Compare commits

..

5 Commits

Author SHA1 Message Date
aaae938f54 Add kibana tool in the docker compose file(#10525) (#10526)
### What problem does this PR solve?

add kibana tool in the docker compose file(#10525)

### Type of change


- [x] New Feature (non-breaking change which adds functionality)

Co-authored-by: virgilwong <hyhvirgil@gmail.com>
2025-10-14 09:38:47 +08:00
9e73f799b2 Feat: add Zhipu GLM-ASR model (#10529)
### What problem does this PR solve?

Add Zhipu GLM-ASR model

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-10-14 09:32:45 +08:00
21a62130c8 Fix: empty references in agent conversation (#10528)
### What problem does this PR solve?
issue:
#10495
change:
fix empty references in agent conversation

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-14 09:32:13 +08:00
68e47c81d4 Feat: Add parse_document with feed back (#10523)
### What problem does this PR solve?

Solved: Sync Parse Document API #5635
Feat: Add parse_document with feed back, user can view the status of
each document after parsing finished.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
- [x] Documentation Update
2025-10-14 09:31:19 +08:00
f11d8af936 Fix: wrong Knowledgebase tasks_finish_at (#10521)
### What problem does this PR solve?

Wrong Knowledgebase tasks_finish_at.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-10-14 09:30:46 +08:00
8 changed files with 179 additions and 8 deletions

View File

@ -188,6 +188,9 @@ def detail():
return get_data_error_result(
message="Can't find this knowledgebase!")
kb["size"] = DocumentService.get_total_size_by_kb_id(kb_id=kb["id"],keywords="", run_status=[], types=[])
for key in ["graphrag_task_finish_at", "raptor_task_finish_at", "mindmap_task_finish_at"]:
if finish_at := kb.get(key):
kb[key] = finish_at.strftime("%Y-%m-%d %H:%M:%S")
return get_json_result(data=kb)
except Exception as e:
return server_error_response(e)

View File

@ -803,6 +803,12 @@
"tags": "TEXT EMBEDDING",
"max_tokens": 512,
"model_type": "embedding"
},
{
"llm_name": "glm-asr",
"tags": "SPEECH2TEXT",
"max_tokens": 4096,
"model_type": "speech2text"
}
]
},
@ -5140,4 +5146,4 @@
]
}
]
}
}

View File

@ -37,9 +37,12 @@ OPENSEARCH_PASSWORD=infini_rag_flow_OS_01
# The port used to expose the Kibana service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
# To enable kibana, you need to:
# 1. Ensure that COMPOSE_PROFILES includes kibana, for example: COMPOSE_PROFILES=${DOC_ENGINE},kibana
# 2. Comment out or delete the following configurations of the es service in docker-compose-base.yml: xpack.security.enabled、xpack.security.http.ssl.enabled、xpack.security.transport.ssl.enabled (for details: https://www.elastic.co/docs/deploy-manage/security/self-auto-setup#stack-existing-settings-detected)
# 3. Adjust the es.hosts in conf/service_config.yaml or docker/service_conf.yaml.template to 'https://localhost:1200'
# 4. After the startup is successful, in the es container, execute the command to generate the kibana token: `bin/elasticsearch-create-enrollment-token -s kibana`, then you can use kibana normally
KIBANA_PORT=6601
KIBANA_USER=rag_flow
KIBANA_PASSWORD=infini_rag_flow
# The maximum amount of the memory, in bytes, that a specific Docker container can use while running.
# Update it according to the available memory in the host machine.

View File

@ -207,6 +207,30 @@ services:
start_period: 10s
kibana:
container_name: ragflow-kibana
profiles:
- kibana
image: kibana:${STACK_VERSION}
ports:
- ${KIBANA_PORT-5601}:5601
env_file: .env
environment:
- TZ=${TIMEZONE}
volumes:
- kibana_data:/usr/share/kibana/data
depends_on:
es01:
condition: service_started
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:5601/api/status"]
interval: 10s
timeout: 10s
retries: 120
networks:
- ragflow
restart: on-failure
volumes:
esdata01:
@ -221,6 +245,8 @@ volumes:
driver: local
redis_data:
driver: local
kibana_data:
driver: local
networks:
ragflow:

