9},
|
||||
gen_conf,
|
||||
)
|
||||
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|
||||
|
||||
@ -902,10 +902,16 @@ def ask_about_embedded():
|
||||
req = request.json
|
||||
uid = objs[0].tenant_id
|
||||
|
||||
search_id = req.get("search_id", "")
|
||||
search_config = {}
|
||||
if search_id:
|
||||
if search_app := SearchService.get_detail(search_id):
|
||||
search_config = search_app.get("search_config", {})
|
||||
|
||||
def stream():
|
||||
nonlocal req, uid
|
||||
try:
|
||||
for ans in ask(req["question"], req["kb_ids"], uid):
|
||||
for ans in ask(req["question"], req["kb_ids"], uid, search_config):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
@ -1021,8 +1027,19 @@ def related_questions_embedded():
|
||||
tenant_id = objs[0].tenant_id
|
||||
if not tenant_id:
|
||||
return get_error_data_result(message="permission denined.")
|
||||
|
||||
search_id = req.get("search_id", "")
|
||||
search_config = {}
|
||||
if search_id:
|
||||
if search_app := SearchService.get_detail(search_id):
|
||||
search_config = search_app.get("search_config", {})
|
||||
|
||||
question = req["question"]
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
||||
|
||||
chat_id = search_config.get("chat_id", "")
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_id)
|
||||
|
||||
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
|
||||
prompt = load_prompt("related_question")
|
||||
ans = chat_mdl.chat(
|
||||
prompt,
|
||||
@ -1035,7 +1052,7 @@ Related search terms:
|
||||
""",
|
||||
}
|
||||
],
|
||||
{"temperature": 0.9},
|
||||
gen_conf,
|
||||
)
|
||||
return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
|
||||
|
||||
@ -1083,15 +1100,62 @@ def mindmap():
|
||||
|
||||
tenant_id = objs[0].tenant_id
|
||||
req = request.json
|
||||
|
||||
search_id = req.get("search_id", "")
|
||||
search_config = {}
|
||||
if search_id:
|
||||
if search_app := SearchService.get_detail(search_id):
|
||||
search_config = search_app.get("search_config", {})
|
||||
|
||||
kb_ids = req["kb_ids"]
|
||||
if search_config.get("kb_ids", []):
|
||||
kb_ids = search_config.get("kb_ids", [])
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
|
||||
if not e:
|
||||
return get_error_data_result(message="Knowledgebase not found!")
|
||||
|
||||
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
||||
chat_id = ""
|
||||
similarity_threshold = 0.3,
|
||||
vector_similarity_weight = 0.3,
|
||||
top = 1024,
|
||||
doc_ids = []
|
||||
rerank_id = ""
|
||||
rerank_mdl = None
|
||||
|
||||
if search_config:
|
||||
if search_config.get("chat_id", ""):
|
||||
chat_id = search_config.get("chat_id", "")
|
||||
if search_config.get("similarity_threshold", 0.2):
|
||||
similarity_threshold = search_config.get("similarity_threshold", 0.2)
|
||||
if search_config.get("vector_similarity_weight", 0.3):
|
||||
vector_similarity_weight = search_config.get("vector_similarity_weight", 0.3)
|
||||
if search_config.get("top_k", 1024):
|
||||
top = search_config.get("top_k", 1024)
|
||||
if search_config.get("doc_ids", []):
|
||||
doc_ids = search_config.get("doc_ids", [])
|
||||
if search_config.get("rerank_id", ""):
|
||||
rerank_id = search_config.get("rerank_id", "")
|
||||
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=chat_id)
|
||||
if rerank_id:
|
||||
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
|
||||
question = req["question"]
|
||||
ranks = settings.retrievaler.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, 1, 12, 0.3, 0.3, aggs=False, rank_feature=label_question(question, [kb]))
|
||||
ranks = settings.retrievaler.retrieval(
|
||||
question=question,
|
||||
embd_mdl=embd_mdl,
|
||||
tenant_ids=tenant_id,
|
||||
kb_ids=kb_ids,
|
||||
page=1,
|
||||
page_size=12,
|
||||
similarity_threshold=similarity_threshold,
|
||||
vector_similarity_weight=vector_similarity_weight,
|
||||
top=top,
|
||||
doc_ids=doc_ids,
|
||||
aggs=False,
|
||||
rerank_mdl=rerank_mdl,
|
||||
rank_feature=label_question(question, [kb]),
|
||||
)
|
||||
mindmap = MindMapExtractor(chat_mdl)
|
||||
mind_map = trio.run(mindmap, [c["content_with_weight"] for c in ranks["chunks"]])
|
||||
mind_map = mind_map.output
|
||||
|
||||
@ -872,7 +872,7 @@ class Search(DataBaseModel):
|
||||
default={
|
||||
"kb_ids": [],
|
||||
"doc_ids": [],
|
||||
"similarity_threshold": 0.0,
|
||||
"similarity_threshold": 0.2,
|
||||
"vector_similarity_weight": 0.3,
|
||||
"use_kg": False,
|
||||
# rerank settings
|
||||
|
||||
@ -40,7 +40,7 @@ from rag.app.resume import forbidden_select_fields4resume
|
||||
from rag.app.tag import label_question
|
||||
from rag.nlp.search import index_name
|
||||
from rag.prompts import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in
|
||||
from rag.prompts.prompts import gen_meta_filter
|
||||
from rag.prompts.prompts import gen_meta_filter, PROMPT_JINJA_ENV, ASK_SUMMARY
|
||||
from rag.utils import num_tokens_from_string, rmSpace
|
||||
from rag.utils.tavily_conn import Tavily
|
||||
|
||||
@ -687,7 +687,30 @@ def tts(tts_mdl, text):
|
||||
return binascii.hexlify(bin).decode("utf-8")
|
||||
|
||||
|
||||
def ask(question, kb_ids, tenant_id, chat_llm_name=None):
|
||||
def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
|
||||
similarity_threshold = 0.1,
|
||||
vector_similarity_weight = 0.3,
|
||||
top = 1024,
|
||||
doc_ids = []
|
||||
rerank_id = ""
|
||||
rerank_mdl = None
|
||||
|
||||
if search_config:
|
||||
if search_config.get("kb_ids", []):
|
||||
kb_ids = search_config.get("kb_ids", [])
|
||||
if search_config.get("chat_id", ""):
|
||||
chat_llm_name = search_config.get("chat_id", "")
|
||||
if search_config.get("similarity_threshold", 0.1):
|
||||
similarity_threshold = search_config.get("similarity_threshold", 0.1)
|
||||
if search_config.get("vector_similarity_weight", 0.3):
|
||||
vector_similarity_weight = search_config.get("vector_similarity_weight", 0.3)
|
||||
if search_config.get("top_k", 1024):
|
||||
top = search_config.get("top_k", 1024)
|
||||
if search_config.get("doc_ids", []):
|
||||
doc_ids = search_config.get("doc_ids", [])
|
||||
if search_config.get("rerank_id", ""):
|
||||
rerank_id = search_config.get("rerank_id", "")
|
||||
|
||||
kbs = KnowledgebaseService.get_by_ids(kb_ids)
|
||||
embedding_list = list(set([kb.embd_id for kb in kbs]))
|
||||
|
||||
@ -696,30 +719,34 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None):
|
||||
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, chat_llm_name)
|
||||
if rerank_id:
|
||||
rerank_mdl = LLMBundle(tenant_id, LLMType.RERANK, rerank_id)
|
||||
max_tokens = chat_mdl.max_length
|
||||
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
|
||||
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False, rank_feature=label_question(question, kbs))
|
||||
|
||||
kbinfos = retriever.retrieval(
|
||||
question = question,
|
||||
embd_mdl=embd_mdl,
|
||||
tenant_ids=tenant_ids,
|
||||
kb_ids=kb_ids,
|
||||
page=1,
|
||||
page_size=12,
|
||||
similarity_threshold=similarity_threshold,
|
||||
vector_similarity_weight=vector_similarity_weight,
|
||||
top=top,
|
||||
doc_ids=doc_ids,
|
||||
aggs=False,
|
||||
rerank_mdl=rerank_mdl,
|
||||
rank_feature=label_question(question, kbs)
|
||||
)
|
||||
|
||||
knowledges = kb_prompt(kbinfos, max_tokens)
|
||||
prompt = """
|
||||
Role: You're a smart assistant. Your name is Miss R.
