mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-02-02 08:35:08 +08:00
Compare commits
5 Commits
74ec734d69
...
aaae938f54
| Author | SHA1 | Date | |
|---|---|---|---|
| aaae938f54 | |||
| 9e73f799b2 | |||
| 21a62130c8 | |||
| 68e47c81d4 | |||
| f11d8af936 |
@ -188,6 +188,9 @@ def detail():
|
||||
return get_data_error_result(
|
||||
message="Can't find this knowledgebase!")
|
||||
kb["size"] = DocumentService.get_total_size_by_kb_id(kb_id=kb["id"],keywords="", run_status=[], types=[])
|
||||
for key in ["graphrag_task_finish_at", "raptor_task_finish_at", "mindmap_task_finish_at"]:
|
||||
if finish_at := kb.get(key):
|
||||
kb[key] = finish_at.strftime("%Y-%m-%d %H:%M:%S")
|
||||
return get_json_result(data=kb)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
|
||||
@ -803,6 +803,12 @@
|
||||
"tags": "TEXT EMBEDDING",
|
||||
"max_tokens": 512,
|
||||
"model_type": "embedding"
|
||||
},
|
||||
{
|
||||
"llm_name": "glm-asr",
|
||||
"tags": "SPEECH2TEXT",
|
||||
"max_tokens": 4096,
|
||||
"model_type": "speech2text"
|
||||
}
|
||||
]
|
||||
},
|
||||
@ -5140,4 +5146,4 @@
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
@ -37,9 +37,12 @@ OPENSEARCH_PASSWORD=infini_rag_flow_OS_01
|
||||
|
||||
# The port used to expose the Kibana service to the host machine,
|
||||
# allowing EXTERNAL access to the service running inside the Docker container.
|
||||
# To enable kibana, you need to:
|
||||
# 1. Ensure that COMPOSE_PROFILES includes kibana, for example: COMPOSE_PROFILES=${DOC_ENGINE},kibana
|
||||
# 2. Comment out or delete the following configurations of the es service in docker-compose-base.yml: xpack.security.enabled、xpack.security.http.ssl.enabled、xpack.security.transport.ssl.enabled (for details: https://www.elastic.co/docs/deploy-manage/security/self-auto-setup#stack-existing-settings-detected)
|
||||
# 3. Adjust the es.hosts in conf/service_config.yaml or docker/service_conf.yaml.template to 'https://localhost:1200'
|
||||
# 4. After the startup is successful, in the es container, execute the command to generate the kibana token: `bin/elasticsearch-create-enrollment-token -s kibana`, then you can use kibana normally
|
||||
KIBANA_PORT=6601
|
||||
KIBANA_USER=rag_flow
|
||||
KIBANA_PASSWORD=infini_rag_flow
|
||||
|
||||
# The maximum amount of the memory, in bytes, that a specific Docker container can use while running.
|
||||
# Update it according to the available memory in the host machine.
|
||||
|
||||
@ -207,6 +207,30 @@ services:
|
||||
start_period: 10s
|
||||
|
||||
|
||||
kibana:
|
||||
container_name: ragflow-kibana
|
||||
profiles:
|
||||
- kibana
|
||||
image: kibana:${STACK_VERSION}
|
||||
ports:
|
||||
- ${KIBANA_PORT-5601}:5601
|
||||
env_file: .env
|
||||
environment:
|
||||
- TZ=${TIMEZONE}
|
||||
volumes:
|
||||
- kibana_data:/usr/share/kibana/data
|
||||
depends_on:
|
||||
es01:
|
||||
condition: service_started
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:5601/api/status"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 120
|
||||
networks:
|
||||
- ragflow
|
||||
restart: on-failure
|
||||
|
||||
|
||||
volumes:
|
||||
esdata01:
|
||||
@ -221,6 +245,8 @@ volumes:
|
||||
driver: local
|
||||
redis_data:
|
||||
driver: local
|
||||
kibana_data:
|
||||
driver: local
|
||||
|
||||
networks:
|
||||
ragflow:
|
||||
|
||||
@ -698,6 +698,58 @@ print("Async bulk parsing initiated.")
