Compare commits

...

29 Commits

Author SHA1 Message Date
e650f0d368 Docs: Added v0.20.5 release notes. (#10014)
### What problem does this PR solve?

_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._

### Type of change

- [x] Documentation Update
2025-09-10 11:21:25 +08:00
067b4fc012 Docs: Update version references to v0.20.5 in READMEs and docs (#10015)
### What problem does this PR solve?

- Update version tags in README files (including translations) from
v0.20.4 to v0.20.5
- Modify Docker image references and documentation to reflect new
version
- Update version badges and image descriptions
- Maintain consistency across all language variants of README files

### Type of change

- [x] Documentation Update
2025-09-10 11:20:43 +08:00
38ff2ffc01 Fix: typo. (#10011)
### What problem does this PR solve?


### Type of change
- [x] Refactoring
2025-09-10 11:07:03 +08:00
a9cc992d13 Feat: Translate the maxRounds field of the chat settings #3221 (#10010)
### What problem does this PR solve?

Feat: Translate the maxRounds field of the chat settings #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-10 10:56:34 +08:00
5cf2c97908 Docs: v0.20.5 - Added Framework prompt block documentation for the Agent component (#10006)
### What problem does this PR solve?

### Type of change

- [x] Documentation Update
2025-09-10 10:46:22 +08:00
81fede0041 Fix: refactor prompts (#10005)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 22:01:44 +08:00
07a83f93d5 Feat: The prompt words "plan" are displayed only when the agent operator has sub-agent operators or sub-tool operators. #10000 (#10001)
### What problem does this PR solve?

Feat: The prompt words "plan" are displayed only when the agent operator
has sub-agent operators or sub-tool operators. . #10000
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-09 21:18:24 +08:00
1a904edd94 Fix: Optimize search functionality #3221 (#10002)
### What problem does this PR solve?

Fix: Optimize search functionality
- Fixed search limitations when no dataset is selected

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 21:18:06 +08:00
906969fe4e Fix: exesql issue. (#9995)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 19:45:10 +08:00
776ea078a6 Fix: Optimized the table of contents style and homepage card layout #3221 (#9993)
### What problem does this PR solve?

Fix: Optimized the table of contents style and homepage card layout
#3221

- Added background color, text color, and shadow styles to the Markdown
table of contents
- Optimized the date display style in the HomeCard component to prevent
overflow
- Standardized the translation of "dataset" to "knowledge base" to
improve terminology consistency

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 18:50:43 +08:00
fcdde26a7f Fix: Highlight the edges after running #9538 (#9994)
### What problem does this PR solve?

Fix: Highlight the edges after running #9538

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 17:04:37 +08:00
79076ffb5f Fix: remove 2 prompts. (#9990)
### What problem does this PR solve?

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 14:45:43 +08:00
e8dcdfb9f0 Fix: Issue of ineffective weight adjustment for retrieval_test API-related functions #9854 (#9989)
### What problem does this PR solve?

Fix: Issue of ineffective weight adjustment for retrieval_test
API-related functions #9854

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 12:32:22 +08:00
c4f43a395d Fix: re sub error. (#9985)
### What problem does this PR solve?


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-09 10:52:18 +08:00
a255c78b59 Feat: Add ParserForm to the data pipeline #9869 (#9986)
### What problem does this PR solve?

Feat: Add ParserForm to the data pipeline  #9869

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-09 09:50:46 +08:00
936f27e9e5 Feat: add LongCat-Flash-Chat (#9973)
### What problem does this PR solve?

Add LongCat-Flash-Chat from Meituan, deepseek v3.1 from SiliconFlow,
kimi-k2-09-05-preview and kimi-k2-turbo-preview from Moonshot.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 19:00:52 +08:00
2616f651c9 Feat: The agent's external page should be able to fill in the begin parameter after being reset in task mode #9745 (#9982)
### What problem does this PR solve?

Feat: The agent's external page should be able to fill in the begin
parameter after being reset in task mode #9745

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 18:59:51 +08:00
e8018fde83 Fix: Update the pagination prompt text in zh.ts, changing "page" to "item/page" #3221 (#9978)
### What problem does this PR solve?

Fix: Update the pagination prompt text in zh.ts, changing "page" to
"item/page"

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 17:14:23 +08:00
f514482c0a Feat: Add ConfirmDeleteDialog storybook #9914 (#9977)
### What problem does this PR solve?

Feat: Add ConfirmDeleteDialog storybook #9914

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 17:14:11 +08:00
e9ee9269f5 Feat: user defined prompt. (#9972)
### What problem does this PR solve?


### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 14:05:01 +08:00
cf18231713 Fix: Optimized the test results page layout and internationalization #3221 (#9974)
### What problem does this PR solve?

Fix: Optimized the test results page layout and internationalization

- Added an empty data component for when test results are empty
- Optimized internationalization support for the paging component
- Updated the layout and style of the test results page
- Added a tooltip for when test results are empty

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 12:49:12 +08:00
f48aed6d4a Fix: The files in the knowledge base folder on the file management page should not be deleted #9975 (#9976)
### What problem does this PR solve?

Fix: The files in the knowledge base folder on the file management page
should not be deleted #9975

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-08 12:48:58 +08:00
b524cf0ec8 Feat: Delete unused code in the data pipeline #9869 (#9971)
### What problem does this PR solve?

Feat: Delete unused code in the data pipeline #9869
### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 11:42:46 +08:00
994517495f add model: qwen3-max-preview (#9959)
### What problem does this PR solve?
add qwen3-max-preview model,
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
2025-09-08 10:39:23 +08:00
63781bde3f Refa: import issue. (#9958)
### What problem does this PR solve?


### Type of change

- [x] Refactoring
2025-09-05 19:26:15 +08:00
91d6fb8061 Fix miscalculated token count (#9776)
### What problem does this PR solve?

The total token was incorrectly accumulated when using the
OpenAI-API-Compatible api.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-09-05 19:17:21 +08:00
45f52e85d7 Feat: refine dataflow and initialize dataflow app (#9952)
### What problem does this PR solve?

Refine dataflow and initialize dataflow app.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 18:50:46 +08:00
9aa8cfb73a Feat: Use sonner to replace the requested prompt message component #3221 (#9951)
### What problem does this PR solve?

Feat: Use sonner to replace the requested prompt message component #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 18:43:33 +08:00
79ca25ec7e Feat: Allow users to select prompt word templates in agent operators. #9935 (#9936)
### What problem does this PR solve?

Feat: Allow users to select prompt word templates in agent operators.
#9935

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-09-05 15:48:57 +08:00
160 changed files with 2540 additions and 3896 deletions