|
||||
Task: Summarize the information from knowledge bases and answer user's question.
|
||||
Requirements and restriction:
|
||||
- DO NOT make things up, especially for numbers.
|
||||
- If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
|
||||
- Answer with markdown format text.
|
||||
- Answer in language of user's question.
|
||||
- DO NOT make things up, especially for numbers.
|
||||
sys_prompt = PROMPT_JINJA_ENV.from_string(ASK_SUMMARY).render(knowledge="\n".join(knowledges))
|
||||
|
||||
### Information from knowledge bases
|
||||
%s
|
||||
|
||||
The above is information from knowledge bases.
|
||||
|
||||
""" % "\n".join(knowledges)
|
||||
msg = [{"role": "user", "content": question}]
|
||||
|
||||
def decorate_answer(answer):
|
||||
nonlocal knowledges, kbinfos, prompt
|
||||
nonlocal knowledges, kbinfos, sys_prompt
|
||||
answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
|
||||
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
|
||||
recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
|
||||
@ -737,7 +764,7 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None):
|
||||
return {"answer": answer, "reference": refs}
|
||||
|
||||
answer = ""
|
||||
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
|
||||
for ans in chat_mdl.chat_streamly(sys_prompt, msg, {"temperature": 0.1}):
|
||||
answer = ans
|
||||
yield {"answer": answer, "reference": {}}
|
||||
yield decorate_answer(answer)
|
||||
|
||||
@ -59,11 +59,14 @@ def update_progress():
|
||||
if redis_lock.acquire():
|
||||
DocumentService.update_progress()
|
||||
redis_lock.release()
|
||||
stop_event.wait(6)
|
||||
except Exception:
|
||||
logging.exception("update_progress exception")
|
||||
finally:
|
||||
redis_lock.release()
|
||||
try:
|
||||
redis_lock.release()
|
||||
except Exception:
|
||||
logging.exception("update_progress exception")
|
||||
stop_event.wait(6)
|
||||
|
||||
def signal_handler(sig, frame):
|
||||
logging.info("Received interrupt signal, shutting down...")
|
||||
|
||||
@ -482,9 +482,10 @@ class VoyageRerank(Base):
|
||||
self.model_name = model_name
|
||||
|
||||
def similarity(self, query: str, texts: list):
|
||||
rank = np.zeros(len(texts), dtype=float)
|
||||
if not texts:
|
||||
return rank, 0
|
||||
return np.array([]), 0
|
||||
rank = np.zeros(len(texts), dtype=float)
|
||||
|
||||
res = self.client.rerank(query=query, documents=texts, model=self.model_name, top_k=len(texts))
|
||||
try:
|
||||
for r in res.results:
|
||||
|
||||
@ -611,10 +611,6 @@ def naive_merge_with_images(texts, images, chunk_token_num=128, delimiter="\n。
|
||||
if re.match(f"^{dels}$", sub_sec):
|
||||
continue
|
||||
add_chunk(sub_sec, image)
|
||||
|
||||
for img in images:
|
||||
if isinstance(img, Image.Image):
|
||||
img.close()
|
||||
|
||||
return cks, result_images
|
||||
|
||||
|
||||
14
rag/prompts/ask_summary.md
Normal file
14
rag/prompts/ask_summary.md
Normal file
@ -0,0 +1,14 @@
|
||||
Role: You're a smart assistant. Your name is Miss R.
|
||||
Task: Summarize the information from knowledge bases and answer user's question.
|
||||
Requirements and restriction:
|
||||
- DO NOT make things up, especially for numbers.
|
||||
- If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
|
||||
- Answer with markdown format text.
|
||||
- Answer in language of user's question.
|
||||
- DO NOT make things up, especially for numbers.
|
||||
|
||||
### Information from knowledge bases
|
||||
|
||||
{{ knowledge }}
|
||||
|
||||
The above is information from knowledge bases.
|
||||
@ -150,6 +150,7 @@ REFLECT = load_prompt("reflect")
|
||||
SUMMARY4MEMORY = load_prompt("summary4memory")
|
||||
RANK_MEMORY = load_prompt("rank_memory")
|
||||
META_FILTER = load_prompt("meta_filter")
|
||||
ASK_SUMMARY = load_prompt("ask_summary")
|
||||
|
||||
PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip_blocks=True)
|
||||
|
||||
|
||||
@ -38,9 +38,12 @@ export const LargeModelFilterFormSchema = {
|
||||
llm_filter: z.string().optional(),
|
||||
};
|
||||
|
||||
type LargeModelFormFieldProps = Pick<NextInnerLLMSelectProps, 'showTTSModel'>;
|
||||
type LargeModelFormFieldProps = Pick<
|
||||
NextInnerLLMSelectProps,
|
||||
'showSpeech2TextModel'
|
||||
>;
|
||||
export function LargeModelFormField({
|
||||
showTTSModel,
|
||||
showSpeech2TextModel: showTTSModel,
|
||||
}: LargeModelFormFieldProps) {
|
||||
const form = useFormContext();
|
||||
const { t } = useTranslation();
|
||||
@ -91,7 +94,7 @@ export function LargeModelFormField({
|
||||
<NextLLMSelect
|
||||
{...field}
|
||||
filter={filter}
|
||||
showTTSModel={showTTSModel}
|
||||
showSpeech2TextModel={showTTSModel}
|
||||
/>
|
||||
</FormControl>
|
||||
</section>
|
||||
|
||||
@ -13,18 +13,18 @@ export interface NextInnerLLMSelectProps {
|
||||
onChange?: (value: string) => void;
|
||||
disabled?: boolean;
|
||||
filter?: string;
|
||||
showTTSModel?: boolean;
|
||||
showSpeech2TextModel?: boolean;
|
||||
}
|
||||
|
||||
const NextInnerLLMSelect = forwardRef<
|
||||
React.ElementRef<typeof SelectPrimitive.Trigger>,
|
||||
NextInnerLLMSelectProps
|
||||
>(({ value, disabled, filter, showTTSModel = false }, ref) => {
|
||||
>(({ value, disabled, filter, showSpeech2TextModel = false }, ref) => {
|
||||
const [isPopoverOpen, setIsPopoverOpen] = useState(false);
|
||||
|
||||
const ttsModel = useMemo(() => {
|
||||
return showTTSModel ? [LlmModelType.TTS] : [];
|
||||
}, [showTTSModel]);
|
||||
return showSpeech2TextModel ? [LlmModelType.Speech2text] : [];
|
||||
}, [showSpeech2TextModel]);
|
||||
|
||||
const modelTypes = useMemo(() => {
|
||||
if (filter === LlmModelType.Chat) {
|
||||
|
||||
@ -24,7 +24,7 @@
|
||||
.messageText {
|
||||
.chunkText();
|
||||
.messageTextBase();
|
||||
background-color: #e6f4ff;
|
||||
// background-color: #e6f4ff;
|
||||
word-break: break-word;
|
||||
}
|
||||
.messageTextDark {