|
||||
|
||||
---
|
||||
|
||||
### Parse documents (with document status)
|
||||
|
||||
```python
|
||||
DataSet.parse_documents(document_ids: list[str]) -> list[tuple[str, str, int, int]]
|
||||
```
|
||||
|
||||
Parses documents **synchronously** in the current dataset.
|
||||
This method wraps `async_parse_documents()` and automatically waits for all parsing tasks to complete.
|
||||
It returns detailed parsing results, including the status and statistics for each document.
|
||||
If interrupted by the user (e.g. `Ctrl+C`), all pending parsing jobs will be cancelled gracefully.
|
||||
|
||||
#### Parameters
|
||||
|
||||
##### document_ids: `list[str]`, *Required*
|
||||
|
||||
The IDs of the documents to parse.
|
||||
|
||||
#### Returns
|
||||
|
||||
A list of tuples with detailed parsing results:
|
||||
```python
|
||||
[
|
||||
(document_id: str, status: str, chunk_count: int, token_count: int),
|
||||
...
|
||||
]
|
||||
```
|
||||
- **status** — Final parsing state (`success`, `failed`, `cancelled`, etc.)
|
||||
- **chunk_count** — Number of content chunks created for the document.
|
||||
- **token_count** — Total number of tokens processed.
|
||||
|
||||
---
|
||||
|
||||
#### Example
|
||||
|
||||
```python
|
||||
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
|
||||
dataset = rag_object.create_dataset(name="dataset_name")
|
||||
documents = dataset.list_documents(keywords="test")
|
||||
ids = [doc.id for doc in documents]
|
||||
|
||||
try:
|
||||
finished = dataset.parse_documents(ids)
|
||||
for doc_id, status, chunk_count, token_count in finished:
|
||||
print(f"Document {doc_id} parsing finished with status: {status}, chunks: {chunk_count}, tokens: {token_count}")
|
||||
except KeyboardInterrupt:
|
||||
print("\nParsing interrupted by user. All pending tasks have been cancelled.")
|
||||
except Exception as e:
|
||||
print(f"Parsing failed: {e}")
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### Stop parsing documents
|
||||
|
||||
```python
|
||||
|
||||
@ -234,8 +234,8 @@ class DeepInfraSeq2txt(Base):
|
||||
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
|
||||
|
||||
class CometAPISeq2txt(Base):
|
||||
_FACTORY_NAME = "CometAPI"
|
||||
|
||||
@ -244,7 +244,8 @@ class CometAPISeq2txt(Base):
|
||||
base_url = "https://api.cometapi.com/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
|
||||
class DeerAPISeq2txt(Base):
|
||||
_FACTORY_NAME = "DeerAPI"
|
||||
|
||||
@ -253,3 +254,44 @@ class DeerAPISeq2txt(Base):
|
||||
base_url = "https://api.deerapi.com/v1"
|
||||
self.client = OpenAI(api_key=key, base_url=base_url)
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
class ZhipuSeq2txt(Base):
|
||||
_FACTORY_NAME = "ZHIPU-AI"
|
||||
|
||||
def __init__(self, key, model_name="glm-asr", base_url="https://open.bigmodel.cn/api/paas/v4", **kwargs):
|
||||
if not base_url:
|
||||
base_url = "https://open.bigmodel.cn/api/paas/v4"
|
||||
self.base_url = base_url
|
||||
self.api_key = key
|
||||
self.model_name = model_name
|
||||
self.gen_conf = kwargs.get("gen_conf", {})
|
||||
self.stream = kwargs.get("stream", False)
|
||||
|
||||
def transcription(self, audio_path):
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