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -187,7 +187,7 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.20.4-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.4-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` for the full edition `v0.20.4`.
> The command below downloads the `v0.20.5-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.5-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` for the full edition `v0.20.5`.
```bash
$ cd ragflow/docker
@ -200,8 +200,8 @@ releases! 🌟
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@ -181,7 +181,7 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.20.4-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.4-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4 untuk edisi lengkap v0.20.4.
> Perintah di bawah ini mengunduh edisi v0.20.5-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.20.5-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5 untuk edisi lengkap v0.20.5.
```bash
$ cd ragflow/docker
@ -194,8 +194,8 @@ $ docker compose -f docker-compose.yml up -d
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -160,7 +160,7 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.4-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.4-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.4 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.20.5-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.20.5-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.20.5 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5 と設定します。
```bash
$ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -160,7 +160,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.4-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.4-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.4을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.20.5-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.20.5-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.20.5을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5로 설정합니다.
```bash
$ cd ragflow/docker
@ -173,8 +173,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Badge Estático" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Última%20Relese" alt="Última Versão">
@ -180,7 +180,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.20.4-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.4-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` para a edição completa `v0.20.4`.
> O comando abaixo baixa a edição `v0.20.5-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.20.5-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` para a edição completa `v0.20.5`.
```bash
$ cd ragflow/docker
@ -193,8 +193,8 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.20.4 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.4-slim | ~2 | ❌ | Lançamento estável |
| v0.20.5 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.20.5-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -183,7 +183,7 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.4-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.4-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` 來下載 RAGFlow 鏡像的 `v0.20.4` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.20.5-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.20.5-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` 來下載 RAGFlow 鏡像的 `v0.20.5` 完整發行版。
```bash
$ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -22,7 +22,7 @@
<img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
</a>
<a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.4">
<img src="https://img.shields.io/docker/pulls/infiniflow/ragflow?label=Docker%20Pulls&color=0db7ed&logo=docker&logoColor=white&style=flat-square" alt="docker pull infiniflow/ragflow:v0.20.5">
</a>
<a href="https://github.com/infiniflow/ragflow/releases/latest">
<img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@ -183,7 +183,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.4-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.4-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` 来下载 RAGFlow 镜像的 `v0.20.4` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.20.5-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.20.5-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` 来下载 RAGFlow 镜像的 `v0.20.5` 完整发行版。
```bash
$ cd ragflow/docker
@ -196,8 +196,8 @@
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.20.4 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.4-slim | &approx;2 | ❌ | Stable release |
| v0.20.5 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.20.5-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |

View File

@ -16,6 +16,7 @@
import base64
import json
import logging
import re
import time
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
@ -300,9 +301,11 @@ class Canvas(Graph):
yield decorate("message", {"content": m})
_m += m
cpn_obj.set_output("content", _m)
cite = re.search(r"\[ID:[ 0-9]+\]", _m)
else:
yield decorate("message", {"content": cpn_obj.output("content")})
yield decorate("message_end", {"reference": self.get_reference()})
cite = re.search(r"\[ID:[ 0-9]+\]", cpn_obj.output("content"))
yield decorate("message_end", {"reference": self.get_reference() if cite else None})
while partials:
_cpn_obj = self.get_component_obj(partials[0])

View File

@ -155,18 +155,18 @@ class Agent(LLM, ToolBase):
if not self.tools:
return LLM._invoke(self, **kwargs)
prompt, msg = self._prepare_prompt_variables()
prompt, msg, user_defined_prompt = self._prepare_prompt_variables()
downstreams = self._canvas.get_component(self._id)["downstream"] if self._canvas.get_component(self._id) else []
ex = self.exception_handler()
if any([self._canvas.get_component_obj(cid).component_name.lower()=="message" for cid in downstreams]) and not self._param.output_structure and not (ex and ex["goto"]):
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg))
self.set_output("content", partial(self.stream_output_with_tools, prompt, msg, user_defined_prompt))
return
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
use_tools = []
ans = ""
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools):
for delta_ans, tk in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
ans += delta_ans
if ans.find("**ERROR**") >= 0:
@ -182,11 +182,11 @@ class Agent(LLM, ToolBase):
self.set_output("use_tools", use_tools)
return ans
def stream_output_with_tools(self, prompt, msg):
def stream_output_with_tools(self, prompt, msg, user_defined_prompt={}):
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(self.chat_mdl.max_length * 0.97))
answer_without_toolcall = ""
use_tools = []
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools):
for delta_ans,_ in self._react_with_tools_streamly(prompt, msg, use_tools, user_defined_prompt):
if delta_ans.find("**ERROR**") >= 0:
if self.get_exception_default_value():
self.set_output("content", self.get_exception_default_value())
@ -209,7 +209,7 @@ class Agent(LLM, ToolBase):
]):
yield delta_ans
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools):
def _react_with_tools_streamly(self, prompt, history: list[dict], use_tools, user_defined_prompt={}):
token_count = 0
tool_metas = self.tool_meta
hist = deepcopy(history)
@ -230,7 +230,7 @@ class Agent(LLM, ToolBase):
# last_calling,
# last_calling != name
#]):
# self.toolcall_session.get_tool_obj(name).add2system_prompt(f"The chat history with other agents are as following: \n" + self.get_useful_memory(user_request, str(args["user_prompt"])))
# self.toolcall_session.get_tool_obj(name).add2system_prompt(f"The chat history with other agents are as following: \n" + self.get_useful_memory(user_request, str(args["user_prompt"]),user_defined_prompt))
last_calling = name
tool_response = self.toolcall_session.tool_call(name, args)
use_tools.append({
@ -239,7 +239,7 @@ class Agent(LLM, ToolBase):
"results": tool_response
})
# self.callback("add_memory", {}, "...")
#self.add_memory(hist[-2]["content"], hist[-1]["content"], name, args, str(tool_response))
#self.add_memory(hist[-2]["content"], hist[-1]["content"], name, args, str(tool_response), user_defined_prompt)
return name, tool_response
@ -279,10 +279,10 @@ class Agent(LLM, ToolBase):
hist.append({"role": "user", "content": content})
st = timer()
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas)
task_desc = analyze_task(self.chat_mdl, prompt, user_request, tool_metas, user_defined_prompt)
self.callback("analyze_task", {}, task_desc, elapsed_time=timer()-st)
for _ in range(self._param.max_rounds + 1):
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc)
response, tk = next_step(self.chat_mdl, hist, tool_metas, task_desc, user_defined_prompt)
# self.callback("next_step", {}, str(response)[:256]+"...")
token_count += tk
hist.append({"role": "assistant", "content": response})
@ -307,7 +307,7 @@ class Agent(LLM, ToolBase):
thr.append(executor.submit(use_tool, name, args))
st = timer()
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr])
reflection = reflect(self.chat_mdl, hist, [th.result() for th in thr], user_defined_prompt)
append_user_content(hist, reflection)
self.callback("reflection", {}, str(reflection), elapsed_time=timer()-st)
@ -334,10 +334,10 @@ Respond immediately with your final comprehensive answer.
for txt, tkcnt in complete():
yield txt, tkcnt
def get_useful_memory(self, goal: str, sub_goal:str, topn=3) -> str:
def get_useful_memory(self, goal: str, sub_goal:str, topn=3, user_defined_prompt:dict={}) -> str:
# self.callback("get_useful_memory", {"topn": 3}, "...")
mems = self._canvas.get_memory()
rank = rank_memories(self.chat_mdl, goal, sub_goal, [summ for (user, assist, summ) in mems])
rank = rank_memories(self.chat_mdl, goal, sub_goal, [summ for (user, assist, summ) in mems], user_defined_prompt)
try:
rank = json_repair.loads(re.sub(r"```.*", "", rank))[:topn]
mems = [mems[r] for r in rank]

View File

@ -145,12 +145,23 @@ class LLM(ComponentBase):
msg.append(deepcopy(p))
sys_prompt = self.string_format(sys_prompt, args)
user_defined_prompt, sys_prompt = self._extract_prompts(sys_prompt)
for m in msg:
m["content"] = self.string_format(m["content"], args)
if self._param.cite and self._canvas.get_reference()["chunks"]:
sys_prompt += citation_prompt()
sys_prompt += citation_prompt(user_defined_prompt)
return sys_prompt, msg
return sys_prompt, msg, user_defined_prompt
def _extract_prompts(self, sys_prompt):
pts = {}
for tag in ["TASK_ANALYSIS", "PLAN_GENERATION", "REFLECTION", "CONTEXT_SUMMARY", "CONTEXT_RANKING", "CITATION_GUIDELINES"]:
r = re.search(rf"<{tag}>(.*?)</{tag}>", sys_prompt, flags=re.DOTALL|re.IGNORECASE)
if not r:
continue
pts[tag.lower()] = r.group(1)
sys_prompt = re.sub(rf"<{tag}>(.*?)</{tag}>", "", sys_prompt, flags=re.DOTALL|re.IGNORECASE)
return pts, sys_prompt
def _generate(self, msg:list[dict], **kwargs) -> str:
if not self.imgs:
@ -198,7 +209,7 @@ class LLM(ComponentBase):
ans = re.sub(r"^.*```json", "", ans, flags=re.DOTALL)
return re.sub(r"```\n*$", "", ans, flags=re.DOTALL)
prompt, msg = self._prepare_prompt_variables()
prompt, msg, _ = self._prepare_prompt_variables()
error = ""
if self._param.output_structure:
@ -262,11 +273,11 @@ class LLM(ComponentBase):
answer += ans
self.set_output("content", answer)
def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str):
summ = tool_call_summary(self.chat_mdl, func_name, params, results)
def add_memory(self, user:str, assist:str, func_name: str, params: dict, results: str, user_defined_prompt:dict={}):
summ = tool_call_summary(self.chat_mdl, func_name, params, results, user_defined_prompt)
logging.info(f"[MEMORY]: {summ}")
self._canvas.add_memory(user, assist, summ)
def thoughts(self) -> str:
_, msg = self._prepare_prompt_variables()
_, msg,_ = self._prepare_prompt_variables()
return "⌛Give me a moment—starting from: \n\n" + re.sub(r"(User's query:|[\\]+)", '', msg[-1]['content'], flags=re.DOTALL) + "\n\nIll figure out our best next move."

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
import re
from abc import ABC
@ -93,8 +94,20 @@ class ExeSQL(ToolBase, ABC):
sql = kwargs.get("sql")
if not sql:
raise Exception("SQL for `ExeSQL` MUST not be empty.")
sqls = sql.split(";")
vars = self.get_input_elements_from_text(sql)
args = {}
for k, o in vars.items():
args[k] = o["value"]
if not isinstance(args[k], str):
try:
args[k] = json.dumps(args[k], ensure_ascii=False)
except Exception:
args[k] = str(args[k])
self.set_input_value(k, args[k])
sql = self.string_format(sql, args)
sqls = sql.split(";")
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)

View File

@ -418,12 +418,10 @@ def setting():
return get_data_error_result(message="canvas not found.")
flow = flow.to_dict()
flow["title"] = req["title"]
if req["description"]:
flow["description"] = req["description"]
if req["permission"]:
flow["permission"] = req["permission"]
if req["avatar"]:
flow["avatar"] = req["avatar"]
for key in ["description", "permission", "avatar"]:
if value := req.get(key):
flow[key] = value
num= UserCanvasService.update_by_id(req["id"], flow)
return get_json_result(data=num)
@ -472,3 +470,16 @@ def sessions(canvas_id):
except Exception as e:
return server_error_response(e)
@manager.route('/prompts', methods=['GET']) # noqa: F821
@login_required
def prompts():
from rag.prompts.prompts import ANALYZE_TASK_SYSTEM, ANALYZE_TASK_USER, NEXT_STEP, REFLECT, CITATION_PROMPT_TEMPLATE
return get_json_result(data={
"task_analysis": ANALYZE_TASK_SYSTEM +"\n\n"+ ANALYZE_TASK_USER,
"plan_generation": NEXT_STEP,
"reflection": REFLECT,
#"context_summary": SUMMARY4MEMORY,
#"context_ranking": RANK_MEMORY,
"citation_guidelines": CITATION_PROMPT_TEMPLATE
})

View File

@ -291,6 +291,10 @@ def retrieval_test():
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=settings.RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", [])
use_kg = req.get("use_kg", False)
top = int(req.get("top_k", 1024))

View File

@ -400,6 +400,8 @@ def related_questions():
chat_mdl = LLMBundle(current_user.id, LLMType.CHAT, chat_id)
gen_conf = search_config.get("llm_setting", {"temperature": 0.9})
if "parameter" in gen_conf:
del gen_conf["parameter"]
prompt = load_prompt("related_question")
ans = chat_mdl.chat(
prompt,

353
api/apps/dataflow_app.py Normal file
View File

@ -0,0 +1,353 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
import sys
import time
from functools import partial
import trio
from flask import request
from flask_login import current_user, login_required
from agent.canvas import Canvas
from agent.component import LLM
from api.db import CanvasCategory, FileType
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.db.services.document_service import DocumentService
from api.db.services.file_service import FileService
from api.db.services.task_service import queue_dataflow
from api.db.services.user_canvas_version import UserCanvasVersionService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request
from api.utils.file_utils import filename_type, read_potential_broken_pdf
from rag.flow.pipeline import Pipeline
@manager.route("/templates", methods=["GET"]) # noqa: F821
@login_required
def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.query(canvas_category=CanvasCategory.DataFlow)])
@manager.route("/list", methods=["GET"]) # noqa: F821
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in UserCanvasService.query(user_id=current_user.id, canvas_category=CanvasCategory.DataFlow)], key=lambda x: x["update_time"] * -1))
@manager.route("/rm", methods=["POST"]) # noqa: F821
@validate_request("canvas_ids")
@login_required
def rm():
for i in request.json["canvas_ids"]:
if not UserCanvasService.accessible(i, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
UserCanvasService.delete_by_id(i)
return get_json_result(data=True)
@manager.route("/set", methods=["POST"]) # noqa: F821
@validate_request("dsl", "title")
@login_required
def save():
req = request.json
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
req["canvas_category"] = CanvasCategory.DataFlow
if "id" not in req:
req["user_id"] = current_user.id
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip(), canvas_category=CanvasCategory.DataFlow):
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return get_data_error_result(message="Fail to save canvas.")
else:
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
# save version
UserCanvasVersionService.insert(user_canvas_id=req["id"], dsl=req["dsl"], title="{0}_{1}".format(req["title"], time.strftime("%Y_%m_%d_%H_%M_%S")))
UserCanvasVersionService.delete_all_versions(req["id"])
return get_json_result(data=req)
@manager.route("/get/<canvas_id>", methods=["GET"]) # noqa: F821
@login_required
def get(canvas_id):
if not UserCanvasService.accessible(canvas_id, current_user.id):
return get_data_error_result(message="canvas not found.")
e, c = UserCanvasService.get_by_tenant_id(canvas_id)
return get_json_result(data=c)
@manager.route("/run", methods=["POST"]) # noqa: F821
@validate_request("id")
@login_required
def run():
req = request.json
flow_id = req.get("id", "")
doc_id = req.get("doc_id", "")
if not all([flow_id, doc_id]):
return get_data_error_result(message="id and doc_id are required.")
if not DocumentService.get_by_id(doc_id):
return get_data_error_result(message=f"Document for {doc_id} not found.")
user_id = req.get("user_id", current_user.id)
if not UserCanvasService.accessible(flow_id, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
e, cvs = UserCanvasService.get_by_id(flow_id)
if not e:
return get_data_error_result(message="canvas not found.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
task_id = get_uuid()
ok, error_message = queue_dataflow(dsl=cvs.dsl, tenant_id=user_id, doc_id=doc_id, task_id=task_id, flow_id=flow_id, priority=0)
if not ok:
return server_error_response(error_message)
return get_json_result(data={"task_id": task_id, "flow_id": flow_id})
@manager.route("/reset", methods=["POST"]) # noqa: F821
@validate_request("id")
@login_required
def reset():
req = request.json
flow_id = req.get("id", "")
if not flow_id:
return get_data_error_result(message="id is required.")
if not UserCanvasService.accessible(flow_id, current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
task_id = req.get("task_id", "")
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
dataflow = Pipeline(dsl=json.dumps(user_canvas.dsl), tenant_id=current_user.id, flow_id=flow_id, task_id=task_id)
dataflow.reset()
req["dsl"] = json.loads(str(dataflow))
UserCanvasService.update_by_id(req["id"], {"dsl": req["dsl"]})
return get_json_result(data=req["dsl"])
except Exception as e:
return server_error_response(e)
@manager.route("/upload/<canvas_id>", methods=["POST"]) # noqa: F821
def upload(canvas_id):
e, cvs = UserCanvasService.get_by_tenant_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
user_id = cvs["user_id"]
def structured(filename, filetype, blob, content_type):
nonlocal user_id
if filetype == FileType.PDF.value:
blob = read_potential_broken_pdf(blob)
location = get_uuid()
FileService.put_blob(user_id, location, blob)
return {
"id": location,
"name": filename,
"size": sys.getsizeof(blob),
"extension": filename.split(".")[-1].lower(),
"mime_type": content_type,
"created_by": user_id,
"created_at": time.time(),
"preview_url": None,
}
if request.args.get("url"):
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CrawlResult, DefaultMarkdownGenerator, PruningContentFilter
try:
url = request.args.get("url")
filename = re.sub(r"\?.*", "", url.split("/")[-1])
async def adownload():
browser_config = BrowserConfig(
headless=True,
verbose=False,
)
async with AsyncWebCrawler(config=browser_config) as crawler:
crawler_config = CrawlerRunConfig(markdown_generator=DefaultMarkdownGenerator(content_filter=PruningContentFilter()), pdf=True, screenshot=False)
result: CrawlResult = await crawler.arun(url=url, config=crawler_config)
return result
page = trio.run(adownload())
if page.pdf:
if filename.split(".")[-1].lower() != "pdf":
filename += ".pdf"
return get_json_result(data=structured(filename, "pdf", page.pdf, page.response_headers["content-type"]))
return get_json_result(data=structured(filename, "html", str(page.markdown).encode("utf-8"), page.response_headers["content-type"], user_id))
except Exception as e:
return server_error_response(e)
file = request.files["file"]
try:
DocumentService.check_doc_health(user_id, file.filename)
return get_json_result(data=structured(file.filename, filename_type(file.filename), file.read(), file.content_type))
except Exception as e:
return server_error_response(e)
@manager.route("/input_form", methods=["GET"]) # noqa: F821
@login_required
def input_form():
flow_id = request.args.get("id")
cpn_id = request.args.get("component_id")
try:
e, user_canvas = UserCanvasService.get_by_id(flow_id)
if not e:
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=flow_id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
dataflow = Pipeline(dsl=json.dumps(user_canvas.dsl), tenant_id=current_user.id, flow_id=flow_id, task_id="")
return get_json_result(data=dataflow.get_component_input_form(cpn_id))
except Exception as e:
return server_error_response(e)
@manager.route("/debug", methods=["POST"]) # noqa: F821
@validate_request("id", "component_id", "params")
@login_required
def debug():
req = request.json
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas.reset()
canvas.message_id = get_uuid()
component = canvas.get_component(req["component_id"])["obj"]
component.reset()
if isinstance(component, LLM):
component.set_debug_inputs(req["params"])
component.invoke(**{k: o["value"] for k, o in req["params"].items()})
outputs = component.output()
for k in outputs.keys():
if isinstance(outputs[k], partial):
txt = ""
for c in outputs[k]():
txt += c
outputs[k] = txt
return get_json_result(data=outputs)
except Exception as e:
return server_error_response(e)
# api get list version dsl of canvas
@manager.route("/getlistversion/<canvas_id>", methods=["GET"]) # noqa: F821
@login_required
def getlistversion(canvas_id):
try:
list = sorted([c.to_dict() for c in UserCanvasVersionService.list_by_canvas_id(canvas_id)], key=lambda x: x["update_time"] * -1)
return get_json_result(data=list)
except Exception as e:
return get_data_error_result(message=f"Error getting history files: {e}")
# api get version dsl of canvas
@manager.route("/getversion/<version_id>", methods=["GET"]) # noqa: F821
@login_required
def getversion(version_id):
try:
e, version = UserCanvasVersionService.get_by_id(version_id)
if version:
return get_json_result(data=version.to_dict())
except Exception as e:
return get_json_result(data=f"Error getting history file: {e}")
@manager.route("/listteam", methods=["GET"]) # noqa: F821
@login_required
def list_canvas():
keywords = request.args.get("keywords", "")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 150))
orderby = request.args.get("orderby", "create_time")
desc = request.args.get("desc", True)
try:
tenants = TenantService.get_joined_tenants_by_user_id(current_user.id)
canvas, total = UserCanvasService.get_by_tenant_ids(
[m["tenant_id"] for m in tenants], current_user.id, page_number, items_per_page, orderby, desc, keywords, canvas_category=CanvasCategory.DataFlow
)
return get_json_result(data={"canvas": canvas, "total": total})
except Exception as e:
return server_error_response(e)
@manager.route("/setting", methods=["POST"]) # noqa: F821
@validate_request("id", "title", "permission")
@login_required
def setting():
req = request.json
req["user_id"] = current_user.id
if not UserCanvasService.accessible(req["id"], current_user.id):
return get_json_result(data=False, message="Only owner of canvas authorized for this operation.", code=RetCode.OPERATING_ERROR)
e, flow = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
flow = flow.to_dict()
flow["title"] = req["title"]
for key in ("description", "permission", "avatar"):
if value := req.get(key):
flow[key] = value
num = UserCanvasService.update_by_id(req["id"], flow)
return get_json_result(data=num)
@manager.route("/trace", methods=["GET"]) # noqa: F821
def trace():
dataflow_id = request.args.get("dataflow_id")