|
||||
|
||||
@ -9,6 +9,7 @@ import {
|
||||
useFetchDocumentThumbnailsByIds,
|
||||
} from '@/hooks/document-hooks';
|
||||
import { IRegenerateMessage, IRemoveMessageById } from '@/hooks/logic-hooks';
|
||||
import { cn } from '@/lib/utils';
|
||||
import { IMessage } from '@/pages/chat/interface';
|
||||
import MarkdownContent from '@/pages/chat/markdown-content';
|
||||
import { Avatar, Flex, Space } from 'antd';
|
||||
@ -129,13 +130,14 @@ const MessageItem = ({
|
||||
{/* <b>{isAssistant ? '' : nickname}</b> */}
|
||||
</Space>
|
||||
<div
|
||||
className={
|
||||
className={cn(
|
||||
isAssistant
|
||||
? theme === 'dark'
|
||||
? styles.messageTextDark
|
||||
: styles.messageText
|
||||
: styles.messageUserText
|
||||
}
|
||||
: styles.messageUserText,
|
||||
{ '!bg-bg-card': !isAssistant },
|
||||
)}
|
||||
>
|
||||
<MarkdownContent
|
||||
loading={loading}
|
||||
|
||||
@ -369,22 +369,28 @@ export const useScrollToBottom = (
|
||||
return () => container.removeEventListener('scroll', handleScroll);
|
||||
}, [containerRef, checkIfUserAtBottom]);
|
||||
|
||||
// Imperative scroll function
|
||||
const scrollToBottom = useCallback(() => {
|
||||
if (containerRef?.current) {
|
||||
const container = containerRef.current;
|
||||
container.scrollTo({
|
||||
top: container.scrollHeight - container.clientHeight,
|
||||
behavior: 'smooth',
|
||||
});
|
||||
}
|
||||
}, [containerRef]);
|
||||
|
||||
useEffect(() => {
|
||||
if (!messages) return;
|
||||
if (!containerRef?.current) return;
|
||||
requestAnimationFrame(() => {
|
||||
setTimeout(() => {
|
||||
if (isAtBottomRef.current) {
|
||||
ref.current?.scrollIntoView({ behavior: 'smooth' });
|
||||
scrollToBottom();
|
||||
}
|
||||
}, 30);
|
||||
}, 100);
|
||||
});
|
||||
}, [messages, containerRef]);
|
||||
|
||||
// Imperative scroll function
|
||||
const scrollToBottom = useCallback(() => {
|
||||
ref.current?.scrollIntoView({ behavior: 'smooth' });
|
||||
}, []);
|
||||
}, [messages, containerRef, scrollToBottom]);
|
||||
|
||||
return { scrollRef: ref, isAtBottom, scrollToBottom };
|
||||
};
|
||||
|
||||
@ -7,4 +7,5 @@ export interface IFeedbackRequestBody {
|
||||
export interface IAskRequestBody {
|
||||
question: string;
|
||||
kb_ids: string[];
|
||||
search_id?: string;
|
||||
}
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
import { RAGFlowAvatar } from '@/components/ragflow-avatar';
|
||||
import { useTheme } from '@/components/theme-provider';
|
||||
import { Badge } from '@/components/ui/badge';
|
||||
import { Button } from '@/components/ui/button';
|
||||
import {
|
||||
DropdownMenu,
|
||||
@ -163,9 +162,10 @@ export function Header() {
|
||||
className="size-8 cursor-pointer"
|
||||
onClick={navigateToProfile}
|
||||
></RAGFlowAvatar>
|
||||
<Badge className="h-5 w-8 absolute font-normal p-0 justify-center -right-8 -top-2 text-bg-base bg-gradient-to-l from-[#42D7E7] to-[#478AF5]">
|
||||
{/* Temporarily hidden */}
|
||||
{/* <Badge className="h-5 w-8 absolute font-normal p-0 justify-center -right-8 -top-2 text-bg-base bg-gradient-to-l from-[#42D7E7] to-[#478AF5]">
|
||||
Pro
|
||||
</Badge>
|
||||
</Badge> */}
|
||||
</div>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
@ -5,6 +5,7 @@ export default {
|
||||
deleteModalTitle: 'Are you sure to delete this item?',
|
||||
ok: 'Yes',
|
||||
cancel: 'No',
|
||||
no: 'No',
|
||||
total: 'Total',
|
||||
rename: 'Rename',
|
||||
name: 'Name',
|
||||
@ -575,6 +576,8 @@ This auto-tagging feature enhances retrieval by adding another layer of domain-s
|
||||
automatic: 'Automatic',
|
||||
manual: 'Manual',
|
||||
},
|
||||
cancel: 'Cancel',
|
||||
chatSetting: 'Chat setting',
|
||||
},
|
||||
setting: {
|
||||
profile: 'Profile',
|
||||
@ -1437,6 +1440,8 @@ This delimiter is used to split the input text into several text pieces echo of
|
||||
showQueryMindmap: 'Show Query Mindmap',
|
||||
embedApp: 'Embed App',
|
||||
relatedSearch: 'Related Search',
|
||||
okText: 'Save',
|
||||
cancelText: 'Cancel',
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
@ -569,6 +569,8 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
||||
automatic: '自动',
|
||||
manual: '手动',
|
||||
},
|
||||
cancel: '取消',
|
||||
chatSetting: '聊天设置',
|
||||
},
|
||||
setting: {
|
||||
profile: '概要',
|
||||
@ -1341,6 +1343,8 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
||||
showQueryMindmap: '显示查询思维导图',
|
||||
embedApp: '嵌入网站',
|
||||
relatedSearch: '相关搜索',
|
||||
okText: '保存',
|
||||
cancelText: '返回',
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
@ -242,7 +242,7 @@ export function InnerNextStepDropdown({
|
||||
}}
|
||||
onClick={(e) => e.stopPropagation()}
|
||||
>
|
||||
<div className="w-[300px] font-semibold bg-white border border-border rounded-md shadow-lg">
|
||||
<div className="w-[300px] font-semibold bg-bg-base border border-border rounded-md shadow-lg">
|
||||
<div className="px-3 py-2 border-b border-border">
|
||||
<div className="text-sm font-medium">Next Step</div>
|
||||
</div>
|
||||
|
||||
@ -128,7 +128,7 @@ function AgentForm({ node }: INextOperatorForm) {
|
||||
<FormWrapper>
|
||||
<FormContainer>
|
||||
{isSubAgent && <DescriptionField></DescriptionField>}
|
||||
<LargeModelFormField showTTSModel></LargeModelFormField>
|
||||
<LargeModelFormField showSpeech2TextModel></LargeModelFormField>
|
||||
{findLlmByUuid(llmId)?.model_type === LlmModelType.Image2text && (
|
||||
<QueryVariable
|
||||
name="visual_files_var"
|
||||
|
||||
@ -158,8 +158,9 @@ const ToolTimelineItem = ({
|
||||
</span>
|
||||
)}
|
||||
<span className="text-text-secondary text-xs">
|
||||
{/* 0:00
|
||||
{x.data.elapsed_time?.toString().slice(0, 6)} */}
|
||||
{/* 0:00*/}
|
||||
{tool.elapsed_time?.toString().slice(0, 6) || ''}
|
||||
{tool.elapsed_time ? 's' : ''}
|
||||
</span>
|
||||
<span
|
||||
className={cn(
|
||||
|
||||