"temperature": str(self.gen_conf.get("temperature", 0.75)) or "0.75",
|
||||
"stream": self.stream,
|
||||
}
|
||||
|
||||
headers = {"Authorization": f"Bearer {self.api_key}"}
|
||||
with open(audio_path, "rb") as audio_file:
|
||||
files = {"file": audio_file}
|
||||
|
||||
try:
|
||||
response = requests.post(
|
||||
url=f"{self.base_url}/audio/transcriptions",
|
||||
data=payload,
|
||||
files=files,
|
||||
headers=headers,
|
||||
)
|
||||
body = response.json()
|
||||
if response.status_code == 200:
|
||||
full_content = body["text"]
|
||||
return full_content, num_tokens_from_string(full_content)
|
||||
else:
|
||||
error = body["error"]
|
||||
return f"**ERROR**: code: {error['code']}, message: {error['message']}", 0
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
@ -124,7 +124,7 @@ def kb_prompt(kbinfos, max_tokens, hash_id=False):
|
||||
|
||||
knowledges = []
|
||||
for i, ck in enumerate(kbinfos["chunks"][:chunks_num]):
|
||||
cnt = "\nID: {}".format(i if not hash_id else hash_str2int(get_value(ck, "id", "chunk_id"), 100))
|
||||
cnt = "\nID: {}".format(i if not hash_id else hash_str2int(get_value(ck, "id", "chunk_id"), 500))
|
||||
cnt += draw_node("Title", get_value(ck, "docnm_kwd", "document_name"))
|
||||
cnt += draw_node("URL", ck['url']) if "url" in ck else ""
|
||||
for k, v in docs.get(get_value(ck, "doc_id", "document_id"), {}).items():
|
||||
|
||||
@ -100,12 +100,51 @@ class DataSet(Base):
|
||||
res = res.json()
|
||||
if res.get("code") != 0:
|
||||
raise Exception(res["message"])
|
||||
|
||||
|
||||
|
||||
def _get_documents_status(self, document_ids):
|
||||
import time
|
||||
terminal_states = {"DONE", "FAIL", "CANCEL"}
|
||||
interval_sec = 1
|
||||
pending = set(document_ids)
|
||||
finished = []
|
||||
while pending:
|
||||
for doc_id in list(pending):
|
||||
def fetch_doc(doc_id: str) -> Document | None:
|
||||
try:
|
||||
docs = self.list_documents(id=doc_id)
|
||||
return docs[0] if docs else None
|
||||
except Exception:
|
||||
return None
|
||||
doc = fetch_doc(doc_id)
|
||||
if doc is None:
|
||||
continue
|
||||
if isinstance(doc.run, str) and doc.run.upper() in terminal_states:
|
||||
finished.append((doc_id, doc.run, doc.chunk_count, doc.token_count))
|
||||
pending.discard(doc_id)
|
||||
elif float(doc.progress or 0.0) >= 1.0:
|
||||
finished.append((doc_id, "DONE", doc.chunk_count, doc.token_count))
|
||||
pending.discard(doc_id)
|
||||
if pending:
|
||||
time.sleep(interval_sec)
|
||||
return finished
|
||||
|
||||
def async_parse_documents(self, document_ids):
|
||||
res = self.post(f"/datasets/{self.id}/chunks", {"document_ids": document_ids})
|
||||
res = res.json()
|
||||
if res.get("code") != 0:
|
||||
raise Exception(res.get("message"))
|
||||
|
||||
|
||||
def parse_documents(self, document_ids):
|
||||
try:
|
||||
self.async_parse_documents(document_ids)
|
||||
self._get_documents_status(document_ids)
|
||||
except KeyboardInterrupt:
|
||||
self.async_cancel_parse_documents(document_ids)
|
||||
|
||||
return self._get_documents_status(document_ids)
|
||||
|
||||
|
||||
def async_cancel_parse_documents(self, document_ids):
|
||||
res = self.rm(f"/datasets/{self.id}/chunks", {"document_ids": document_ids})
|
||||
|
||||
Reference in New Issue
Block a user