task_id = request.args.get("task_id")
if not all([dataflow_id, task_id]):
return get_data_error_result(message="dataflow_id and task_id are required.")
e, dataflow_canvas = UserCanvasService.get_by_id(dataflow_id)
if not e:
return get_data_error_result(message="dataflow not found.")
dsl_str = json.dumps(dataflow_canvas.dsl, ensure_ascii=False)
dataflow = Pipeline(dsl=dsl_str, tenant_id=dataflow_canvas.user_id, flow_id=dataflow_id, task_id=task_id)
log = dataflow.fetch_logs()
return get_json_result(data=log)

View File

@ -24,7 +24,7 @@ from api.db.services.llm_service import LLMBundle
from api import settings
from api.utils.api_utils import validate_request, build_error_result, apikey_required
from rag.app.tag import label_question
from api.db.services.dialog_service import meta_filter
from api.db.services.dialog_service import meta_filter, convert_conditions
@manager.route('/dify/retrieval', methods=['POST']) # noqa: F821
@ -101,19 +101,4 @@ def retrieval(tenant_id):
logging.exception(e)
return build_error_result(message=str(e), code=settings.RetCode.SERVER_ERROR)
def convert_conditions(metadata_condition):
if metadata_condition is None:
metadata_condition = {}
op_mapping = {
"is": "=",
"not is": ""
}
return [
{
"op": op_mapping.get(cond["comparison_operator"], cond["comparison_operator"]),
"key": cond["name"],
"value": cond["value"]
}
for cond in metadata_condition.get("conditions", [])
]

View File

@ -35,8 +35,7 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api.db.services.tenant_llm_service import TenantLLMService
from api.db.services.task_service import TaskService, queue_tasks
from api.db.services.dialog_service import meta_filter
from api.apps.sdk.dify_retrieval import convert_conditions
from api.db.services.dialog_service import meta_filter, convert_conditions
from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_error_data_result, get_parser_config, get_result, server_error_response, token_required
from rag.app.qa import beAdoc, rmPrefix
from rag.app.tag import label_question

View File

@ -941,6 +941,9 @@ def retrieval_test_embedded():
kb_ids = req["kb_id"]
if isinstance(kb_ids, str):
kb_ids = [kb_ids]
if not kb_ids:
return get_json_result(data=False, message='Please specify dataset firstly.',
code=settings.RetCode.DATA_ERROR)
doc_ids = req.get("doc_ids", [])
similarity_threshold = float(req.get("similarity_threshold", 0.0))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))

View File

@ -21,11 +21,9 @@ from copy import deepcopy
from datetime import datetime
from functools import partial
from timeit import default_timer as timer
import trio
from langfuse import Langfuse
from peewee import fn
from agentic_reasoning import DeepResearcher
from api import settings
from api.db import LLMType, ParserType, StatusEnum
@ -255,6 +253,23 @@ def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
return answer, idx
def convert_conditions(metadata_condition):
if metadata_condition is None:
metadata_condition = {}
op_mapping = {
"is": "=",
"not is": ""
}
return [
{
"op": op_mapping.get(cond["comparison_operator"], cond["comparison_operator"]),
"key": cond["name"],
"value": cond["value"]
}
for cond in metadata_condition.get("conditions", [])
]
def meta_filter(metas: dict, filters: list[dict]):
doc_ids = set([])

View File

@ -54,15 +54,15 @@ def trim_header_by_lines(text: str, max_length) -> str:
class TaskService(CommonService):
"""Service class for managing document processing tasks.
This class extends CommonService to provide specialized functionality for document
processing task management, including task creation, progress tracking, and chunk
management. It handles various document types (PDF, Excel, etc.) and manages their
processing lifecycle.
The class implements a robust task queue system with retry mechanisms and progress
tracking, supporting both synchronous and asynchronous task execution.
Attributes:
model: The Task model class for database operations.
"""
@ -72,14 +72,14 @@ class TaskService(CommonService):
@DB.connection_context()
def get_task(cls, task_id):
"""Retrieve detailed task information by task ID.
This method fetches comprehensive task details including associated document,
knowledge base, and tenant information. It also handles task retry logic and
progress updates.
Args:
task_id (str): The unique identifier of the task to retrieve.
Returns:
dict: Task details dictionary containing all task information and related metadata.
Returns None if task is not found or has exceeded retry limit.
@ -139,13 +139,13 @@ class TaskService(CommonService):
@DB.connection_context()
def get_tasks(cls, doc_id: str):
"""Retrieve all tasks associated with a document.
This method fetches all processing tasks for a given document, ordered by page
number and creation time. It includes task progress and chunk information.
Args:
doc_id (str): The unique identifier of the document.
Returns:
list[dict]: List of task dictionaries containing task details.
Returns None if no tasks are found.
@ -170,10 +170,10 @@ class TaskService(CommonService):
@DB.connection_context()
def update_chunk_ids(cls, id: str, chunk_ids: str):
"""Update the chunk IDs associated with a task.
This method updates the chunk_ids field of a task, which stores the IDs of
processed document chunks in a space-separated string format.
Args:
id (str): The unique identifier of the task.
chunk_ids (str): Space-separated string of chunk identifiers.
@ -184,11 +184,11 @@ class TaskService(CommonService):
@DB.connection_context()
def get_ongoing_doc_name(cls):
"""Get names of documents that are currently being processed.
This method retrieves information about documents that are in the processing state,
including their locations and associated IDs. It uses database locking to ensure
thread safety when accessing the task information.
Returns:
list[tuple]: A list of tuples, each containing (parent_id/kb_id, location)
for documents currently being processed. Returns empty list if
@ -238,14 +238,14 @@ class TaskService(CommonService):
@DB.connection_context()
def do_cancel(cls, id):
"""Check if a task should be cancelled based on its document status.
This method determines whether a task should be cancelled by checking the
associated document's run status and progress. A task should be cancelled
if its document is marked for cancellation or has negative progress.
Args:
id (str): The unique identifier of the task to check.
Returns:
bool: True if the task should be cancelled, False otherwise.
"""
@ -311,18 +311,18 @@ class TaskService(CommonService):
def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
"""Create and queue document processing tasks.
This function creates processing tasks for a document based on its type and configuration.
It handles different document types (PDF, Excel, etc.) differently and manages task
chunking and configuration. It also implements task reuse optimization by checking
for previously completed tasks.
Args:
doc (dict): Document dictionary containing metadata and configuration.
bucket (str): Storage bucket name where the document is stored.
name (str): File name of the document.
priority (int, optional): Priority level for task queueing (default is 0).
Note:
- For PDF documents, tasks are created per page range based on configuration
- For Excel documents, tasks are created per row range
@ -410,19 +410,19 @@ def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
"""Attempt to reuse chunks from previous tasks for optimization.
This function checks if chunks from previously completed tasks can be reused for
the current task, which can significantly improve processing efficiency. It matches
tasks based on page ranges and configuration digests.
Args:
task (dict): Current task dictionary to potentially reuse chunks for.
prev_tasks (list[dict]): List of previous task dictionaries to check for reuse.
chunking_config (dict): Configuration dictionary for chunk processing.
Returns:
int: Number of chunks successfully reused. Returns 0 if no chunks could be reused.
Note:
Chunks can only be reused if:
- A previous task exists with matching page range and configuration digest
@ -470,3 +470,39 @@ def has_canceled(task_id):
except Exception as e:
logging.exception(e)
return False
def queue_dataflow(dsl:str, tenant_id:str, doc_id:str, task_id:str, flow_id:str, priority: int, callback=None) -> tuple[bool, str]:
"""
Returns a tuple (success: bool, error_message: str).
"""
_ = callback
task = dict(
id=get_uuid() if not task_id else task_id,
doc_id=doc_id,
from_page=0,
to_page=100000000,
task_type="dataflow",
priority=priority,
)
TaskService.model.delete().where(TaskService.model.id == task["id"]).execute()
bulk_insert_into_db(model=Task, data_source=[task], replace_on_conflict=True)
kb_id = DocumentService.get_knowledgebase_id(doc_id)
if not kb_id:
return False, f"Can't find KB of this document: {doc_id}"
task["kb_id"] = kb_id
task["tenant_id"] = tenant_id
task["task_type"] = "dataflow"
task["dsl"] = dsl
task["dataflow_id"] = get_uuid() if not flow_id else flow_id
if not REDIS_CONN.queue_product(
get_svr_queue_name(priority), message=task
):
return False, "Can't access Redis. Please check the Redis' status."
return True, ""

View File

@ -320,6 +320,8 @@ def construct_error_response(e):
def token_required(func):
@wraps(func)
def decorated_function(*args, **kwargs):
if os.environ.get("DISABLE_SDK"):
return get_json_result(data=False, message="`Authorization` can't be empty")
authorization_str = flask_request.headers.get("Authorization")
if not authorization_str:
return get_json_result(data=False, message="`Authorization` can't be empty")

View File

@ -337,6 +337,13 @@
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-max-preview",
"tags": "LLM,CHAT,256k",
"max_tokens": 256000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "qwen3-coder-480b-a35b-instruct",
"tags": "LLM,CHAT,256k",
@ -748,6 +755,20 @@
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "kimi-k2-0905-preview",
"tags": "LLM,CHAT,256k",
"max_tokens": 262144,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "kimi-k2-turbo-preview",
"tags": "LLM,CHAT,256k",
"max_tokens": 262144,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "kimi-latest",
"tags": "LLM,CHAT,8k,32k,128k",
@ -2690,21 +2711,21 @@
"status": "1",
"llm": [
{
"llm_name": "Qwen3-Embedding-8B",
"llm_name": "Qwen/Qwen3-Embedding-8B",
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
"max_tokens": 32000,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "Qwen3-Embedding-4B",
"llm_name": "Qwen/Qwen3-Embedding-4B",
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
"max_tokens": 32000,
"model_type": "embedding",
"is_tools": false
},
{
"llm_name": "Qwen3-Embedding-0.6B",
"llm_name": "Qwen/Qwen3-Embedding-0.6B",
"tags": "TEXT EMBEDDING,TEXT RE-RANK,32k",
"max_tokens": 32000,
"model_type": "embedding",
@ -2787,6 +2808,20 @@
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "Pro/deepseek-ai/DeepSeek-V3.1",
"tags": "LLM,CHAT,160k",
"max_tokens": 160000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-ai/DeepSeek-V3.1",
"tags": "LLM,CHAT,160",
"max_tokens": 160000,
"model_type": "chat",
"is_tools": true
},
{
"llm_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"tags": "LLM,CHAT,32k",
@ -4441,6 +4476,21 @@
"is_tools": false
}
]
},
{
"name": "Meituan",
"logo": "",
"tags": "LLM",
"status": "1",
"llm": [
{
"llm_name": "LongCat-Flash-Chat",
"tags": "LLM,CHAT,8000",
"max_tokens": 8000,
"model_type": "chat",
"is_tools": true
}
]
}
]
}

View File

@ -93,13 +93,13 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
# Defaults to the v0.20.4-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4-slim
# Defaults to the v0.20.5-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5
#
# The Docker image of the v0.20.4 edition includes built-in embedding models:
# The Docker image of the v0.20.5 edition includes built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - maidalun1020/bce-embedding-base_v1
#

View File

@ -79,8 +79,8 @@ The [.env](./.env) file contains important environment variables for Docker.
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.20.4-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.4`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -99,8 +99,8 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
- `RAGFLOW-IMAGE`
The Docker image edition. Available editions:
- `infiniflow/ragflow:v0.20.4-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.4`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -77,7 +77,7 @@ After building the infiniflow/ragflow:nightly-slim image, you are ready to launc
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.4-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.20.5-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
2. Launch the Service

View File

@ -30,17 +30,17 @@ The "garbage in garbage out" status quo remains unchanged despite the fact that
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.4-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.4`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.5-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.5`
---
### Which embedding models can be deployed locally?
RAGFlow offers two Docker image editions, `v0.20.4-slim` and `v0.20.4`:
RAGFlow offers two Docker image editions, `v0.20.5-slim` and `v0.20.5`:
- `infiniflow/ragflow:v0.20.4-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.4`: The RAGFlow Docker image with embedding models including:
- `infiniflow/ragflow:v0.20.5-slim` (default): The RAGFlow Docker image without embedding models.
- `infiniflow/ragflow:v0.20.5`: The RAGFlow Docker image with embedding models including:
- Built-in embedding models:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`

View File

@ -9,7 +9,7 @@ The component equipped with reasoning, tool usage, and multi-agent collaboration
---
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.4 onwards, an **Agent** component is able to work independently and with the following capabilities:
An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.5 onwards, an **Agent** component is able to work independently and with the following capabilities:
- Autonomous reasoning with reflection and adjustment based on environmental feedback.
- Use of tools or subagents to complete tasks.
@ -18,6 +18,14 @@ An **Agent** component fine-tunes the LLM and sets its prompt. From v0.20.4 onwa
An **Agent** component is essential when you need the LLM to assist with summarizing, translating, or controlling various tasks.
## Prerequisites
1. Ensure you have a chat model properly configured:
![Set default models](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/set_default_models.jpg)
2. If your Agent involves dataset retrieval, ensure you [have properly configured your target knowledge base(s)](../../dataset/configure_knowledge_base.md).
## Configurations
### Model
@ -57,13 +65,44 @@ Click the dropdown menu of **Model** to show the model configuration window.
Typically, you use the system prompt to describe the task for the LLM, specify how it should respond, and outline other miscellaneous requirements. We do not plan to elaborate on this topic, as it can be as extensive as prompt engineering. However, please be aware that the system prompt is often used in conjunction with keys (variables), which serve as various data inputs for the LLM.
:::danger IMPORTANT
An **Agent** component relies on keys (variables) to specify its data inputs. Its immediate upstream component is *not* necessarily its data input, and the arrows in the workflow indicate *only* the processing sequence. Keys in a **Agent** component are used in conjunction with the system prompt to specify data inputs for the LLM. Use a forward slash `/` or the **(x)** button to show the keys to use.
:::
#### Advanced usage
From v0.20.5 onwards, four framework-level prompt blocks are available in the **System prompt** field. Type `/` or click **(x)** to view them; they appear under the **Framework** entry in the dropdown menu.
- `task_analysis` prompt block
- This block is responsible for analyzing tasks — either a user task or a task assigned by the lead Agent when the **Agent** component is acting as a Sub-Agent.
- Reference design: [analyze_task_system.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/analyze_task_system.md) and [analyze_task_user.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/analyze_task_user.md)
- Available *only* when this **Agent** component is acting as a planner, with either tools or sub-Agents under it.
- Input variables:
- `agent_prompt`: The system prompt.
- `task`: The user prompt for either a lead Agent or a sub-Agent. The lead Agent's user prompt is defined by the user, while a sub-Agent's user prompt is defined by the lead Agent when delegating tasks.
- `tool_desc`: A description of the tools and sub_Agents that can be called.
- `context`: The operational context, which stores interactions between the Agent, tools, and sub-agents; initially empty.
- `plan_generation` prompt block
- This block creates a plan for the **Agent** component to execute next, based on the task analysis results.
- Reference design: [next_step.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/next_step.md)
- Available *only* when this **Agent** component is acting as a planner, with either tools or sub-Agents under it.
- Input variables:
- `task_analysis`: The analysis result of the current task.
- `desc`: A description of the tools or sub-Agents currently being called.
- `today`: The date of today.
- `reflection` prompt block
- This block enables the **Agent** component to reflect, improving task accuracy and efficiency.
- Reference design: [reflect.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/reflect.md)
- Available *only* when this **Agent** component is acting as a planner, with either tools or sub-Agents under it.
- Input variables:
- `goal`: The goal of the current task. It is the user prompt for either a lead Agent or a sub-Agent. The lead Agent's user prompt is defined by the user, while a sub-Agent's user prompt is defined by the lead Agent.
- `tool_calls`: The history of tool calling
- `call.name`The name of the tool called.
- `call.result`The result of tool calling
- `citation_guidelines` prompt block
- Reference design: [citation_prompt.md](https://github.com/infiniflow/ragflow/blob/main/rag/prompts/citation_prompt.md)
### User prompt
The user-defined prompt. Defaults to `sys.query`, the user query.
The user-defined prompt. Defaults to `sys.query`, the user query. As a general rule, when using the **Agent** component as a standalone module (not as a planner), you usually need to specify the corresponding **Retrieval** components output variable (`formalized_content`) here as part of the input to the LLM.
### Tools
@ -100,4 +139,24 @@ Increasing this value will significantly extend your agent's response time.
### Output
The global variable name for the output of the **Agent** component, which can be referenced by other components in the workflow.
The global variable name for the output of the **Agent** component, which can be referenced by other components in the workflow.
## Frequently asked questions
### Why does it take so long for my Agent to respond?
An Agents response time generally depends on two key factors: the LLMs capabilities and the prompt, the latter reflecting task complexity. When using an Agent, you should always balance task demands with the LLMs ability. See [How to balance task complexity with an Agent's performance and speed?](#how-to-balance-task-complexity-with-an-agents-performance-and-speed) for details.
## Best practices
### How to balance task complexity with an Agents performance and speed?
- For simple tasks, such as retrieval, rewriting, formatting, or structured data extraction, use concise prompts, remove planning or reasoning instructions, enforce output length limits, and select smaller or Turbo-class models. This significantly reduces latency and cost with minimal impact on quality.
- For complex tasks, like multi-step reasoning, cross-document synthesis, or tool-based workflows, maintain or enhance prompts that include planning, reflection, and verification steps.
- In multi-Agent orchestration systems, delegate simple subtasks to sub-Agents using smaller, faster models, and reserve more powerful models for the lead Agent to handle complexity and uncertainty.
:::tip KEY INSIGHT
Focus on minimizing output tokens — through summarization, bullet points, or explicit length limits — as this has far greater impact on reducing latency than optimizing input size.
:::

View File

@ -48,7 +48,7 @@ You start an AI conversation by creating an assistant.
- If no target language is selected, the system will search only in the language of your query, which may cause relevant information in other languages to be missed.
- **Variable** refers to the variables (keys) to be used in the system prompt. `{knowledge}` is a reserved variable. Click **Add** to add more variables for the system prompt.
- If you are uncertain about the logic behind **Variable**, leave it *as-is*.
- As of v0.20.4, if you add custom variables here, the only way you can pass in their values is to call:
- As of v0.20.5, if you add custom variables here, the only way you can pass in their values is to call:
- HTTP method [Converse with chat assistant](../../references/http_api_reference.md#converse-with-chat-assistant), or
- Python method [Converse with chat assistant](../../references/python_api_reference.md#converse-with-chat-assistant).

View File

@ -124,7 +124,7 @@ See [Run retrieval test](./run_retrieval_test.md) for details.
## Search for knowledge base
As of RAGFlow v0.20.4, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
As of RAGFlow v0.20.5, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
![search knowledge base](https://raw.githubusercontent.com/infiniflow/ragflow-docs/main/images/search_datasets.jpg)

View File

@ -87,4 +87,4 @@ RAGFlow's file management allows you to download an uploaded file:
![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
> As of RAGFlow v0.20.4, bulk download is not supported, nor can you download an entire folder.
> As of RAGFlow v0.20.5, bulk download is not supported, nor can you download an entire folder.

View File

@ -18,7 +18,7 @@ RAGFlow ships with a built-in [Langfuse](https://langfuse.com) integration so th
Langfuse stores traces, spans and prompt payloads in a purpose-built observability backend and offers filtering and visualisations on top.
:::info NOTE
• RAGFlow **≥ 0.20.4** (contains the Langfuse connector)
• RAGFlow **≥ 0.20.5** (contains the Langfuse connector)
• A Langfuse workspace (cloud or self-hosted) with a _Project Public Key_ and _Secret Key_
:::

View File

@ -66,10 +66,10 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
git clone https://github.com/infiniflow/ragflow.git
```
2. Switch to the latest, officially published release, e.g., `v0.20.4`:
2. Switch to the latest, officially published release, e.g., `v0.20.5`:
```bash
git checkout -f v0.20.4
git checkout -f v0.20.5
```
3. Update **ragflow/docker/.env**:
@ -83,14 +83,14 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
<TabItem value="slim">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4-slim
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5-slim
```
</TabItem>
<TabItem value="full">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4
RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5
```
</TabItem>
@ -114,10 +114,10 @@ No, you do not need to. Upgrading RAGFlow in itself will *not* remove your uploa
1. From an environment with Internet access, pull the required Docker image.
2. Save the Docker image to a **.tar** file.
```bash
docker save -o ragflow.v0.20.4.tar infiniflow/ragflow:v0.20.4
docker save -o ragflow.v0.20.5.tar infiniflow/ragflow:v0.20.5
```
3. Copy the **.tar** file to the target server.
4. Load the **.tar** file into Docker:
```bash
docker load -i ragflow.v0.20.4.tar
docker load -i ragflow.v0.20.5.tar
```