@ -153,6 +153,22 @@ export const WorkFlowTimeline = ({
|
||||
}, []);
|
||||
}, [currentEventListWithoutMessage, sendLoading]);
|
||||
|
||||
const getElapsedTime = (nodeId: string) => {
|
||||
if (nodeId === 'begin') {
|
||||
return '';
|
||||
}
|
||||
const data = currentEventListWithoutMessage?.find((x) => {
|
||||
return (
|
||||
x.data.component_id === nodeId &&
|
||||
x.event === MessageEventType.NodeFinished
|
||||
);
|
||||
});
|
||||
if (!data || data?.data.elapsed_time < 0.000001) {
|
||||
return '';
|
||||
}
|
||||
return data?.data.elapsed_time || '';
|
||||
};
|
||||
|
||||
const hasTrace = useCallback(
|
||||
(componentId: string) => {
|
||||
if (Array.isArray(traceData)) {
|
||||
@ -272,7 +288,10 @@ export const WorkFlowTimeline = ({
|
||||
nodeLabel)}
|
||||
</span>
|
||||
<span className="text-text-secondary text-xs">
|
||||
{x.data.elapsed_time?.toString().slice(0, 6)}
|
||||
{getElapsedTime(x.data.component_id)
|
||||
.toString()
|
||||
.slice(0, 6)}
|
||||
{getElapsedTime(x.data.component_id) ? 's' : ''}
|
||||
</span>
|
||||
<span
|
||||
className={cn(
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
import { ButtonLoading } from '@/components/ui/button';
|
||||
import { Button, ButtonLoading } from '@/components/ui/button';
|
||||
import { Form } from '@/components/ui/form';
|
||||
import { Separator } from '@/components/ui/separator';
|
||||
import { useFetchDialog, useSetDialog } from '@/hooks/use-chat-request';
|
||||
@ -11,6 +11,7 @@ import { zodResolver } from '@hookform/resolvers/zod';
|
||||
import { X } from 'lucide-react';
|
||||
import { useEffect } from 'react';
|
||||
import { useForm } from 'react-hook-form';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useParams } from 'umi';
|
||||
import { z } from 'zod';
|
||||
import { DatasetMetadata } from '../../constants';
|
||||
@ -25,6 +26,7 @@ export function ChatSettings({ switchSettingVisible }: ChatSettingsProps) {
|
||||
const { data } = useFetchDialog();
|
||||
const { setDialog, loading } = useSetDialog();
|
||||
const { id } = useParams();
|
||||
const { t } = useTranslation();
|
||||
|
||||
type FormSchemaType = z.infer<typeof formSchema>;
|
||||
|
||||
@ -89,25 +91,26 @@ export function ChatSettings({ switchSettingVisible }: ChatSettingsProps) {
|
||||
return (
|
||||
<section className="p-5 w-[440px] border-l">
|
||||
<div className="flex justify-between items-center text-base pb-2">
|
||||
Chat Settings
|
||||
{t('chat.chatSetting')}
|
||||
<X className="size-4 cursor-pointer" onClick={switchSettingVisible} />
|
||||
</div>
|
||||
<Form {...form}>
|
||||
<form onSubmit={form.handleSubmit(onSubmit, onInvalid)}>
|
||||
<section className="space-y-6 overflow-auto max-h-[85vh] pr-4">
|
||||
<section className="space-y-6 overflow-auto max-h-[82vh] pr-4">
|
||||
<ChatBasicSetting></ChatBasicSetting>
|
||||
<Separator />
|
||||
<ChatPromptEngine></ChatPromptEngine>
|
||||
<Separator />
|
||||
<ChatModelSettings></ChatModelSettings>
|
||||
</section>
|
||||
<ButtonLoading
|
||||
className="w-full my-4"
|
||||
type="submit"
|
||||
loading={loading}
|
||||
>
|
||||
Update
|
||||
</ButtonLoading>
|
||||
<div className="space-x-5 text-right">
|
||||
<Button variant={'outline'} onClick={switchSettingVisible}>
|
||||
{t('chat.cancel')}
|
||||
</Button>
|
||||
<ButtonLoading className=" my-4" type="submit" loading={loading}>
|
||||
{t('common.save')}
|
||||
</ButtonLoading>
|
||||
</div>
|
||||
</form>
|
||||
</Form>
|
||||
</section>
|
||||
|
||||
@ -23,7 +23,7 @@ interface IProps {
|
||||
export function SingleChatBox({ controller }: IProps) {
|
||||
const {
|
||||
value,
|
||||
// scrollRef,
|
||||
scrollRef,
|
||||
messageContainerRef,
|
||||
sendLoading,
|
||||
derivedMessages,
|
||||
@ -47,7 +47,7 @@ export function SingleChatBox({ controller }: IProps) {
|
||||
return (
|
||||
<section className="flex flex-col p-5 h-full">
|
||||
<div ref={messageContainerRef} className="flex-1 overflow-auto min-h-0">
|
||||
<div className="w-full">
|
||||
<div className="w-full pr-5">
|
||||
{derivedMessages?.map((message, i) => {
|
||||
return (
|
||||
<MessageItem
|
||||
@ -77,7 +77,7 @@ export function SingleChatBox({ controller }: IProps) {
|
||||
);
|
||||
})}
|
||||
</div>
|
||||
{/* <div ref={scrollRef} /> */}
|
||||
<div ref={scrollRef} />
|
||||
</div>
|
||||
<NextMessageInput
|
||||
disabled={disabled}
|
||||
|
||||
@ -100,7 +100,7 @@ export default function Chat() {
|
||||
{t('common.embedIntoSite')}
|
||||
</Button>
|
||||
</PageHeader>
|
||||
<div className="flex flex-1 min-h-0">
|
||||
<div className="flex flex-1 min-h-0 pb-9">
|
||||
<Sessions
|
||||
hasSingleChatBox={hasSingleChatBox}
|
||||
handleConversationCardClick={handleConversationCardClick}
|
||||
|
||||
@ -11,6 +11,7 @@ import {
|
||||
import { cn } from '@/lib/utils';
|
||||
import { PanelLeftClose, PanelRightClose, Plus } from 'lucide-react';
|
||||
import { useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useHandleClickConversationCard } from '../hooks/use-click-card';
|
||||
import { useSelectDerivedConversationList } from '../hooks/use-select-conversation-list';
|
||||
import { ConversationDropdown } from './conversation-dropdown';
|
||||
@ -24,6 +25,7 @@ export function Sessions({
|
||||
handleConversationCardClick,
|
||||
switchSettingVisible,
|
||||
}: SessionProps) {
|
||||
const { t } = useTranslation();
|
||||
const {
|
||||
list: conversationList,
|
||||
addTemporaryConversation,
|
||||
@ -102,8 +104,9 @@ export function Sessions({
|
||||
className="w-full"
|
||||
onClick={switchSettingVisible}
|
||||
disabled={!hasSingleChatBox}
|
||||
variant={'outline'}
|
||||
>
|
||||
Chat Settings
|
||||
{t('chat.chatSetting')}
|
||||
</Button>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
import { useFetchTokenListBeforeOtherStep } from '@/components/embed-dialog/use-show-embed-dialog';
|
||||