View File

@ -698,6 +698,58 @@ print("Async bulk parsing initiated.")
---
### Parse documents (with document status)
```python
DataSet.parse_documents(document_ids: list[str]) -> list[tuple[str, str, int, int]]
```
Parses documents **synchronously** in the current dataset.
This method wraps `async_parse_documents()` and automatically waits for all parsing tasks to complete.
It returns detailed parsing results, including the status and statistics for each document.
If interrupted by the user (e.g. `Ctrl+C`), all pending parsing jobs will be cancelled gracefully.
#### Parameters
##### document_ids: `list[str]`, *Required*
The IDs of the documents to parse.
#### Returns
A list of tuples with detailed parsing results:
```python
[
(document_id: str, status: str, chunk_count: int, token_count: int),
...
]
```
- **status** — Final parsing state (`success`, `failed`, `cancelled`, etc.)
- **chunk_count** — Number of content chunks created for the document.
- **token_count** — Total number of tokens processed.
---
#### Example
```python
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = dataset.list_documents(keywords="test")
ids = [doc.id for doc in documents]
try:
finished = dataset.parse_documents(ids)
for doc_id, status, chunk_count, token_count in finished:
print(f"Document {doc_id} parsing finished with status: {status}, chunks: {chunk_count}, tokens: {token_count}")
except KeyboardInterrupt:
print("\nParsing interrupted by user. All pending tasks have been cancelled.")
except Exception as e:
print(f"Parsing failed: {e}")
```
---
### Stop parsing documents
```python

View File

@ -234,8 +234,8 @@ class DeepInfraSeq2txt(Base):
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
class CometAPISeq2txt(Base):
_FACTORY_NAME = "CometAPI"
@ -244,7 +244,8 @@ class CometAPISeq2txt(Base):
base_url = "https://api.cometapi.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
class DeerAPISeq2txt(Base):
_FACTORY_NAME = "DeerAPI"
@ -253,3 +254,44 @@ class DeerAPISeq2txt(Base):
base_url = "https://api.deerapi.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
class ZhipuSeq2txt(Base):
_FACTORY_NAME = "ZHIPU-AI"
def __init__(self, key, model_name="glm-asr", base_url="https://open.bigmodel.cn/api/paas/v4", **kwargs):
if not base_url:
base_url = "https://open.bigmodel.cn/api/paas/v4"
self.base_url = base_url
self.api_key = key
self.model_name = model_name
self.gen_conf = kwargs.get("gen_conf", {})
self.stream = kwargs.get("stream", False)
def transcription(self, audio_path):
payload = {
"model": self.model_name,
"temperature": str(self.gen_conf.get("temperature", 0.75)) or "0.75",
"stream": self.stream,
}
headers = {"Authorization": f"Bearer {self.api_key}"}
with open(audio_path, "rb") as audio_file:
files = {"file": audio_file}
try:
response = requests.post(
url=f"{self.base_url}/audio/transcriptions",
data=payload,
files=files,
headers=headers,
)
body = response.json()
if response.status_code == 200:
full_content = body["text"]
return full_content, num_tokens_from_string(full_content)
else:
error = body["error"]
return f"**ERROR**: code: {error['code']}, message: {error['message']}", 0
except Exception as e:
return "**ERROR**: " + str(e), 0

View File

@ -124,7 +124,7 @@ def kb_prompt(kbinfos, max_tokens, hash_id=False):
knowledges = []
for i, ck in enumerate(kbinfos["chunks"][:chunks_num]):
cnt = "\nID: {}".format(i if not hash_id else hash_str2int(get_value(ck, "id", "chunk_id"), 100))
cnt = "\nID: {}".format(i if not hash_id else hash_str2int(get_value(ck, "id", "chunk_id"), 500))
cnt += draw_node("Title", get_value(ck, "docnm_kwd", "document_name"))
cnt += draw_node("URL", ck['url']) if "url" in ck else ""
for k, v in docs.get(get_value(ck, "doc_id", "document_id"), {}).items():

View File

@ -100,12 +100,51 @@ class DataSet(Base):
res = res.json()
if res.get("code") != 0:
raise Exception(res["message"])
def _get_documents_status(self, document_ids):
import time
terminal_states = {"DONE", "FAIL", "CANCEL"}
interval_sec = 1
pending = set(document_ids)
finished = []
while pending:
for doc_id in list(pending):
def fetch_doc(doc_id: str) -> Document | None:
try:
docs = self.list_documents(id=doc_id)
return docs[0] if docs else None
except Exception:
return None
doc = fetch_doc(doc_id)
if doc is None:
continue
if isinstance(doc.run, str) and doc.run.upper() in terminal_states:
finished.append((doc_id, doc.run, doc.chunk_count, doc.token_count))
pending.discard(doc_id)
elif float(doc.progress or 0.0) >= 1.0:
finished.append((doc_id, "DONE", doc.chunk_count, doc.token_count))
pending.discard(doc_id)
if pending:
time.sleep(interval_sec)
return finished
def async_parse_documents(self, document_ids):
res = self.post(f"/datasets/{self.id}/chunks", {"document_ids": document_ids})
res = res.json()
if res.get("code") != 0:
raise Exception(res.get("message"))
def parse_documents(self, document_ids):
try:
self.async_parse_documents(document_ids)
self._get_documents_status(document_ids)
except KeyboardInterrupt:
self.async_cancel_parse_documents(document_ids)
return self._get_documents_status(document_ids)
def async_cancel_parse_documents(self, document_ids):
res = self.rm(f"/datasets/{self.id}/chunks", {"document_ids": document_ids})