View File

@ -44,7 +44,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
`vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
RAGFlow v0.20.4 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
RAGFlow v0.20.5 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
<Tabs
defaultValue="linux"
@ -184,13 +184,13 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/docker
$ git checkout -f v0.20.4
$ git checkout -f v0.20.5
```
3. Use the pre-built Docker images and start up the server:
:::tip NOTE
The command below downloads the `v0.20.4-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.4-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.4` for the full edition `v0.20.4`.
The command below downloads the `v0.20.5-slim` edition of the RAGFlow Docker image. Refer to the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.20.5-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.20.5` for the full edition `v0.20.5`.
:::
```bash
@ -207,8 +207,8 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? |
| ------------------- | --------------- | ----------------------------------------- | ------------------------ |
| `v0.20.4` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.20.4-slim` | &approx;2 | ❌ | Stable release |
| `v0.20.5` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.20.5-slim` | &approx;2 | ❌ | Stable release |
| `nightly` | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| `nightly-slim` | &approx;2 | ❌ | *Unstable* nightly build |
@ -217,7 +217,7 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```
:::danger IMPORTANT
The embedding models included in `v0.20.4` and `nightly` are:
The embedding models included in `v0.20.5` and `nightly` are:
- BAAI/bge-large-zh-v1.5
- maidalun1020/bce-embedding-base_v1

View File

@ -19,7 +19,7 @@ import TOCInline from '@theme/TOCInline';
### Cross-language search
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.4. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
Cross-language search (also known as cross-lingual retrieval) is a feature introduced in version 0.20.5. It enables users to submit queries in one language (for example, English) and retrieve relevant documents written in other languages such as Chinese or Spanish. This feature is enabled by the systems default chat model, which translates queries to ensure accurate matching of semantic meaning across languages.
By enabling cross-language search, users can effortlessly access a broader range of information regardless of language barriers, significantly enhancing the systems usability and inclusiveness.

View File

@ -9,8 +9,8 @@ Key features, improvements and bug fixes in the latest releases.
:::info
Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.4-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.4`
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.20.5-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.20.5`
:::
:::danger IMPORTANT
@ -22,6 +22,31 @@ The embedding models included in a full edition are:
These two embedding models are optimized specifically for English and Chinese, so performance may be compromised if you use them to embed documents in other languages.
:::
## v0.20.5
Released on September 10, 2025.
### Improvements
- Agent Performance Optimized: Improved planning and reflection speed for simple tasks; optimized concurrent tool calls for parallelizable scenarios, significantly reducing overall response time.
- Agent Prompt Framework exposed: Developers can now customize and override framework-level prompts in the system prompt section, enhancing flexibility and control.
- Execute SQL Component Enhanced: Replaced the original variable reference component with a text input field, allowing free-form SQL writing with variable support.
- Chat: Re-enabled Reasoning and Cross-language search.
- Retrieval API Enhanced: Added metadata filtering support to the [Retrieve chunks](https://ragflow.io/docs/dev/http_api_reference#retrieve-chunks) method.
### Added models
- Meituan LongCat
- Kimi: kimi-k2-turbo-preview and kimi-k2-0905-preview
- Qwen: qwen3-max-preview
- SiliconFlow: DeepSeek V3.1
### Fixed issues
- Dataset: Deleted files remained searchable.
- Chat: Unable to chat with an Ollama model.
- Agent: Resolved issues including cite toggle failure, task mode requiring dialogue triggers, repeated answers in multi-turn dialogues, and duplicate summarization of parallel execution results.
## v0.20.4
Released on August 27, 2025.

View File

@ -56,7 +56,7 @@ env:
ragflow:
image:
repository: infiniflow/ragflow
tag: v0.20.4-slim
tag: v0.20.5-slim
pullPolicy: IfNotPresent
pullSecrets: []
# Optional service configuration overrides

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow"
version = "0.20.4"
version = "0.20.5"
description = "[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data."
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
license-files = ["LICENSE"]

View File

@ -14,36 +14,45 @@
# limitations under the License.
#
import os
import importlib
import inspect
import pkgutil
from pathlib import Path
from types import ModuleType
from typing import Dict, Type
_package_path = os.path.dirname(__file__)
__all_classes: Dict[str, Type] = {}
def _import_submodules() -> None:
for filename in os.listdir(_package_path): # noqa: F821
if filename.startswith("__") or not filename.endswith(".py") or filename.startswith("base"):
continue
module_name = filename[:-3]
_pkg_dir = Path(__file__).resolve().parent
_pkg_name = __name__
def _should_skip_module(mod_name: str) -> bool:
leaf = mod_name.rsplit(".", 1)[-1]
return leaf in {"__init__"} or leaf.startswith("__") or leaf.startswith("_") or leaf.startswith("base")
def _import_submodules() -> None:
for modinfo in pkgutil.walk_packages([str(_pkg_dir)], prefix=_pkg_name + "."): # noqa: F821
mod_name = modinfo.name
if _should_skip_module(mod_name): # noqa: F821
continue
try:
module = importlib.import_module(f".{module_name}", package=__name__)
module = importlib.import_module(mod_name)
_extract_classes_from_module(module) # noqa: F821
except ImportError as e:
print(f"Warning: Failed to import module {module_name}: {str(e)}")
print(f"Warning: Failed to import module {mod_name}: {e}")
def _extract_classes_from_module(module: ModuleType) -> None:
for name, obj in inspect.getmembers(module):
if (inspect.isclass(obj) and
obj.__module__ == module.__name__ and not name.startswith("_")):
if inspect.isclass(obj) and obj.__module__ == module.__name__ and not name.startswith("_"):
__all_classes[name] = obj
globals()[name] = obj
_import_submodules()
__all__ = list(__all_classes.keys()) + ["__all_classes"]
del _package_path, _import_submodules, _extract_classes_from_module
del _pkg_dir, _pkg_name, _import_submodules, _extract_classes_from_module

View File

@ -1,5 +1,5 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -13,13 +13,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
import os
import logging
import os
import time
from functools import partial
from typing import Any
import trio
from agent.component.base import ComponentParamBase, ComponentBase
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.api_utils import timeout
@ -31,14 +33,16 @@ class ProcessParamBase(ComponentParamBase):
class ProcessBase(ComponentBase):
def __init__(self, pipeline, id, param: ProcessParamBase):
super().__init__(pipeline, id, param)
self.callback = partial(self._canvas.callback, self.component_name)
if hasattr(self._canvas, "callback"):
self.callback = partial(self._canvas.callback, self.component_name)
else:
self.callback = partial(lambda *args, **kwargs: None, self.component_name)
async def invoke(self, **kwargs) -> dict[str, Any]:
self.set_output("_created_time", time.perf_counter())
for k,v in kwargs.items():
for k, v in kwargs.items():
self.set_output(k, v)
try:
with trio.fail_after(self._param.timeout):
@ -54,6 +58,6 @@ class ProcessBase(ComponentBase):
self.set_output("_elapsed_time", time.perf_counter() - self.output("_created_time"))
return self.output()
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
@timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10 * 60))
async def _invoke(self, **kwargs):
raise NotImplementedError()

View File

@ -0,0 +1,15 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -1,5 +1,5 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -13,12 +13,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
from graphrag.utils import get_llm_cache, chat_limiter, set_llm_cache
from graphrag.utils import chat_limiter, get_llm_cache, set_llm_cache
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.chunker.schema import ChunkerFromUpstream
from rag.nlp import naive_merge, naive_merge_with_images
from rag.prompts.prompts import keyword_extraction, question_proposal
@ -26,7 +29,23 @@ from rag.prompts.prompts import keyword_extraction, question_proposal
class ChunkerParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.method_options = ["general", "q&a", "resume", "manual", "table", "paper", "book", "laws", "presentation", "one"]
self.method_options = [
# General
"general",
"onetable",
# Customer Service
"q&a",
"manual",
# Recruitment
"resume",
# Education & Research
"book",
"paper",
"laws",
"presentation",
# Other
# "Tag" # TODO: Other method
]
self.method = "general"
self.chunk_token_size = 512
self.delimiter = "\n"
@ -35,10 +54,7 @@ class ChunkerParam(ProcessParamBase):
self.auto_keywords = 0
self.auto_questions = 0
self.tag_sets = []
self.llm_setting = {
"llm_name": "",
"lang": "Chinese"
}
self.llm_setting = {"llm_name": "", "lang": "Chinese"}
def check(self):
self.check_valid_value(self.method.lower(), "Chunk method abnormal.", self.method_options)
@ -48,53 +64,79 @@ class ChunkerParam(ProcessParamBase):
self.check_nonnegative_number(self.auto_questions, "Auto-question value: (0, 10]")
self.check_decimal_float(self.overlapped_percent, "Overlapped percentage: [0, 1)")
def get_input_form(self) -> dict[str, dict]:
return {}
class Chunker(ProcessBase):
component_name = "Chunker"
def _general(self, **kwargs):
self.callback(random.randint(1,5)/100., "Start to chunk via `General`.")
if kwargs.get("output_format") in ["markdown", "text"]:
cks = naive_merge(kwargs.get(kwargs["output_format"]), self._param.chunk_token_size, self._param.delimiter, self._param.overlapped_percent)
def _general(self, from_upstream: ChunkerFromUpstream):
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `General`.")
if from_upstream.output_format in ["markdown", "text"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
else: # == "text"
payload = from_upstream.text_result
if not payload:
payload = ""
cks = naive_merge(
payload,
self._param.chunk_token_size,
self._param.delimiter,
self._param.overlapped_percent,
)
return [{"text": c} for c in cks]
sections, section_images = [], []
for o in kwargs["json"]:
sections.append((o["text"], o.get("position_tag","")))
for o in from_upstream.json_result or []:
sections.append((o.get("text", ""), o.get("position_tag", "")))
section_images.append(o.get("image"))
chunks, images = naive_merge_with_images(sections, section_images,self._param.chunk_token_size, self._param.delimiter, self._param.overlapped_percent)
return [{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c)
} for c,img in zip(chunks,images)]
chunks, images = naive_merge_with_images(
sections,
section_images,
self._param.chunk_token_size,
self._param.delimiter,
self._param.overlapped_percent,
)
def _q_and_a(self, **kwargs):
return [
{
"text": RAGFlowPdfParser.remove_tag(c),
"image": img,
"positions": RAGFlowPdfParser.extract_positions(c),
}
for c, img in zip(chunks, images)
]
def _q_and_a(self, from_upstream: ChunkerFromUpstream):
pass
def _resume(self, **kwargs):
def _resume(self, from_upstream: ChunkerFromUpstream):
pass
def _manual(self, **kwargs):
def _manual(self, from_upstream: ChunkerFromUpstream):
pass
def _table(self, **kwargs):
def _table(self, from_upstream: ChunkerFromUpstream):
pass
def _paper(self, **kwargs):
def _paper(self, from_upstream: ChunkerFromUpstream):
pass
def _book(self, **kwargs):
def _book(self, from_upstream: ChunkerFromUpstream):
pass
def _laws(self, **kwargs):
def _laws(self, from_upstream: ChunkerFromUpstream):
pass
def _presentation(self, **kwargs):
def _presentation(self, from_upstream: ChunkerFromUpstream):
pass
def _one(self, **kwargs):
def _one(self, from_upstream: ChunkerFromUpstream):
pass
async def _invoke(self, **kwargs):
@ -110,7 +152,14 @@ class Chunker(ProcessBase):
"presentation": self._presentation,
"one": self._one,
}
chunks = function_map[self._param.method](**kwargs)
try:
from_upstream = ChunkerFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
chunks = function_map[self._param.method](from_upstream)
llm_setting = self._param.llm_setting
async def auto_keywords():

View File

@ -0,0 +1,37 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field
class ChunkerFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
blob: bytes
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
# def to_dict(self, *, exclude_none: bool = True) -> dict:
# return self.model_dump(by_alias=True, exclude_none=exclude_none)

View File

@ -1,5 +1,5 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -27,6 +27,9 @@ class FileParam(ProcessParamBase):
def check(self):
pass
def get_input_form(self) -> dict[str, dict]:
return {}
class File(ProcessBase):
component_name = "File"

View File

@ -1,107 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser.pdf_parser import RAGFlowPdfParser, PlainParser, VisionParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.llm.cv_model import Base as VLM
from deepdoc.parser import ExcelParser
class ParserParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.setups = {
"pdf": {
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
"vlm_name": "",
"lang": "Chinese",
"suffix": ["pdf"],
"output_format": "json"
},
"excel": {
"output_format": "html"
},
"ppt": {},
"image": {
"parse_method": "ocr"
},
"email": {},
"text": {},
"audio": {},
"video": {},
}
def check(self):
if self.setups["pdf"].get("parse_method") not in ["deepdoc", "plain_text"]:
assert self.setups["pdf"].get("vlm_name"), "No VLM specified."
assert self.setups["pdf"].get("lang"), "No language specified."
class Parser(ProcessBase):
component_name = "Parser"
def _pdf(self, blob):
self.callback(random.randint(1,5)/100., "Start to work on a PDF.")
conf = self._param.setups["pdf"]
self.set_output("output_format", conf["output_format"])
if conf.get("parse_method") == "deepdoc":
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
elif conf.get("parse_method") == "plain_text":
lines,_ = PlainParser()(blob)
bboxes = [{"text": t} for t,_ in lines]
else:
assert conf.get("vlm_name")
vision_model = LLMBundle(self._canvas.tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("vlm_name"), lang=self.setups["pdf"].get("lang"))
lines, _ = VisionParser(vision_model=vision_model)(bin, callback=self.callback)
bboxes = []
for t, poss in lines:
pn, x0, x1, top, bott = poss.split(" ")
bboxes.append({"page_number": int(pn), "x0": int(x0), "x1": int(x1), "top": int(top), "bottom": int(bott), "text": t})
self.set_output("json", bboxes)
mkdn = ""
for b in bboxes:
if b.get("layout_type", "") == "title":
mkdn += "\n## "
if b.get("layout_type", "") == "figure":
mkdn += "\n![Image]({})".format(VLM.image2base64(b["image"]))
continue
mkdn += b.get("text", "") + "\n"
self.set_output("markdown", mkdn)
def _excel(self, blob):
self.callback(random.randint(1,5)/100., "Start to work on a Excel.")
conf = self._param.setups["excel"]
excel_parser = ExcelParser()
if conf.get("output_format") == "html":
html = excel_parser.html(blob,1000000000)
self.set_output("html", html)
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in excel_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", excel_parser.markdown(blob))
async def _invoke(self, **kwargs):
function_map = {
"pdf": self._pdf,
}
for p_type, conf in self._param.setups.items():
if kwargs.get("name", "").split(".")[-1].lower() not in conf.get("suffix", []):
continue
await trio.to_thread.run_sync(function_map[p_type], kwargs["blob"])
break