import HightLightMarkdown from '@/components/highlight-markdown';
|
||||
import { Modal } from '@/components/ui/modal/modal';
|
||||
import { RAGFlowSelect } from '@/components/ui/select';
|
||||
@ -9,7 +8,7 @@ import {
|
||||
} from '@/constants/common';
|
||||
import { useTranslate } from '@/hooks/common-hooks';
|
||||
import { message } from 'antd';
|
||||
import { useCallback, useEffect, useMemo, useState } from 'react';
|
||||
import { useCallback, useMemo, useState } from 'react';
|
||||
|
||||
type IEmbedAppModalProps = {
|
||||
open: any;
|
||||
@ -18,17 +17,13 @@ type IEmbedAppModalProps = {
|
||||
from: string;
|
||||
setOpen: (e: any) => void;
|
||||
tenantId: string;
|
||||
beta?: string;
|
||||
};
|
||||
|
||||
const EmbedAppModal = (props: IEmbedAppModalProps) => {
|
||||
const { t } = useTranslate('search');
|
||||
const { open, setOpen, token = '', from, url, tenantId } = props;
|
||||
const { beta, handleOperate } = useFetchTokenListBeforeOtherStep();
|
||||
useEffect(() => {
|
||||
if (open && !beta) {
|
||||
handleOperate();
|
||||
}
|
||||
}, [handleOperate, open, beta]);
|
||||
const { open, setOpen, token = '', from, url, tenantId, beta = '' } = props;
|
||||
|
||||
const [hideAvatar, setHideAvatar] = useState(false);
|
||||
const [locale, setLocale] = useState('');
|
||||
|
||||
|
||||
@ -234,7 +234,10 @@ export const useTestRetrieval = (
|
||||
setSelectedDocumentIds,
|
||||
};
|
||||
};
|
||||
export const useFetchRelatedQuestions = (tenantId?: string) => {
|
||||
export const useFetchRelatedQuestions = (
|
||||
tenantId?: string,
|
||||
searchId?: string,
|
||||
) => {
|
||||
const [searchParams] = useSearchParams();
|
||||
const shared_id = searchParams.get('shared_id');
|
||||
const retrievalTestFunc = shared_id
|
||||
@ -251,6 +254,7 @@ export const useFetchRelatedQuestions = (tenantId?: string) => {
|
||||
const { data } = await retrievalTestFunc({
|
||||
question,
|
||||
tenant_id: tenantId,
|
||||
search_id: searchId,
|
||||
});
|
||||
|
||||
return data?.data ?? [];
|
||||
@ -260,7 +264,12 @@ export const useFetchRelatedQuestions = (tenantId?: string) => {
|
||||
return { data, loading, fetchRelatedQuestions: mutateAsync };
|
||||
};
|
||||
|
||||
export const useSendQuestion = (kbIds: string[], tenantId?: string) => {
|
||||
export const useSendQuestion = (
|
||||
kbIds: string[],
|
||||
tenantId?: string,
|
||||
searchId: string = '',
|
||||
related_search: boolean = false,
|
||||
) => {
|
||||
const { sharedId } = useGetSharedSearchParams();
|
||||
const { send, answer, done, stopOutputMessage } = useSendMessageWithSse(
|
||||
sharedId ? api.askShare : api.ask,
|
||||
@ -271,7 +280,7 @@ export const useSendQuestion = (kbIds: string[], tenantId?: string) => {
|
||||
const [sendingLoading, setSendingLoading] = useState(false);
|
||||
const [currentAnswer, setCurrentAnswer] = useState({} as IAnswer);
|
||||
const { fetchRelatedQuestions, data: relatedQuestions } =
|
||||
useFetchRelatedQuestions(tenantId);
|
||||
useFetchRelatedQuestions(tenantId, searchId);
|
||||
const [searchStr, setSearchStr] = useState<string>('');
|
||||
const [isFirstRender, setIsFirstRender] = useState(true);
|
||||
const [selectedDocumentIds, setSelectedDocumentIds] = useState<string[]>([]);
|
||||
@ -286,7 +295,7 @@ export const useSendQuestion = (kbIds: string[], tenantId?: string) => {
|
||||
setIsFirstRender(false);
|
||||
setCurrentAnswer({} as IAnswer);
|
||||
setSendingLoading(true);
|
||||
send({ kb_ids: kbIds, question: q, tenantId });
|
||||
send({ kb_ids: kbIds, question: q, tenantId, search_id: searchId });
|
||||
testChunk({
|
||||
kb_id: kbIds,
|
||||
highlight: true,
|
||||
@ -295,7 +304,9 @@ export const useSendQuestion = (kbIds: string[], tenantId?: string) => {
|
||||
size: pagination.pageSize,
|
||||
});
|
||||
|
||||
fetchRelatedQuestions(q);
|
||||
if (related_search) {
|
||||
fetchRelatedQuestions(q);
|
||||
}
|
||||
},
|
||||
[
|
||||
send,
|
||||
@ -305,6 +316,8 @@ export const useSendQuestion = (kbIds: string[], tenantId?: string) => {
|
||||
setPagination,
|
||||
pagination.pageSize,
|
||||
tenantId,
|
||||
searchId,
|
||||
related_search,
|
||||
],
|
||||
);
|
||||
|
||||
@ -408,7 +421,12 @@ export const useSearching = ({
|
||||
isSearchStrEmpty,
|
||||
setSearchStr,
|
||||
stopOutputMessage,
|
||||
} = useSendQuestion(searchData.search_config.kb_ids, tenantId as string);
|
||||
} = useSendQuestion(
|
||||
searchData.search_config.kb_ids,
|
||||
tenantId as string,
|
||||
searchData.id,
|
||||
searchData.search_config.related_search,
|
||||
);
|
||||
|
||||
const handleSearchStrChange = useCallback(
|
||||
(value: string) => {
|
||||
@ -435,15 +453,20 @@ export const useSearching = ({
|
||||
showMindMapModal,
|
||||
mindMapLoading,
|
||||
mindMap,
|
||||
} = useShowMindMapDrawer(searchData.search_config.kb_ids, searchStr);
|
||||
} = useShowMindMapDrawer(
|
||||
searchData.search_config.kb_ids,
|
||||
searchStr,
|
||||
searchData.id,
|
||||
);
|
||||
const { chunks, total } = useSelectTestingResult();
|
||||
|
||||
const handleSearch = useCallback(
|
||||
(value: string) => {
|
||||
sendQuestion(value);
|
||||
setSearchStr?.(value);
|
||||
hideMindMapModal();
|
||||
},
|
||||
[setSearchStr, sendQuestion],
|
||||
[setSearchStr, sendQuestion, hideMindMapModal],
|
||||
);
|
||||
|
||||
const { pagination, setPagination } = useGetPaginationWithRouter();
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
import { useFetchTokenListBeforeOtherStep } from '@/components/embed-dialog/use-show-embed-dialog';
|
||||
import { PageHeader } from '@/components/page-header';
|
||||
import {
|
||||
Breadcrumb,
|
||||
@ -10,7 +11,10 @@ import {
|
||||
import { Button } from '@/components/ui/button';
|
||||
import { SharedFrom } from '@/constants/chat';
|
||||
import { useNavigatePage } from '@/hooks/logic-hooks/navigate-hooks';
|
||||
import { useFetchTenantInfo } from '@/hooks/user-setting-hooks';
|
||||
import {
|
||||
useFetchTenantInfo,
|
||||
useFetchUserInfo,
|
||||
} from '@/hooks/user-setting-hooks';
|
||||
import { Send, Settings } from 'lucide-react';
|
||||
import { useEffect, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
@ -29,11 +33,13 @@ export default function SearchPage() {
|
||||
const { navigateToSearchList } = useNavigatePage();
|
||||
const [isSearching, setIsSearching] = useState(false);
|
||||
const { data: SearchData } = useFetchSearchDetail();
|
||||
const { beta, handleOperate } = useFetchTokenListBeforeOtherStep();
|
||||
|
||||
const [openSetting, setOpenSetting] = useState(false);
|
||||
const [openEmbed, setOpenEmbed] = useState(false);
|
||||
const [searchText, setSearchText] = useState('');
|
||||
const { data: tenantInfo } = useFetchTenantInfo();
|
||||
const { data: userInfo } = useFetchUserInfo();
|
||||
const tenantId = tenantInfo.tenant_id;
|
||||
const { t } = useTranslation();
|
||||
const { openSetting: checkOpenSetting } = useCheckSettings(
|
||||
@ -75,6 +81,7 @@ export default function SearchPage() {
|
||||
isSearching={isSearching}
|
||||
searchText={searchText}
|
||||
setSearchText={setSearchText}
|
||||
userInfo={userInfo}
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
@ -105,6 +112,7 @@ export default function SearchPage() {
|
||||
token={SearchData?.id as string}
|
||||
from={SharedFrom.Search}
|
||||
tenantId={tenantId}
|
||||
beta={beta}
|
||||
/>
|
||||
}
|
||||
{
|
||||
@ -121,7 +129,14 @@ export default function SearchPage() {
|
||||
<div className="absolute right-5 top-12 ">
|
||||
<Button
|
||||
className="bg-text-primary text-bg-base border-b-[#00BEB4] border-b-2"
|
||||
onClick={() => setOpenEmbed(!openEmbed)}
|
||||
onClick={() => {
|
||||
handleOperate().then((res) => {
|
||||
console.log(res, 'res');
|
||||
if (res) {
|
||||
setOpenEmbed(!openEmbed);
|
||||
}
|
||||
});
|
||||
}}
|
||||
>
|
||||
<Send />
|
||||
<div>{t('search.embedApp')}</div>
|
||||
|
||||
@ -4,7 +4,7 @@ import { IReference, IReferenceChunk } from '@/interfaces/database/chat';
|
||||
import { getExtension } from '@/utils/document-util';
|
||||
import { InfoCircleOutlined } from '@ant-design/icons';
|
||||
import DOMPurify from 'dompurify';
|
||||
import { useCallback, useEffect, useMemo } from 'react';
|
||||
import { memo, useCallback, useEffect, useMemo } from 'react';
|
||||
import Markdown from 'react-markdown';
|
||||
import reactStringReplace from 'react-string-replace';
|
||||
import SyntaxHighlighter from 'react-syntax-highlighter';
|
||||
@ -82,18 +82,18 @@ const MarkdownContent = ({
|
||||
(
|
||||
documentId: string,
|
||||
chunk: IReferenceChunk,
|
||||
isPdf: boolean,
|
||||
documentUrl?: string,
|
||||
// isPdf: boolean,
|
||||
// documentUrl?: string,
|
||||
) =>
|
||||
() => {
|
||||
if (!isPdf) {
|
||||
if (!documentUrl) {
|
||||
return;
|
||||
}
|
||||
window.open(documentUrl, '_blank');
|
||||
} else {
|
||||
clickDocumentButton?.(documentId, chunk);
|
||||
}
|
||||
// if (!isPdf) {
|
||||
// if (!documentUrl) {
|
||||
// return;
|
||||
// }
|
||||
// window.open(documentUrl, '_blank');
|
||||
// } else {
|
||||
clickDocumentButton?.(documentId, chunk);
|
||||
// }
|
||||
},
|
||||
[clickDocumentButton],
|
||||
);
|
||||
@ -144,7 +144,6 @@ const MarkdownContent = ({
|
||||
const getPopoverContent = useCallback(
|
||||
(chunkIndex: number) => {
|
||||
const {
|
||||
documentUrl,
|
||||
fileThumbnail,
|
||||
fileExtension,
|
||||
imageId,
|
||||
@ -198,8 +197,8 @@ const MarkdownContent = ({
|
||||
onClick={handleDocumentButtonClick(
|
||||
documentId,
|
||||
chunkItem,
|
||||
fileExtension === 'pdf',
|
||||
documentUrl,
|
||||
// fileExtension === 'pdf',
|
||||
// documentUrl,
|
||||
)}
|
||||
>
|
||||
{document?.doc_name}
|
||||
@ -218,8 +217,7 @@ const MarkdownContent = ({
|
||||
let replacedText = reactStringReplace(text, currentReg, (match, i) => {
|
||||
const chunkIndex = getChunkIndex(match);
|
||||
|
||||
const { documentUrl, fileExtension, imageId, chunkItem, documentId } =
|
||||
getReferenceInfo(chunkIndex);
|
||||
const { imageId, chunkItem, documentId } = getReferenceInfo(chunkIndex);
|
||||
|
||||
const docType = chunkItem?.doc_type;
|
||||
|
||||
@ -232,8 +230,8 @@ const MarkdownContent = ({
|
||||
? handleDocumentButtonClick(
|
||||
documentId,
|
||||
chunkItem,
|
||||
fileExtension === 'pdf',
|
||||
documentUrl,
|
||||
// fileExtension === 'pdf',
|
||||
// documentUrl,
|
||||
)
|
||||
: () => {}
|
||||
}
|
||||
@ -243,7 +241,9 @@ const MarkdownContent = ({
|
||||
<PopoverTrigger>
|
||||
<InfoCircleOutlined className={styles.referenceIcon} />
|
||||
</PopoverTrigger>
|
||||
<PopoverContent>{getPopoverContent(chunkIndex)}</PopoverContent>
|
||||
<PopoverContent className="!w-fit">
|
||||
{getPopoverContent(chunkIndex)}
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
);
|
||||
});
|
||||
@ -292,4 +292,4 @@ const MarkdownContent = ({
|
||||
);
|
||||
};
|
||||
|
||||
export default MarkdownContent;
|
||||
export default memo(MarkdownContent);
|
||||
|
||||
@ -27,7 +27,7 @@ const MindMapDrawer = ({ data, hideModal, visible, loading }: IProps) => {
|
||||
/>
|
||||
</div>
|
||||
{loading && (
|
||||
<div className="absolute top-48">
|
||||
<div className=" rounded-lg p-4 w-full h-full">
|
||||
<Progress value={percent} className="h-1 flex-1 min-w-10" />
|
||||
</div>
|
||||
)}
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
import { Input } from '@/components/originui/input';
|
||||
import { useFetchUserInfo } from '@/hooks/user-setting-hooks';
|
||||
import { IUserInfo } from '@/interfaces/database/user-setting';
|
||||
import { cn } from '@/lib/utils';
|
||||
import { Search } from 'lucide-react';
|
||||
import { Dispatch, SetStateAction } from 'react';
|
||||
@ -12,13 +12,15 @@ export default function SearchPage({