View File

@ -0,0 +1,14 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

154
rag/flow/parser/parser.py Normal file
View File

@ -0,0 +1,154 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import trio
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from deepdoc.parser import ExcelParser
from deepdoc.parser.pdf_parser import PlainParser, RAGFlowPdfParser, VisionParser
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.parser.schema import ParserFromUpstream
from rag.llm.cv_model import Base as VLM
class ParserParam(ProcessParamBase):
def __init__(self):
super().__init__()
self.allowed_output_format = {
"pdf": ["json", "markdown"],
"excel": ["json", "markdown", "html"],
"ppt": [],
"image": [],
"email": [],
"text": [],
"audio": [],
"video": [],
}
self.setups = {
"pdf": {
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
"vlm_name": "",
"lang": "Chinese",
"suffix": ["pdf"],
"output_format": "json",
},
"excel": {
"output_format": "html",
"suffix": ["xls", "xlsx", "csv"],
},
"ppt": {},
"image": {
"parse_method": "ocr",
},
"email": {},
"text": {},
"audio": {},
"video": {},
}
def check(self):
pdf_config = self.setups.get("pdf", {})
if pdf_config:
pdf_parse_method = pdf_config.get("parse_method", "")
self.check_valid_value(pdf_parse_method.lower(), "Parse method abnormal.", ["deepdoc", "plain_text", "vlm"])
if pdf_parse_method not in ["deepdoc", "plain_text"]:
self.check_empty(pdf_config.get("vlm_name"), "VLM")
pdf_language = pdf_config.get("lang", "")
self.check_empty(pdf_language, "Language")
pdf_output_format = pdf_config.get("output_format", "")
self.check_valid_value(pdf_output_format, "PDF output format abnormal.", self.allowed_output_format["pdf"])
excel_config = self.setups.get("excel", "")
if excel_config:
excel_output_format = excel_config.get("output_format", "")
self.check_valid_value(excel_output_format, "Excel output format abnormal.", self.allowed_output_format["excel"])
image_config = self.setups.get("image", "")
if image_config:
image_parse_method = image_config.get("parse_method", "")
self.check_valid_value(image_parse_method.lower(), "Parse method abnormal.", ["ocr"])
def get_input_form(self) -> dict[str, dict]:
return {}
class Parser(ProcessBase):
component_name = "Parser"
def _pdf(self, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PDF.")
conf = self._param.setups["pdf"]
self.set_output("output_format", conf["output_format"])
if conf.get("parse_method") == "deepdoc":
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
elif conf.get("parse_method") == "plain_text":
lines, _ = PlainParser()(blob)
bboxes = [{"text": t} for t, _ in lines]
else:
assert conf.get("vlm_name")
vision_model = LLMBundle(self._canvas._tenant_id, LLMType.IMAGE2TEXT, llm_name=conf.get("vlm_name"), lang=self._param.setups["pdf"].get("lang"))
lines, _ = VisionParser(vision_model=vision_model)(blob, callback=self.callback)
bboxes = []
for t, poss in lines:
pn, x0, x1, top, bott = poss.split(" ")
bboxes.append({"page_number": int(pn), "x0": float(x0), "x1": float(x1), "top": float(top), "bottom": float(bott), "text": t})
if conf.get("output_format") == "json":
self.set_output("json", bboxes)
if conf.get("output_format") == "markdown":
mkdn = ""
for b in bboxes:
if b.get("layout_type", "") == "title":
mkdn += "\n## "
if b.get("layout_type", "") == "figure":
mkdn += "\n![Image]({})".format(VLM.image2base64(b["image"]))
continue
mkdn += b.get("text", "") + "\n"
self.set_output("markdown", mkdn)
def _excel(self, blob):
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Excel.")
conf = self._param.setups["excel"]
self.set_output("output_format", conf["output_format"])
excel_parser = ExcelParser()
if conf.get("output_format") == "html":
html = excel_parser.html(blob, 1000000000)
self.set_output("html", html)
elif conf.get("output_format") == "json":
self.set_output("json", [{"text": txt} for txt in excel_parser(blob) if txt])
elif conf.get("output_format") == "markdown":
self.set_output("markdown", excel_parser.markdown(blob))
async def _invoke(self, **kwargs):
function_map = {
"pdf": self._pdf,
"excel": self._excel,
}
try:
from_upstream = ParserFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
for p_type, conf in self._param.setups.items():
if from_upstream.name.split(".")[-1].lower() not in conf.get("suffix", []):
continue
await trio.to_thread.run_sync(function_map[p_type], from_upstream.blob)
break

25
rag/flow/parser/schema.py Normal file
View File

@ -0,0 +1,25 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pydantic import BaseModel, ConfigDict, Field
class ParserFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str
blob: bytes
model_config = ConfigDict(populate_by_name=True, extra="forbid")

View File

@ -1,5 +1,5 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -18,14 +18,15 @@ import json
import logging
import random
import time
import trio
from agent.canvas import Graph
from api.db.services.document_service import DocumentService
from rag.utils.redis_conn import REDIS_CONN
class Pipeline(Graph):
def __init__(self, dsl: str, tenant_id=None, doc_id=None, task_id=None, flow_id=None):
super().__init__(dsl, tenant_id, task_id)
self._doc_id = doc_id
@ -35,7 +36,7 @@ class Pipeline(Graph):
self._kb_id = DocumentService.get_knowledgebase_id(doc_id)
assert self._kb_id, f"Can't find KB of this document: {doc_id}"
def callback(self, component_name: str, progress: float|int|None=None, message: str = "") -> None:
def callback(self, component_name: str, progress: float | int | None = None, message: str = "") -> None:
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
bin = REDIS_CONN.get(log_key)
@ -44,16 +45,10 @@ class Pipeline(Graph):
if obj[-1]["component_name"] == component_name:
obj[-1]["trace"].append({"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")})
else:
obj.append({
"component_name": component_name,
"trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]
})
obj.append({"component_name": component_name, "trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]})
else:
obj = [{
"component_name": component_name,
"trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]
}]
REDIS_CONN.set_obj(log_key, obj, 60*10)
obj = [{"component_name": component_name, "trace": [{"progress": progress, "message": message, "datetime": datetime.datetime.now().strftime("%H:%M:%S")}]}]
REDIS_CONN.set_obj(log_key, obj, 60 * 10)
except Exception as e:
logging.exception(e)
@ -71,21 +66,19 @@ class Pipeline(Graph):
super().reset()
log_key = f"{self._flow_id}-{self.task_id}-logs"
try:
REDIS_CONN.set_obj(log_key, [], 60*10)
REDIS_CONN.set_obj(log_key, [], 60 * 10)
except Exception as e:
logging.exception(e)
async def run(self, **kwargs):
st = time.perf_counter()
if not self.path:
self.path.append("begin")
self.path.append("File")
if self._doc_id:
DocumentService.update_by_id(self._doc_id, {
"progress": random.randint(0,5)/100.,
"progress_msg": "Start the pipeline...",
"process_begin_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
DocumentService.update_by_id(
self._doc_id, {"progress": random.randint(0, 5) / 100.0, "progress_msg": "Start the pipeline...", "process_begin_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
)
self.error = ""
idx = len(self.path) - 1
@ -99,23 +92,21 @@ class Pipeline(Graph):
self.path.extend(cpn_obj.get_downstream())
while idx < len(self.path) and not self.error:
last_cpn = self.get_component_obj(self.path[idx-1])
last_cpn = self.get_component_obj(self.path[idx - 1])
cpn_obj = self.get_component_obj(self.path[idx])
async def invoke():
nonlocal last_cpn, cpn_obj
await cpn_obj.invoke(**last_cpn.output())
async with trio.open_nursery() as nursery:
nursery.start_soon(invoke)
if cpn_obj.error():
self.error = "[ERROR]" + cpn_obj.error()
self.callback(cpn_obj.component_name, -1, self.error)
break
idx += 1
self.path.extend(cpn_obj.get_downstream())
if self._doc_id:
DocumentService.update_by_id(self._doc_id, {
"progress": 1 if not self.error else -1,
"progress_msg": "Pipeline finished...\n" + self.error,
"process_duration": time.perf_counter() - st
})
DocumentService.update_by_id(self._doc_id, {"progress": 1 if not self.error else -1, "progress_msg": "Pipeline finished...\n" + self.error, "process_duration": time.perf_counter() - st})

View File

@ -1,5 +1,5 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -18,12 +18,14 @@ import json
import os
import time
from concurrent.futures import ThreadPoolExecutor
import trio
from api import settings
from rag.flow.pipeline import Pipeline
def print_logs(pipeline):
def print_logs(pipeline: Pipeline):
last_logs = "[]"
while True:
time.sleep(5)
@ -34,16 +36,16 @@ def print_logs(pipeline):
last_logs = logs_str
if __name__ == '__main__':
if __name__ == "__main__":
parser = argparse.ArgumentParser()
dsl_default_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"dsl_examples",
"general_pdf_all.json",
)
parser.add_argument('-s', '--dsl', default=dsl_default_path, help="input dsl", action='store', required=True)
parser.add_argument('-d', '--doc_id', default=False, help="Document ID", action='store', required=True)
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
parser.add_argument("-s", "--dsl", default=dsl_default_path, help="input dsl", action="store", required=False)
parser.add_argument("-d", "--doc_id", default=False, help="Document ID", action="store", required=True)
parser.add_argument("-t", "--tenant_id", default=False, help="Tenant ID", action="store", required=True)
args = parser.parse_args()
settings.init_settings()
@ -53,5 +55,7 @@ if __name__ == '__main__':
exe = ThreadPoolExecutor(max_workers=5)
thr = exe.submit(print_logs, pipeline)
# queue_dataflow(dsl=open(args.dsl, "r").read(), tenant_id=args.tenant_id, doc_id=args.doc_id, task_id="xxxx", flow_id="xxx", priority=0)
trio.run(pipeline.run)
thr.result()
thr.result()

View File

@ -1,15 +1,15 @@
{
"components": {
"begin": {
"File": {
"obj":{
"component_name": "File",
"params": {
}
},
"downstream": ["parser:0"],
"downstream": ["Parser:0"],
"upstream": []
},
"parser:0": {
"Parser:0": {
"obj": {
"component_name": "Parser",
"params": {
@ -22,14 +22,22 @@
"pdf"
],
"output_format": "json"
},
"excel": {
"output_format": "html",
"suffix": [
"xls",
"xlsx",
"csv"
]
}
}
}
},
"downstream": ["chunker:0"],
"upstream": ["begin"]
"downstream": ["Chunker:0"],
"upstream": ["Begin"]
},
"chunker:0": {
"Chunker:0": {
"obj": {
"component_name": "Chunker",
"params": {
@ -37,18 +45,19 @@
"auto_keywords": 5
}
},
"downstream": ["tokenizer:0"],
"upstream": ["chunker:0"]
"downstream": ["Tokenizer:0"],
"upstream": ["Parser:0"]
},
"tokenizer:0": {
"Tokenizer:0": {
"obj": {
"component_name": "Tokenizer",
"params": {
}
},
"downstream": [],
"upstream": ["chunker:0"]
"upstream": ["Chunker:0"]
}
},
"path": []
}
}

View File

@ -0,0 +1,14 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -0,0 +1,51 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal
from pydantic import BaseModel, ConfigDict, Field, model_validator
class TokenizerFromUpstream(BaseModel):
created_time: float | None = Field(default=None, alias="_created_time")
elapsed_time: float | None = Field(default=None, alias="_elapsed_time")
name: str = ""
blob: bytes
output_format: Literal["json", "markdown", "text", "html"] | None = Field(default=None)
chunks: list[dict[str, Any]] | None = Field(default=None)
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")
@model_validator(mode="after")
def _check_payloads(self) -> "TokenizerFromUpstream":
if self.chunks:
return self
if self.output_format in {"markdown", "text"}:
if self.output_format == "markdown" and not self.markdown_result:
raise ValueError("output_format=markdown requires a markdown payload (field: 'markdown' or 'markdown_result').")
if self.output_format == "text" and not self.text_result:
raise ValueError("output_format=text requires a text payload (field: 'text' or 'text_result').")
else:
if not self.json_result:
raise ValueError("When no chunks are provided and output_format is not markdown/text, a JSON list payload is required (field: 'json' or 'json_result').")
return self