|
||||
setIsSearching,
|
||||
searchText,
|
||||
setSearchText,
|
||||
userInfo,
|
||||
}: {
|
||||
isSearching: boolean;
|
||||
setIsSearching: Dispatch<SetStateAction<boolean>>;
|
||||
searchText: string;
|
||||
setSearchText: Dispatch<SetStateAction<string>>;
|
||||
userInfo?: IUserInfo;
|
||||
}) {
|
||||
const { data: userInfo } = useFetchUserInfo();
|
||||
// const { data: userInfo } = useFetchUserInfo();
|
||||
const { t } = useTranslation();
|
||||
return (
|
||||
<section className="relative w-full flex transition-all justify-center items-center mt-32">
|
||||
@ -38,7 +40,11 @@ export default function SearchPage({
|
||||
<>
|
||||
<p className="mb-4 transition-opacity">👋 Hi there</p>
|
||||
<p className="mb-10 transition-opacity">
|
||||
{t('search.welcomeBack')}, {userInfo?.nickname}
|
||||
{userInfo && (
|
||||
<>
|
||||
{t('search.welcomeBack')}, {userInfo.nickname}
|
||||
</>
|
||||
)}
|
||||
</p>
|
||||
</>
|
||||
)}
|
||||
|
||||
@ -18,6 +18,7 @@ import {
|
||||
} from '@/components/ui/multi-select';
|
||||
import { RAGFlowSelect } from '@/components/ui/select';
|
||||
import { Switch } from '@/components/ui/switch';
|
||||
import { Textarea } from '@/components/ui/textarea';
|
||||
import { useFetchKnowledgeList } from '@/hooks/knowledge-hooks';
|
||||
import {
|
||||
useComposeLlmOptionsByModelTypes,
|
||||
@ -64,7 +65,7 @@ const SearchSettingFormSchema = z
|
||||
description: z.string().optional(),
|
||||
search_config: z.object({
|
||||
kb_ids: z.array(z.string()).min(1, 'At least one dataset is required'),
|
||||
vector_similarity_weight: z.number().min(0).max(100),
|
||||
vector_similarity_weight: z.number().min(0).max(1),
|
||||
web_search: z.boolean(),
|
||||
similarity_threshold: z.number(),
|
||||
use_kg: z.boolean(),
|
||||
@ -128,7 +129,7 @@ const SearchSetting: React.FC<SearchSettingProps> = ({
|
||||
: 0.3) || 0.3,
|
||||
web_search: search_config?.web_search || false,
|
||||
doc_ids: [],
|
||||
similarity_threshold: 0.0,
|
||||
similarity_threshold: search_config?.similarity_threshold || 0.2,
|
||||
use_kg: false,
|
||||
rerank_id: search_config?.rerank_id || '',
|
||||
use_rerank: search_config?.rerank_id ? true : false,
|
||||
@ -417,7 +418,7 @@ const SearchSetting: React.FC<SearchSettingProps> = ({
|
||||
<FormItem>
|
||||
<FormLabel>{t('search.description')}</FormLabel>
|
||||
<FormControl>
|
||||
<Input
|
||||
<Textarea
|
||||
placeholder="You are an intelligent assistant."
|
||||
{...field}
|
||||
onFocus={() => {
|
||||
@ -466,7 +467,41 @@ const SearchSetting: React.FC<SearchSettingProps> = ({
|
||||
</FormItem>
|
||||
)}
|
||||
/>
|
||||
|
||||
<FormField
|
||||
control={formMethods.control}
|
||||
name="search_config.similarity_threshold"
|
||||
render={({ field }) => (
|
||||
<FormItem>
|
||||
<FormLabel>Similarity Threshold</FormLabel>
|
||||
<div
|
||||
className={cn(
|
||||
'flex items-center gap-4 justify-between',
|
||||
className,
|
||||
)}
|
||||
>
|
||||
<FormControl>
|
||||
<SingleFormSlider
|
||||
{...field}
|
||||
max={1}
|
||||
min={0}
|
||||
step={0.01}
|
||||
></SingleFormSlider>
|
||||
</FormControl>
|
||||
<FormControl>
|
||||
<Input
|
||||
type={'number'}
|
||||
className="h-7 w-20 bg-bg-card"
|
||||
max={1}
|
||||
min={0}
|
||||
step={0.01}
|
||||
{...field}
|
||||
></Input>
|
||||
</FormControl>
|
||||
</div>
|
||||
<FormMessage />
|
||||
</FormItem>
|
||||
)}
|
||||
/>
|
||||
{/* Keyword Similarity Weight */}
|
||||
<FormField
|
||||
control={formMethods.control}
|
||||
@ -474,7 +509,7 @@ const SearchSetting: React.FC<SearchSettingProps> = ({
|
||||
render={({ field }) => (
|
||||
<FormItem>
|
||||
<FormLabel>
|
||||
<span className="text-destructive mr-1"> *</span>Keyword
|
||||
<span className="text-destructive mr-1"> *</span>Vector
|
||||
Similarity Weight
|
||||
</FormLabel>
|
||||
<div
|
||||
@ -608,7 +643,7 @@ const SearchSetting: React.FC<SearchSettingProps> = ({
|
||||
)}
|
||||
|
||||
{/* Feature Controls */}
|
||||
<FormField
|
||||
{/* <FormField
|
||||
control={formMethods.control}
|
||||
name="search_config.web_search"
|
||||
render={({ field }) => (
|
||||
@ -622,7 +657,7 @@ const SearchSetting: React.FC<SearchSettingProps> = ({
|
||||
<FormLabel>{t('search.enableWebSearch')}</FormLabel>
|
||||
</FormItem>
|
||||
)}
|
||||
/>
|
||||
/> */}
|
||||
|
||||
<FormField
|
||||
control={formMethods.control}
|
||||
@ -666,9 +701,9 @@ const SearchSetting: React.FC<SearchSettingProps> = ({
|
||||
setOpen(false);
|
||||
}}
|
||||
>
|
||||
{t('modal.cancelText')}
|
||||
{t('search.cancelText')}
|
||||
</Button>
|
||||
<Button type="submit">{t('modal.okText')}</Button>
|
||||
<Button type="submit">{t('search.okText')}</Button>
|
||||
</div>
|
||||
</form>
|
||||
</Form>
|
||||
|
||||
@ -276,7 +276,7 @@ export default function SearchingView({
|
||||
</div>
|
||||
|
||||
{mindMapVisible && (
|
||||
<div className="flex-1 h-[88dvh] z-30 ml-8 mt-5">
|
||||
<div className="flex-1 h-[88dvh] z-30 ml-32 mt-5">
|
||||
<MindMapDrawer
|
||||
visible={mindMapVisible}
|
||||
hideModal={hideMindMapModal}
|
||||
|
||||
@ -1,26 +1,28 @@
|
||||
import { RAGFlowAvatar } from '@/components/ragflow-avatar';
|
||||
import i18n from '@/locales/config';
|
||||
import { useEffect } from 'react';
|
||||
import { useEffect, useState } from 'react';
|
||||
import {
|
||||
ISearchAppDetailProps,
|
||||
useFetchSearchDetail,
|
||||
} from '../../next-searches/hooks';
|
||||
import { useGetSharedSearchParams, useSearching } from '../hooks';
|
||||
import '../index.less';
|
||||
import SearchingView from '../search-view';
|
||||
export default function SearchingPage() {
|
||||
import SearchHome from '../search-home';
|
||||
import SearchingPage from '../searching';
|
||||
export default function ShareSeachPage() {
|
||||
const { tenantId, locale, visibleAvatar } = useGetSharedSearchParams();
|
||||
const {
|
||||