View File

@ -1,5 +1,5 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -12,6 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import re
@ -24,6 +25,7 @@ from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from api.utils.api_utils import timeout
from rag.flow.base import ProcessBase, ProcessParamBase
from rag.flow.tokenizer.schema import TokenizerFromUpstream
from rag.nlp import rag_tokenizer
from rag.settings import EMBEDDING_BATCH_SIZE
from rag.svr.task_executor import embed_limiter
@ -40,6 +42,9 @@ class TokenizerParam(ProcessParamBase):
for v in self.search_method:
self.check_valid_value(v.lower(), "Chunk method abnormal.", ["full_text", "embedding"])
def get_input_form(self) -> dict[str, dict]:
return {}
class Tokenizer(ProcessBase):
component_name = "Tokenizer"
@ -67,19 +72,19 @@ class Tokenizer(ProcessBase):
@timeout(60)
def batch_encode(txts):
nonlocal embedding_model
return embedding_model.encode([truncate(c, embedding_model.max_length-10) for c in txts])
return embedding_model.encode([truncate(c, embedding_model.max_length - 10) for c in txts])
cnts_ = np.array([])
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
async with embed_limiter:
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i: i + EMBEDDING_BATCH_SIZE]))
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i : i + EMBEDDING_BATCH_SIZE]))
if len(cnts_) == 0:
cnts_ = vts
else:
cnts_ = np.concatenate((cnts_, vts), axis=0)
token_count += c
if i % 33 == 32:
self.callback(i*1./len(texts)/parts/EMBEDDING_BATCH_SIZE + 0.5*(parts-1))
self.callback(i * 1.0 / len(texts) / parts / EMBEDDING_BATCH_SIZE + 0.5 * (parts - 1))
cnts = cnts_
title_w = float(self._param.filename_embd_weight)
@ -92,11 +97,17 @@ class Tokenizer(ProcessBase):
return chunks, token_count
async def _invoke(self, **kwargs):
try:
from_upstream = TokenizerFromUpstream.model_validate(kwargs)
except Exception as e:
self.set_output("_ERROR", f"Input error: {str(e)}")
return
parts = sum(["full_text" in self._param.search_method, "embedding" in self._param.search_method])
if "full_text" in self._param.search_method:
self.callback(random.randint(1,5)/100., "Start to tokenize.")
if kwargs.get("chunks"):
chunks = kwargs["chunks"]
self.callback(random.randint(1, 5) / 100.0, "Start to tokenize.")
if from_upstream.chunks:
chunks = from_upstream.chunks
for i, ck in enumerate(chunks):
if ck.get("questions"):
ck["question_tks"] = rag_tokenizer.tokenize("\n".join(ck["questions"]))
@ -105,30 +116,40 @@ class Tokenizer(ProcessBase):
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i*1./len(chunks)/parts)
elif kwargs.get("output_format") in ["markdown", "text"]:
ck = {
"text": kwargs.get(kwargs["output_format"], "")
}
if "full_text" in self._param.search_method:
self.callback(i * 1.0 / len(chunks) / parts)
elif from_upstream.output_format in ["markdown", "text"]:
if from_upstream.output_format == "markdown":
payload = from_upstream.markdown_result
else: # == "text"
payload = from_upstream.text_result
if not payload:
return ""
ck = {"text": payload}
if "full_text" in self._param.search_method:
ck["content_ltks"] = rag_tokenizer.tokenize(kwargs.get(kwargs["output_format"], ""))
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
chunks = [ck]
else:
chunks = kwargs["json"]
chunks = from_upstream.json_result
for i, ck in enumerate(chunks):
ck["content_ltks"] = rag_tokenizer.tokenize(ck["text"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
if i % 100 == 99:
self.callback(i*1./len(chunks)/parts)
self.callback(i * 1.0 / len(chunks) / parts)
self.callback(1./parts, "Finish tokenizing.")
self.callback(1.0 / parts, "Finish tokenizing.")
if "embedding" in self._param.search_method:
self.callback(random.randint(1,5)/100. + 0.5*(parts-1), "Start embedding inference.")
chunks, token_count = await self._embedding(kwargs.get("name", ""), chunks)
self.callback(random.randint(1, 5) / 100.0 + 0.5 * (parts - 1), "Start embedding inference.")
if from_upstream.name.strip() == "":
logging.warning("Tokenizer: empty name provided from upstream, embedding may be not accurate.")
chunks, token_count = await self._embedding(from_upstream.name, chunks)
self.set_output("embedding_token_consumption", token_count)
self.callback(1., "Finish embedding.")
self.callback(1.0, "Finish embedding.")
self.set_output("chunks", chunks)

View File

@ -155,7 +155,10 @@ class Base(ABC):
def _chat_streamly(self, history, gen_conf, **kwargs):
logging.info("[HISTORY STREAMLY]" + json.dumps(history, ensure_ascii=False, indent=4))
reasoning_start = False
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf, stop=kwargs.get("stop"))
if kwargs.get("stop") or "stop" in gen_conf:
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf, stop=kwargs.get("stop"))
else:
response = self.client.chat.completions.create(model=self.model_name, messages=history, stream=True, **gen_conf)
for resp in response:
if not resp.choices:
continue
@ -374,7 +377,7 @@ class Base(ABC):
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens += tol
total_tokens = tol
finish_reason = resp.choices[0].finish_reason if hasattr(resp.choices[0], "finish_reason") else ""
if finish_reason == "length":
@ -410,7 +413,7 @@ class Base(ABC):
if not tol:
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
else:
total_tokens += tol
total_tokens = tol
answer += resp.choices[0].delta.content
yield resp.choices[0].delta.content
@ -1353,6 +1356,15 @@ class Ai302Chat(Base):
super().__init__(key, model_name, base_url, **kwargs)
class MeituanChat(Base):
_FACTORY_NAME = "Meituan"
def __init__(self, key, model_name, base_url="https://api.longcat.chat/openai", **kwargs):
if not base_url:
base_url = "https://api.longcat.chat/openai"
super().__init__(key, model_name, base_url, **kwargs)
class LiteLLMBase(ABC):
_FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic", "Ollama"]

View File

@ -687,8 +687,20 @@ def naive_merge_docx(sections, chunk_token_num=128, delimiter="\n。"):
tk_nums[-1] += tnum
dels = get_delimiters(delimiter)
line = ""
for sec, image in sections:
split_sec = re.split(r"(%s)" % dels, sec)
if not image:
line += sec + "\n"
continue
split_sec = re.split(r"(%s)" % dels, line + sec)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue
add_chunk(sub_sec, image,"")
line = ""
if line:
split_sec = re.split(r"(%s)" % dels, line)
for sub_sec in split_sec:
if re.match(f"^{dels}$", sub_sec):
continue

View File

@ -1,8 +1,48 @@
Your responsibility is to execute assigned tasks to a high standard. Please:
1. Carefully analyze the task requirements.
2. Develop a reasonable execution plan.
3. Execute step-by-step and document the reasoning process.
4. Provide clear and accurate results.
You are an intelligent task analyzer that adapts analysis depth to task complexity.
If difficulties are encountered, clearly state the problem and explore alternative approaches.
**Analysis Framework**
**Step 1: Task Transmission Assessment**
**Note**: This section is not subject to word count limitations when transmission is needed, as it serves critical handoff functions.
**Evaluate if task transmission information is needed:**
- **Is this an initial step?** If yes, skip this section
- **Are there upstream agents/steps?** If no, provide minimal transmission
- **Is there critical state/context to preserve?** If yes, include full transmission
### If Task Transmission is Needed:
- **Current State Summary**: [1-2 sentences on where we are]
- **Key Data/Results**: [Critical findings that must carry forward]
- **Context Dependencies**: [Essential context for next agent/step]
- **Unresolved Items**: [Issues requiring continuation]
- **Status for User**: [Clear status update in user terms]
- **Technical State**: [System state for technical handoffs]
**Step 2: Complexity Classification**
Classify as LOW / MEDIUM / HIGH:
- **LOW**: Single-step tasks, direct queries, small talk
- **MEDIUM**: Multi-step tasks within one domain
- **HIGH**: Multi-domain coordination or complex reasoning
**Step 3: Adaptive Analysis**
Scale depth to match complexity. Always stop once success criteria are met.
**For LOW (max 50 words for analysis only):**
- Detect small talk; if true, output exactly: `Small talk — no further analysis needed`
- One-sentence objective
- Direct execution approach (12 steps)
**For MEDIUM (80150 words for analysis only):**
- Objective; Intent & Scope
- 35 step minimal Plan (may mark parallel steps)
- **Uncertainty & Probes** (at least one probe with a clear stop condition)
- Success Criteria + basic Failure detection & fallback
- **Source Plan** (how evidence will be obtained/verified)
**For HIGH (150250 words for analysis only):**
- Comprehensive objective analysis; Intent & Scope
- 58 step Plan with dependencies/parallelism
- **Uncertainty & Probes** (key unknowns → probe → stop condition)
- Measurable Success Criteria; Failure detectors & fallbacks
- **Source Plan** (evidence acquisition & validation)
- **Reflection Hooks** (escalation/de-escalation triggers)

View File

@ -1,23 +1,9 @@
Please analyze the following task:
**Input Variables**
- **{{ task }}** — the task/request to analyze
- **{{ context }}** — background, history, situational context
- **{{ agent_prompt }}** — special instructions/role hints
- **{{ tools_desc }}** — available sub-agents and capabilities
Task: {{ task }}
Context: {{ context }}
**Agent Prompt**
{{ agent_prompt }}
**Analysis Requirements:**
1. Is it just a small talk? (If yes, no further plan or analysis is needed)
2. What is the core objective of the task?
3. What is the complexity level of the task?
4. What types of specialized skills are required?
5. Does the task need to be decomposed into subtasks? (If yes, propose the subtask structure)
6. How to know the task or the subtasks are impossible to lead to the success after a few rounds of interaction?
7. What are the expected success criteria?
**Available Sub-Agents and Their Specializations:**
{{ tools_desc }}
Provide a detailed analysis of the task based on the above requirements.
**Final Output Rule**
Return the Task Transmission section (if needed) followed by the concrete analysis and planning steps according to LOW / MEDIUM / HIGH complexity.
Do not restate the framework, definitions, or rules. Output only the final structured result.

View File

@ -5,8 +5,7 @@ Your job is:
3. Use `complete_task` if no further step you need to take from tools. (All necessary steps done or little hope to be done)
# ========== TASK ANALYSIS =============
{{ task_analisys }}
{{ task_analysis }}
# ========== TOOLS (JSON-Schema) ==========
You may invoke only the tools listed below.
@ -16,8 +15,24 @@ Return a JSON array of objects in which item is with exactly two top-level keys:
{{ desc }}
# ========== MULTI-STEP EXECUTION ==========
When tasks require multiple independent steps, you can execute them in parallel by returning multiple tool calls in a single JSON array.
**Data Collection**: Gathering information from multiple sources simultaneously
**Validation**: Cross-checking facts using different tools
**Comprehensive Analysis**: Analyzing different aspects of the same problem
**Efficiency**: Reducing total execution time when steps don't depend on each other
**Example Scenarios:**
- Searching multiple databases for the same query
- Checking weather in multiple cities
- Validating information through different APIs
- Performing calculations on different datasets
- Gathering user preferences from multiple sources
# ========== RESPONSE FORMAT ==========
**When you need a tool**
**When you need a tool**
Return ONLY the Json (no additional keys, no commentary, end with `<|stop|>`), such as following:
[{
"name": "<tool_name1>",
@ -27,7 +42,20 @@ Return ONLY the Json (no additional keys, no commentary, end with `<|stop|>`), s
"arguments": { /* tool arguments matching its schema */ }
}...]<|stop|>
**When you are certain the task is solved OR no further information can be obtained**
**When you need multiple tools:**
Return ONLY:
[{
"name": "<tool_name1>",
"arguments": { /* tool arguments matching its schema */ }
},{
"name": "<tool_name2>",
"arguments": { /* tool arguments matching its schema */ }
},{
"name": "<tool_name3>",
"arguments": { /* tool arguments matching its schema */ }
}...]<|stop|>
**When you are certain the task is solved OR no further information can be obtained**
Return ONLY:
[{
"name": "complete_task",
@ -61,3 +89,4 @@ Internal guideline:
2. **Act**: Emit the JSON object to call the tool.
Today is {{ today }}. Remember that success in answering questions accurately is paramount - take all necessary steps to ensure your answer is correct.

View File

@ -157,8 +157,8 @@ ASK_SUMMARY = load_prompt("ask_summary")
PROMPT_JINJA_ENV = jinja2.Environment(autoescape=False, trim_blocks=True, lstrip_blocks=True)
def citation_prompt() -> str:
template = PROMPT_JINJA_ENV.from_string(CITATION_PROMPT_TEMPLATE)
def citation_prompt(user_defined_prompts: dict={}) -> str:
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("citation_guidelines", CITATION_PROMPT_TEMPLATE))
return template.render()
@ -339,13 +339,16 @@ def form_history(history, limit=-6):
return context
def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict]):
def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict], user_defined_prompts: dict={}):
tools_desc = tool_schema(tools_description)
context = ""
template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_USER)
if user_defined_prompts.get("task_analysis"):
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts["task_analysis"])
else:
template = PROMPT_JINJA_ENV.from_string(ANALYZE_TASK_SYSTEM + "\n\n" + ANALYZE_TASK_USER)
context = template.render(task=task_name, context=context, agent_prompt=prompt, tools_desc=tools_desc)
kwd = chat_mdl.chat(ANALYZE_TASK_SYSTEM,[{"role": "user", "content": context}], {})
kwd = chat_mdl.chat(context, [{"role": "user", "content": "Please analyze it."}])
if isinstance(kwd, tuple):
kwd = kwd[0]
kwd = re.sub(r"^.*</think>", "", kwd, flags=re.DOTALL)
@ -354,28 +357,28 @@ def analyze_task(chat_mdl, prompt, task_name, tools_description: list[dict]):
return kwd
def next_step(chat_mdl, history:list, tools_description: list[dict], task_desc):
def next_step(chat_mdl, history:list, tools_description: list[dict], task_desc, user_defined_prompts: dict={}):
if not tools_description:
return ""
desc = tool_schema(tools_description)
template = PROMPT_JINJA_ENV.from_string(NEXT_STEP)
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("plan_generation", NEXT_STEP))
user_prompt = "\nWhat's the next tool to call? If ready OR IMPOSSIBLE TO BE READY, then call `complete_task`."
hist = deepcopy(history)
if hist[-1]["role"] == "user":
hist[-1]["content"] += user_prompt
else:
hist.append({"role": "user", "content": user_prompt})
json_str = chat_mdl.chat(template.render(task_analisys=task_desc, desc=desc, today=datetime.datetime.now().strftime("%Y-%m-%d")),
json_str = chat_mdl.chat(template.render(task_analysis=task_desc, desc=desc, today=datetime.datetime.now().strftime("%Y-%m-%d")),
hist[1:], stop=["<|stop|>"])
tk_cnt = num_tokens_from_string(json_str)
json_str = re.sub(r"^.*</think>", "", json_str, flags=re.DOTALL)
return json_str, tk_cnt
def reflect(chat_mdl, history: list[dict], tool_call_res: list[Tuple]):
def reflect(chat_mdl, history: list[dict], tool_call_res: list[Tuple], user_defined_prompts: dict={}):
tool_calls = [{"name": p[0], "result": p[1]} for p in tool_call_res]
goal = history[1]["content"]
template = PROMPT_JINJA_ENV.from_string(REFLECT)
template = PROMPT_JINJA_ENV.from_string(user_defined_prompts.get("reflection", REFLECT))
user_prompt = template.render(goal=goal, tool_calls=tool_calls)
hist = deepcopy(history)
if hist[-1]["role"] == "user":
@ -398,7 +401,7 @@ def form_message(system_prompt, user_prompt):
return [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}]
def tool_call_summary(chat_mdl, name: str, params: dict, result: str) -> str:
def tool_call_summary(chat_mdl, name: str, params: dict, result: str, user_defined_prompts: dict={}) -> str:
template = PROMPT_JINJA_ENV.from_string(SUMMARY4MEMORY)
system_prompt = template.render(name=name,
params=json.dumps(params, ensure_ascii=False, indent=2),
@ -409,7 +412,7 @@ def tool_call_summary(chat_mdl, name: str, params: dict, result: str) -> str:
return re.sub(r"^.*</think>", "", ans, flags=re.DOTALL)
def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[str]):
def rank_memories(chat_mdl, goal:str, sub_goal:str, tool_call_summaries: list[str], user_defined_prompts: dict={}):
template = PROMPT_JINJA_ENV.from_string(RANK_MEMORY)
system_prompt = template.render(goal=goal, sub_goal=sub_goal, results=[{"i": i, "content": s} for i,s in enumerate(tool_call_summaries)])
user_prompt = " → rank: "

View File

@ -6,29 +6,70 @@ Tool call: `{{ call.name }}`
Results: {{ call.result }}
{% endfor %}
## Task Complexity Analysis & Reflection Scope
**Reflection Instructions:**
**First, analyze the task complexity using these dimensions:**
Analyze the current state of the overall task ({{ goal }}), then provide structured responses to the following:
### Complexity Assessment Matrix
- **Scope Breadth**: Single-step (1) | Multi-step (2) | Multi-domain (3)
- **Data Dependency**: Self-contained (1) | External inputs (2) | Multiple sources (3)
- **Decision Points**: Linear (1) | Few branches (2) | Complex logic (3)
- **Risk Level**: Low (1) | Medium (2) | High (3)
## 1. Goal Achievement Status
**Complexity Score**: Sum all dimensions (4-12 points)
---
## Task Transmission Assessment
**Note**: This section is not subject to word count limitations when transmission is needed, as it serves critical handoff functions.
**Evaluate if task transmission information is needed:**
- **Is this an initial step?** If yes, skip this section
- **Are there downstream agents/steps?** If no, provide minimal transmission
- **Is there critical state/context to preserve?** If yes, include full transmission
### If Task Transmission is Needed:
- **Current State Summary**: [1-2 sentences on where we are]
- **Key Data/Results**: [Critical findings that must carry forward]
- **Context Dependencies**: [Essential context for next agent/step]
- **Unresolved Items**: [Issues requiring continuation]
- **Status for User**: [Clear status update in user terms]
- **Technical State**: [System state for technical handoffs]
---
## Situational Reflection (Adjust Length Based on Complexity Score)
### Reflection Guidelines:
- **Simple Tasks (4-5 points)**: ~50-100 words, focus on completion status and immediate next step
- **Moderate Tasks (6-8 points)**: ~100-200 words, include core details and main risks
- **Complex Tasks (9-12 points)**: ~200-300 words, provide full analysis and alternatives
### 1. Goal Achievement Status
- Does the current outcome align with the original purpose of this task phase?
- If not, what critical gaps exist?
## 2. Step Completion Check
### 2. Step Completion Check
- Which planned steps were completed? (List verified items)
- Which steps are pending/incomplete? (Specify exactly whats missing)
- Which steps are pending/incomplete? (Specify exactly what's missing)
## 3. Information Adequacy
### 3. Information Adequacy
- Is the collected data sufficient to proceed?
- What key information is still needed? (e.g., metrics, user input, external data)
## 4. Critical Observations
### 4. Critical Observations
- Unexpected outcomes: [Flag anomalies/errors]
- Risks/blockers: [Identify immediate obstacles]
- Accuracy concerns: [Highlight unreliable results]
## 5. Next-Step Recommendations
### 5. Next-Step Recommendations
- Proposed immediate action: [Concrete next step]
- Alternative strategies if blocked: [Workaround solution]
- Tools/inputs required for next phase: [Specify resources]
- Tools/inputs required for next phase: [Specify resources]
---
**Output Instructions:**
1. First determine your complexity score
2. Assess if task transmission section is needed using the evaluation questions
3. Provide situational reflection with length appropriate to complexity
4. Use clear headers for easy parsing by downstream systems

View File

@ -21,10 +21,12 @@ import sys
import threading
import time
from api.utils import get_uuid
from api.utils.api_utils import timeout
from api.utils.log_utils import init_root_logger, get_project_base_directory
from graphrag.general.index import run_graphrag
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
from rag.flow.pipeline import Pipeline
from rag.prompts import keyword_extraction, question_proposal, content_tagging
import logging
@ -223,7 +225,14 @@ async def collect():
logging.warning(f"collect task {msg['id']} {state}")
redis_msg.ack()
return None, None
task["task_type"] = msg.get("task_type", "")
task_type = msg.get("task_type", "")
task["task_type"] = task_type
if task_type == "dataflow":
task["tenant_id"]=msg.get("tenant_id", "")
task["dsl"] = msg.get("dsl", "")
task["dataflow_id"] = msg.get("dataflow_id", get_uuid())
task["kb_id"] = msg.get("kb_id", "")
return redis_msg, task
@ -473,6 +482,15 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
return tk_count, vector_size
async def run_dataflow(dsl:str, tenant_id:str, doc_id:str, task_id:str, flow_id:str, callback=None):
_ = callback
pipeline = Pipeline(dsl=dsl, tenant_id=tenant_id, doc_id=doc_id, task_id=task_id, flow_id=flow_id)
pipeline.reset()
await pipeline.run()
@timeout(3600)
async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
chunks = []
@ -558,15 +576,20 @@ async def do_handle_task(task):
init_kb(task, vector_size)
# Either using RAPTOR or Standard chunking methods
if task.get("task_type", "") == "raptor":
task_type = task.get("task_type", "")
if task_type == "dataflow":
task_dataflow_dsl = task["dsl"]
task_dataflow_id = task["dataflow_id"]
await run_dataflow(dsl=task_dataflow_dsl, tenant_id=task_tenant_id, doc_id=task_doc_id, task_id=task_id, flow_id=task_dataflow_id, callback=None)
return
elif task_type == "raptor":
# bind LLM for raptor
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
# run RAPTOR
async with kg_limiter:
chunks, token_count = await run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
# Either using graphrag or Standard chunking methods
elif task.get("task_type", "") == "graphrag":
elif task_type == "graphrag":
if not task_parser_config.get("graphrag", {}).get("use_graphrag", False):
progress_callback(prog=-1.0, msg="Internal configuration error.")
return

View File

@ -1,6 +1,6 @@
[project]
name = "ragflow-sdk"
version = "0.20.4"
version = "0.20.5"
description = "Python client sdk of [RAGFlow](https://github.com/infiniflow/ragflow). RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding."
authors = [{ name = "Zhichang Yu", email = "yuzhichang@gmail.com" }]
license = { text = "Apache License, Version 2.0" }

2
sdk/python/uv.lock generated
View File

@ -342,7 +342,7 @@ wheels = [
[[package]]
name = "ragflow-sdk"
version = "0.20.4"
version = "0.20.5"
source = { virtual = "." }
dependencies = [
{ name = "beartype" },

2
uv.lock generated
View File

@ -5268,7 +5268,7 @@ wheels = [
[[package]]
name = "ragflow"
version = "0.20.4"
version = "0.20.5"
source = { virtual = "." }
dependencies = [
{ name = "akshare" },

View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="200" height="200">
<path d="M0 0 C66 0 132 0 200 0 C200 66 200 132 200 200 C134 200 68 200 0 200 C0 134 0 68 0 0 Z " fill="#FEFEFE" transform="translate(0,0)"/>
<path d="M0 0 C2.39453125 1.14453125 2.39453125 1.14453125 4.8125 2.8125 C5.75738281 3.44800781 6.70226562 4.08351563 7.67578125 4.73828125 C8.19865723 5.09615723 8.7215332 5.4540332 9.26025391 5.82275391 C13.36191523 8.59825361 17.54956498 11.24621033 21.71533203 13.92407227 C24.9487779 16.00737354 28.16762901 18.09844886 31.32421875 20.296875 C32.74154297 21.26367188 32.74154297 21.26367188 34.1875 22.25 C34.98542969 22.81203125 35.78335938 23.3740625 36.60546875 23.953125 C40.02234807 25.44696457 41.42547679 25.15782554 45 24 C48.42901527 22.04876439 51.64079366 19.81837726 54.875 17.5625 C56.74772639 16.28893482 58.62143497 15.01681278 60.49609375 13.74609375 C61.42276855 13.11429199 62.34944336 12.48249023 63.30419922 11.83154297 C67.15319175 9.21651472 71.024932 6.64382662 74.9375 4.125 C75.56833496 3.7029126 76.19916992 3.2808252 76.84912109 2.84594727 C80.69057438 0.39471936 83.44464046 -0.73870695 88 0 C90.63825077 2.11084554 91.56855734 4.03836878 92.5 7.24609375 C92.74572754 8.07737793 92.99145508 8.90866211 93.24462891 9.76513672 C93.49390137 10.6470166 93.74317383 11.52889648 94 12.4375 C94.39517822 13.79512451 94.39517822 13.79512451 94.79833984 15.18017578 C96.40537717 20.7505079 97.90130769 26.33936261 99.24584961 31.97924805 C100.02006027 35.08035146 100.88550777 38.14165289 101.77734375 41.2109375 C104.26417513 49.86388766 106.60157415 58.55531387 108.9375 67.25 C109.5691163 69.59948589 110.20107941 71.94887564 110.83413696 74.29797363 C111.25284122 75.85317822 111.67015085 77.40875899 112.08602905 78.96472168 C113.16723782 82.99279371 114.28613741 87.0052878 115.46533203 91.00585938 C115.70192032 91.81972107 115.93850861 92.63358276 116.18226624 93.47210693 C116.6346324 95.02228962 117.09591729 96.56990767 117.56761169 98.11431885 C118.82718955 102.45952922 118.9222718 104.388641 118 109 C105.79 109 93.58 109 81 109 C83.31 104.38 85.62 99.76 88 95 C89.40365551 90.78903348 89.26447125 86.78724127 89.3125 82.375 C89.34150391 81.51003906 89.37050781 80.64507812 89.40039062 79.75390625 C89.48768877 70.79577373 86.17425574 64.13690446 81 57 C80.67 56.67 80.34 56.34 80 56 C79.66923795 54.42436986 79.38669942 52.83856139 79.125 51.25 C78.00132777 44.77185934 76.52477508 38.39389016 75 32 C69.3212598 32.97811077 65.83453902 35.5234875 61.41796875 39.078125 C60.47566406 39.81546875 59.53335938 40.5528125 58.5625 41.3125 C57.23412109 42.38951172 57.23412109 42.38951172 55.87890625 43.48828125 C52.08591214 45.47998915 50.1672323 44.78190208 46 44 C44.52591059 44.0330709 43.05235766 44.10841633 41.58203125 44.21875 C33.06908878 44.76725748 27.04476719 45.01018891 20.0625 39.6875 C18.34756469 38.15516212 16.65623266 36.59560518 15 35 C13.10956661 33.11039348 13.10956661 33.11039348 11 32 C8.40433962 32.39037028 8.40433962 32.39037028 6 33 C5.81207886 34.08885498 5.81207886 34.08885498 5.62036133 35.19970703 C5.03729887 38.51192489 4.42521919 41.8181454 3.8125 45.125 C3.61591797 46.26710937 3.41933594 47.40921875 3.21679688 48.5859375 C1.95587995 55.25909786 0.76122004 59.1634442 -4 64 C-8.6447071 72.51751445 -9.42049497 82.17344862 -7.45703125 91.609375 C-6.07241923 96.0462533 -4.04327606 100.17429394 -1.8671875 104.2734375 C-1 106 -1 106 0 109 C-5.10863896 109.0246501 -10.21724359 109.04283607 -15.32592773 109.05493164 C-17.06519168 109.05997204 -18.80445136 109.0668043 -20.54370117 109.07543945 C-23.03825937 109.08751792 -25.53276173 109.09323108 -28.02734375 109.09765625 C-28.80963852 109.10281754 -29.59193329 109.10797882 -30.39793396 109.11329651 C-32.26567114 109.11349226 -34.13329204 109.06199694 -36 109 C-36.33 108.67 -36.66 108.34 -37 108 C-36.6691145 101.49258523 -35.15776262 95.68688958 -33.30078125 89.4609375 C-31.60460125 83.73515116 -30.09924894 77.95763523 -28.5625 72.1875 C-26.4733134 64.37300626 -24.32774597 56.58848741 -21.98681641 48.84594727 C-19.4138662 40.2171001 -17.1927551 31.48599768 -14.94165039 22.76855469 C-10.8136506 7.00766372 -10.8136506 7.00766372 -8 1 C-5.18797299 -0.4060135 -3.12018031 -0.23410947 0 0 Z " fill="#2BE155" transform="translate(59,42)"/>
<path d="M0 0 C2.97 0 5.94 0 9 0 C9 7.59 9 15.18 9 23 C5.7 23 2.4 23 -1 23 C-1.1094017 15.24463474 -0.91988309 7.70402087 0 0 Z " fill="#141414" transform="translate(83,109)"/>
<path d="M0 0 C2.97 0 5.94 0 9 0 C9.33 7.59 9.66 15.18 10 23 C6.7 23 3.4 23 0 23 C0 15.41 0 7.82 0 0 Z " fill="#101010" transform="translate(108,109)"/>
</svg>

After

Width:  |  Height:  |  Size: 4.6 KiB

View File

@ -53,14 +53,13 @@ const MarkdownToc: React.FC<MarkdownTocProps> = ({ content }) => {
return (
<div
className="markdown-toc"
className="markdown-toc bg-bg-base text-text-primary shadow shadow-text-secondary"
style={{
position: 'fixed',
right: 20,
top: 100,
bottom: 150,
width: 200,
background: '#fff',
padding: '10px',
maxHeight: 'calc(100vh - 170px)',
overflowY: 'auto',

View File

@ -0,0 +1,77 @@
import { cn } from '@/lib/utils';
import { t } from 'i18next';
type EmptyProps = {
className?: string;
children?: React.ReactNode;
};
const EmptyIcon = () => (
<svg
width="184"
height="152"
viewBox="0 0 184 152"
xmlns="http://www.w3.org/2000/svg"
>
<title>{t('common.noData')}</title>
<g fill="none" fillRule="evenodd">
<g transform="translate(24 31.67)">
<ellipse
fillOpacity=".8"
fill="#F5F5F7"
cx="67.797"
cy="106.89"
rx="67.797"
ry="12.668"
></ellipse>
<path
d="M122.034 69.674L98.109 40.229c-1.148-1.386-2.826-2.225-4.593-2.225h-51.44c-1.766 0-3.444.839-4.592 2.225L13.56 69.674v15.383h108.475V69.674z"
fill="#AEB8C2"
></path>
<path
d="M101.537 86.214L80.63 61.102c-1.001-1.207-2.507-1.867-4.048-1.867H31.724c-1.54 0-3.047.66-4.048 1.867L6.769 86.214v13.792h94.768V86.214z"
fill="url(#linearGradient-1)"
transform="translate(13.56)"
></path>
<path
d="M33.83 0h67.933a4 4 0 0 1 4 4v93.344a4 4 0 0 1-4 4H33.83a4 4 0 0 1-4-4V4a4 4 0 0 1 4-4z"
fill="#F5F5F7"
></path>
<path
d="M42.678 9.953h50.237a2 2 0 0 1 2 2V36.91a2 2 0 0 1-2 2H42.678a2 2 0 0 1-2-2V11.953a2 2 0 0 1 2-2zM42.94 49.767h49.713a2.262 2.262 0 1 1 0 4.524H42.94a2.262 2.262 0 0 1 0-4.524zM42.94 61.53h49.713a2.262 2.262 0 1 1 0 4.525H42.94a2.262 2.262 0 0 1 0-4.525zM121.813 105.032c-.775 3.071-3.497 5.36-6.735 5.36H20.515c-3.238 0-5.96-2.29-6.734-5.36a7.309 7.309 0 0 1-.222-1.79V69.675h26.318c2.907 0 5.25 2.448 5.25 5.42v.04c0 2.971 2.37 5.37 5.277 5.37h34.785c2.907 0 5.277-2.421 5.277-5.393V75.1c0-2.972 2.343-5.426 5.25-5.426h26.318v33.569c0 .617-.077 1.216-.221 1.789z"
fill="#DCE0E6"
></path>
</g>
<path
d="M149.121 33.292l-6.83 2.65a1 1 0 0 1-1.317-1.23l1.937-6.207c-2.589-2.944-4.109-6.534-4.109-10.408C138.802 8.102 148.92 0 161.402 0 173.881 0 184 8.102 184 18.097c0 9.995-10.118 18.097-22.599 18.097-4.528 0-8.744-1.066-12.28-2.902z"
fill="#DCE0E6"
></path>
<g transform="translate(149.65 15.383)" fill="#FFF">
<ellipse cx="20.654" cy="3.167" rx="2.849" ry="2.815"></ellipse>
<path d="M5.698 5.63H0L2.898.704zM9.259.704h4.985V5.63H9.259z"></path>
</g>
</g>
</svg>
);
const Empty = (props: EmptyProps) => {
const { className, children } = props;
return (
<div
className={cn(
'flex flex-col justify-center items-center text-center gap-3',
className,
)}
>
<EmptyIcon />
{!children && (
<div className="empty-text mt-4 text-text-secondary">
{t('common.noData')}
</div>
)}
{children}
</div>
);
};
export default Empty;