data: searchData = {
|
||||
search_config: { kb_ids: [] },
|
||||
} as unknown as ISearchAppDetailProps,
|
||||
} = useFetchSearchDetail(tenantId as string);
|
||||
const [isSearching, setIsSearching] = useState(false);
|
||||
const [searchText, setSearchText] = useState('');
|
||||
const searchingParam = useSearching({
|
||||
data: searchData,
|
||||
});
|
||||
|
||||
useEffect(() => {
|
||||
console.log('locale', locale, i18n.language);
|
||||
if (locale && i18n.language !== locale) {
|
||||
i18n.changeLanguage(locale);
|
||||
}
|
||||
@ -28,15 +30,36 @@ export default function SearchingPage() {
|
||||
return (
|
||||
<>
|
||||
{visibleAvatar && (
|
||||
<div className="flex justify-start items-center gap-1 mx-6 mt-6 text-text-primary">
|
||||
<div className="flex justify-start items-center gap-2 mx-6 mt-6 text-text-primary">
|
||||
<RAGFlowAvatar
|
||||
className="size-6"
|
||||
avatar={searchData.avatar}
|
||||
name={searchData.name}
|
||||
></RAGFlowAvatar>
|
||||
<div>{searchData.name}</div>
|
||||
</div>
|
||||
)}
|
||||
<SearchingView {...searchingParam} searchData={searchData} />;
|
||||
{/* <SearchingView {...searchingParam} searchData={searchData} />; */}
|
||||
{!isSearching && (
|
||||
<div className="animate-fade-in-down">
|
||||
<SearchHome
|
||||
setIsSearching={setIsSearching}
|
||||
isSearching={isSearching}
|
||||
searchText={searchText}
|
||||
setSearchText={setSearchText}
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
{isSearching && (
|
||||
<div className="animate-fade-in-up">
|
||||
<SearchingPage
|
||||
setIsSearching={setIsSearching}
|
||||
searchText={searchText}
|
||||
setSearchText={setSearchText}
|
||||
data={searchData as ISearchAppDetailProps}
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
@ -6,7 +6,6 @@ import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
|
||||
import { useCallback, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useParams, useSearchParams } from 'umi';
|
||||
|
||||
interface CreateSearchProps {
|
||||
name: string;
|
||||
description?: string;
|
||||
@ -122,40 +121,6 @@ interface DeleteSearchResponse {
|
||||
message: string;
|
||||
}
|
||||
|
||||
export const useDeleteSearch = () => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const {
|
||||
data,
|
||||
isError,
|
||||
mutateAsync: deleteSearchMutation,
|
||||
} = useMutation<DeleteSearchResponse, Error, DeleteSearchProps>({
|
||||
mutationKey: ['deleteSearch'],
|
||||
mutationFn: async (props) => {
|
||||
const response = await searchService.deleteSearch(props);
|
||||
if (response.code !== 0) {
|
||||
throw new Error(response.message || 'Failed to delete search');
|
||||
}
|
||||
return response;
|
||||
},
|
||||
onSuccess: () => {
|
||||
message.success(t('message.deleted'));
|
||||
},
|
||||
onError: (error) => {
|
||||
message.error(t('message.error', { error: error.message }));
|
||||
},
|
||||
});
|
||||
|
||||
const deleteSearch = useCallback(
|
||||
(props: DeleteSearchProps) => {
|
||||
return deleteSearchMutation(props);
|
||||
},
|
||||
[deleteSearchMutation],
|
||||
);
|
||||
|
||||
return { data, isError, deleteSearch };
|
||||
};
|
||||
|
||||
export interface IllmSettingProps {
|
||||
llm_id: string;
|
||||
parameter: string;
|
||||
@ -237,6 +202,42 @@ export const useFetchSearchDetail = (tenantId?: string) => {
|
||||
return { data: data?.data, isLoading, isError };
|
||||
};
|
||||
|
||||
export const useDeleteSearch = () => {
|
||||
const { t } = useTranslation();
|
||||
const queryClient = useQueryClient();
|
||||
const {
|
||||
data,
|
||||
isError,
|
||||
mutateAsync: deleteSearchMutation,
|
||||
} = useMutation<DeleteSearchResponse, Error, DeleteSearchProps>({
|
||||
mutationKey: ['deleteSearch'],
|
||||
mutationFn: async (props) => {
|
||||
const { data: response } = await searchService.deleteSearch(props);
|
||||
if (response.code !== 0) {
|
||||
throw new Error(response.message || 'Failed to delete search');
|
||||
}
|
||||
|
||||
queryClient.invalidateQueries({ queryKey: ['searchList'] });
|
||||
return response;
|
||||
},
|
||||
onSuccess: () => {
|
||||
message.success(t('message.deleted'));
|
||||
},
|
||||
onError: (error) => {
|
||||
message.error(t('message.error', { error: error.message }));
|
||||
},
|
||||
});
|
||||
|
||||
const deleteSearch = useCallback(
|
||||
(props: DeleteSearchProps) => {
|
||||
return deleteSearchMutation(props);
|
||||
},
|
||||
[deleteSearchMutation],
|
||||
);
|
||||
|
||||
return { data, isError, deleteSearch };
|
||||
};
|
||||
|
||||
export type IUpdateSearchProps = Omit<ISearchAppDetailProps, 'id'> & {
|
||||
search_id: string;
|
||||
};
|
||||
|
||||
@ -217,7 +217,11 @@ export const useTestRetrieval = (
|
||||
};
|
||||
};
|
||||
|
||||
export const useShowMindMapDrawer = (kbIds: string[], question: string) => {
|
||||
export const useShowMindMapDrawer = (
|
||||
kbIds: string[],
|
||||
question: string,
|
||||
searchId = '',
|
||||
) => {
|
||||
const { visible, showModal, hideModal } = useSetModalState();
|
||||
const ref = useRef<any>();
|
||||
|
||||
@ -228,7 +232,7 @@ export const useShowMindMapDrawer = (kbIds: string[], question: string) => {
|
||||
} = useSearchFetchMindMap();
|
||||
|
||||
const handleShowModal = useCallback(() => {
|
||||
const searchParams = { question: trim(question), kb_ids: kbIds };
|
||||
const searchParams = { question: trim(question), kb_ids: kbIds, searchId };
|
||||
if (
|
||||
!isEmpty(searchParams.question) &&
|
||||
!isEqual(searchParams, ref.current)
|
||||
@ -237,7 +241,7 @@ export const useShowMindMapDrawer = (kbIds: string[], question: string) => {
|
||||
fetchMindMap(searchParams);
|
||||
}
|
||||
showModal();
|
||||
}, [fetchMindMap, showModal, question, kbIds]);
|
||||
}, [fetchMindMap, showModal, question, kbIds, searchId]);
|
||||
|
||||
return {
|
||||
mindMap,
|
||||
|
||||
Reference in New Issue
Block a user