View File

@ -44,7 +44,7 @@ export function HomeCard({ data, onClick, moreDropdown, sharedBadge }: IProps) {
{data.description}
</div>
<div className="flex justify-between items-center">
<p className="text-sm opacity-80">
<p className="text-sm opacity-80 whitespace-nowrap">
{formatDate(data.update_time)}
</p>
{sharedBadge}

View File

@ -134,6 +134,7 @@ export function LlmSettingFieldItems({
label="temperature"
max={1}
step={0.01}
min={0}
></SliderInputSwitchFormField>
<SliderInputSwitchFormField
name={getFieldWithPrefix('top_p')}
@ -141,6 +142,7 @@ export function LlmSettingFieldItems({
label="topP"
max={1}
step={0.01}
min={0}
></SliderInputSwitchFormField>
<SliderInputSwitchFormField
name={getFieldWithPrefix('presence_penalty')}
@ -148,6 +150,7 @@ export function LlmSettingFieldItems({
label="presencePenalty"
max={1}
step={0.01}
min={0}
></SliderInputSwitchFormField>
<SliderInputSwitchFormField
name={getFieldWithPrefix('frequency_penalty')}
@ -155,12 +158,14 @@ export function LlmSettingFieldItems({
label="frequencyPenalty"
max={1}
step={0.01}
min={0}
></SliderInputSwitchFormField>
<SliderInputSwitchFormField
name={getFieldWithPrefix('max_tokens')}
checkName="maxTokensEnabled"
label="maxTokens"
max={128000}
min={0}
></SliderInputSwitchFormField>
</div>
);

View File

@ -1,28 +1,34 @@
import { toast } from 'sonner';
const duration = { duration: 1500 };
const message = {
success: (msg: string) => {
toast.success(msg, {
position: 'top-center',
closeButton: false,
...duration,
});
},
error: (msg: string) => {
toast.error(msg, {
position: 'top-center',
closeButton: false,
...duration,
});
},
warning: (msg: string) => {
toast.warning(msg, {
position: 'top-center',
closeButton: false,
...duration,
});
},
info: (msg: string) => {
toast.info(msg, {
position: 'top-center',
closeButton: false,
...duration,
});
},
};

View File

@ -9,6 +9,7 @@ import {
} from '@/components/ui/pagination';
import { RAGFlowSelect, RAGFlowSelectOptionType } from '@/components/ui/select';
import { cn } from '@/lib/utils';
import { t } from 'i18next';
import { useCallback, useEffect, useMemo, useState } from 'react';
export type RAGFlowPaginationType = {
@ -32,7 +33,7 @@ export function RAGFlowPagination({
const sizeChangerOptions: RAGFlowSelectOptionType[] = useMemo(() => {
return [10, 20, 50, 100].map((x) => ({
label: <span>{x} / page</span>,
label: <span>{t('pagination.page', { page: x })}</span>,
value: x.toString(),
}));
}, []);
@ -134,7 +135,7 @@ export function RAGFlowPagination({
return (
<section className="flex items-center justify-end text-text-sub-title-invert">
<span className="mr-4">Total {total}</span>
<span className="mr-4">{t('pagination.total', { total: total })}</span>
<Pagination className="w-auto mx-0 mr-4">
<PaginationContent>
<PaginationItem>

View File

@ -54,6 +54,7 @@ export enum LLMFactory {
DeepInfra = 'DeepInfra',
Grok = 'Grok',
XAI = 'xAI',
Meituan = 'Meituan',
}
// Please lowercase the file name
@ -113,4 +114,5 @@ export const IconMap = {
[LLMFactory.DeepInfra]: 'deepinfra',
[LLMFactory.Grok]: 'grok',
[LLMFactory.XAI]: 'xai',
[LLMFactory.Meituan]: 'longcat',
};

View File

@ -1,10 +1,11 @@
import message from '@/components/ui/message';
import { ResponseType } from '@/interfaces/database/base';
import { IFolder } from '@/interfaces/database/file-manager';
import { IConnectRequestBody } from '@/interfaces/request/file-manager';
import fileManagerService from '@/services/file-manager-service';
import { downloadFileFromBlob } from '@/utils/file-util';
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
import { PaginationProps, UploadFile, message } from 'antd';
import { PaginationProps, UploadFile } from 'antd';
import React, { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { useSearchParams } from 'umi';

View File

@ -1,3 +1,4 @@
import message from '@/components/ui/message';
import { Authorization } from '@/constants/authorization';
import userService, {
getLoginChannels,
@ -5,7 +6,7 @@ import userService, {
} from '@/services/user-service';
import authorizationUtil, { redirectToLogin } from '@/utils/authorization-util';
import { useMutation, useQuery } from '@tanstack/react-query';
import { Form, message } from 'antd';
import { Form } from 'antd';
import { FormInstance } from 'antd/lib';
import { useEffect, useState } from 'react';
import { useTranslation } from 'react-i18next';
@ -50,8 +51,6 @@ export const useLoginWithChannel = () => {
};
export const useLogin = () => {
const { t } = useTranslation();
const {
data,
isPending: loading,
@ -62,7 +61,6 @@ export const useLogin = () => {
const { data: res = {}, response } = await userService.login(params);
if (res.code === 0) {
const { data } = res;
message.success(t('message.logged'));
const authorization = response.headers.get(Authorization);
const token = data.access_token;
const userInfo = {

View File

@ -51,6 +51,7 @@ export const enum AgentApiAction {
FetchAgentAvatar = 'fetchAgentAvatar',
FetchExternalAgentInputs = 'fetchExternalAgentInputs',
SetAgentSetting = 'setAgentSetting',
FetchPrompt = 'fetchPrompt',
}
export const EmptyDsl = {
@ -637,3 +638,24 @@ export const useSetAgentSetting = () => {
return { data, loading, setAgentSetting: mutateAsync };
};
export const useFetchPrompt = () => {
const {
data,
isFetching: loading,
refetch,
} = useQuery<Record<string, string>>({
queryKey: [AgentApiAction.FetchPrompt],
refetchOnReconnect: false,
refetchOnMount: false,
refetchOnWindowFocus: false,
gcTime: 0,
queryFn: async () => {
const { data } = await agentService.fetchPrompt();
return data?.data ?? {};
},
});
return { data, loading, refetch };
};

View File

@ -1,4 +1,5 @@
import { useHandleFilterSubmit } from '@/components/list-filter-bar/use-handle-filter-submit';
import message from '@/components/ui/message';
import { ResponseType } from '@/interfaces/database/base';
import {
IDocumentInfo,
@ -12,7 +13,6 @@ import i18n from '@/locales/config';
import kbService, { listDocument } from '@/services/knowledge-service';
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
import { useDebounce } from 'ahooks';
import { message } from 'antd';
import { get } from 'lodash';
import { useCallback, useMemo, useState } from 'react';
import { useParams } from 'umi';

View File

@ -1,3 +1,4 @@
import message from '@/components/ui/message';
import {
IFetchFileListResult,
IFolder,
@ -5,7 +6,7 @@ import {
import fileManagerService from '@/services/file-manager-service';
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
import { useDebounce } from 'ahooks';
import { PaginationProps, message } from 'antd';
import { PaginationProps } from 'antd';
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { useSearchParams } from 'umi';

View File

@ -72,12 +72,14 @@ export const useTestRetrieval = () => {
chunks: [],
doc_aggs: [],
total: 0,
isRuned: false,
},
enabled: false,
gcTime: 0,
queryFn: async () => {
const { data } = await kbService.retrieval_test(queryParams);
return data?.data ?? {};
const result = data?.data ?? {};
return { ...result, isRuned: true };
},
});

View File

@ -1,3 +1,4 @@
import message from '@/components/ui/message';
import { LanguageTranslationMap } from '@/constants/common';
import { ResponseGetType } from '@/interfaces/database/base';
import { IToken } from '@/interfaces/database/chat';
@ -18,7 +19,7 @@ import userService, {
listTenantUser,
} from '@/services/user-service';
import { useMutation, useQuery, useQueryClient } from '@tanstack/react-query';
import { Modal, message } from 'antd';
import { Modal } from 'antd';
import DOMPurify from 'dompurify';
import { isEmpty } from 'lodash';
import { useCallback, useMemo, useState } from 'react';

View File

@ -38,7 +38,7 @@ export type DSLComponents = Record<string, IOperator>;
export interface DSL {
components: DSLComponents;
history: any[];
path?: string[][];
path?: string[];
answer?: any[];
graph?: IGraph;
messages: Message[];

View File

@ -150,6 +150,7 @@ export interface INextTestingResult {
doc_aggs: ITestingDocument[];
total: number;
labels?: Record<string, number>;
isRuned?: boolean;
}
export type IRenameTag = { fromTag: string; toTag: string };

View File

@ -1,7 +1,7 @@
export interface ITestRetrievalRequestBody {
question: string;
similarity_threshold: number;
keywords_similarity_weight: number;
vector_similarity_weight: number;
rerank_id?: string;
top_k?: number;
use_kg?: boolean;

View File

@ -46,6 +46,7 @@ export default {
remove: 'Remove',
search: 'Search',
noDataFound: 'No data found.',
noData: 'No data',
promptPlaceholder: `Please input or use / to quickly insert variables.`,
mcp: {
namePlaceholder: 'My MCP Server',
@ -138,6 +139,10 @@ export default {
processBeginAt: 'Begin at',
processDuration: 'Duration',
progressMsg: 'Progress',
noTestResultsForRuned:
'No relevant results found. Try adjusting your query or parameters.',
noTestResultsForNotRuned:
'No test has been run yet. Results will appear here.',
testingDescription:
'Conduct a retrieval test to check if RAGFlow can recover the intended content for the LLM. If you have adjusted the default settings, such as keyword similarity weight or similarity threshold, to achieve the optimal results, be aware that these changes will not be automatically saved. You must apply them to your chat assistant settings or the Retrieval agent component settings.',
similarityThreshold: 'Similarity threshold',
@ -927,7 +932,7 @@ This auto-tagging feature enhances retrieval by adding another layer of domain-s
builtIn: 'Built-in',
ExceptionDefaultValue: 'Exception default value',
exceptionMethod: 'Exception method',
maxRounds: 'Max rounds',
maxRounds: 'Max reflection rounds',
delayEfterError: 'Delay after error',
maxRetries: 'Max retries',
advancedSettings: 'Advanced Settings',
@ -1518,6 +1523,7 @@ This delimiter is used to split the input text into several text pieces echo of
sqlStatement: 'SQL Statement',
sqlStatementTip:
'Write your SQL query here. You can use variables, raw SQL, or mix both using variable syntax.',
frameworkPrompts: 'Framework',
},
llmTools: {
bad_calculator: {
@ -1567,6 +1573,7 @@ This delimiter is used to split the input text into several text pieces echo of
descriptionValue: 'You are an intelligent assistant.',
okText: 'Save',
cancelText: 'Cancel',
chooseDataset: 'Please select a dataset first',
},
language: {
english: 'English',
@ -1578,5 +1585,9 @@ This delimiter is used to split the input text into several text pieces echo of
korean: 'Korean',
vietnamese: 'Vietnamese',
},
pagination: {
total: 'Total {{total}}',
page: '{{page}} /Page',
},
},
};

View File

@ -45,6 +45,7 @@ export default {
remove: '移除',
search: '搜索',
noDataFound: '没有找到数据。',
noData: '暂无数据',
promptPlaceholder: '请输入或使用 / 快速插入变量。',
},
login: {
@ -80,7 +81,7 @@ export default {
flow: '智能体',
search: '搜索',
welcome: '欢迎来到',
dataset: '数据集',
dataset: '知识库',
},
knowledgeList: {
welcome: '欢迎回来',
@ -103,7 +104,7 @@ export default {
retrievalTestingDescription:
'进行检索测试,检查 RAGFlow 是否能够为大语言模型LLM恢复预期的内容。',
Parse: '解析',
dataset: '数据集',
dataset: '知识库',
testing: '检索测试',
configuration: '配置',
knowledgeGraph: '知识图谱',
@ -129,6 +130,8 @@ export default {
processBeginAt: '开始于',
processDuration: '持续时间',
progressMsg: '进度',
noTestResultsForRuned: '未找到相关结果,请尝试调整查询语句或参数',
noTestResultsForNotRuned: '尚未运行测试,结果会显示在这里',
testingDescription:
'请完成召回测试:确保你的配置可以从数据库召回正确的文本块。如果你调整了这里的默认设置,比如关键词相似度权重,请注意这里的改动不会被自动保存。请务必在聊天助手设置或者召回算子设置处同步更新相关设置。',
similarityThreshold: '相似度阈值',
@ -887,7 +890,7 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
comment: '默认值',
ExceptionDefaultValue: '异常处理默认值',
exceptionMethod: '异常处理方法',
maxRounds: '最大轮数',
maxRounds: '最大反思轮数',
delayEfterError: '错误后延迟',
maxRetries: '最大重试次数',
advancedSettings: '高级设置',
@ -1433,6 +1436,7 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
sqlStatement: 'SQL 语句',
sqlStatementTip:
'在此处编写您的 SQL 查询。您可以使用变量、原始 SQL或使用变量语法混合使用两者。',
frameworkPrompts: '框架',
},
footer: {
profile: 'All rights reserved @ React',
@ -1470,7 +1474,7 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
name: '姓名',
avatar: '头像',
description: '描述',
datasets: '数据集',
datasets: '知识库',
rerankModel: 'rerank 模型',
AISummary: 'AI 总结',
enableWebSearch: '启用网页搜索',
@ -1481,6 +1485,7 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
descriptionValue: '你是一位智能助手。',
okText: '保存',
cancelText: '返回',
chooseDataset: '请先选择知识库',
},
language: {
english: '英语',
@ -1492,5 +1497,9 @@ General实体和关系提取提示来自 GitHub - microsoft/graphrag基于
korean: '韩语',
vietnamese: '越南语',
},
pagination: {
total: '总共 {{total}} 条',
page: '{{page}}条/页',
},
},
};

View File

@ -39,7 +39,7 @@ function InnerButtonEdge({
targetPosition,
});
const selectedStyle = useMemo(() => {
return selected ? { strokeWidth: 1, stroke: 'rgba(76, 164, 231, 1)' } : {};
return selected ? { strokeWidth: 1, stroke: 'var(--accent-primary)' } : {};
}, [selected]);
const onEdgeClick = () => {
@ -49,31 +49,21 @@ function InnerButtonEdge({
// highlight the nodes that the workflow passes through
const { data: flowDetail } = useFetchAgent();
const graphPath = useMemo(() => {
// TODO: this will be called multiple times
const showHighlight = useMemo(() => {
const path = flowDetail?.dsl?.path ?? [];
// The second to last
const previousGraphPath: string[] = path.at(-2) ?? [];
let graphPath: string[] = path.at(-1) ?? [];
// The last of the second to last article
const previousLatestElement = previousGraphPath.at(-1);
if (previousGraphPath.length > 0 && previousLatestElement) {
graphPath = [previousLatestElement, ...graphPath];
}
return Array.isArray(graphPath) ? graphPath : [];
}, [flowDetail.dsl?.path]);
const highlightStyle = useMemo(() => {
const idx = graphPath.findIndex((x) => x === source);
const idx = path.findIndex((x) => x === target);
if (idx !== -1) {
// The set of elements following source
const slicedGraphPath = graphPath.slice(idx + 1);
if (slicedGraphPath.some((x) => x === target)) {
return { strokeWidth: 1, stroke: 'red' };
let index = idx - 1;
while (index >= 0) {
if (path[index] === source) {
return { strokeWidth: 1, stroke: 'var(--accent-primary)' };
}
index--;
}
return {};
}
return {};
}, [source, target, graphPath]);
}, [flowDetail?.dsl?.path, source, target]);
const visible = useMemo(() => {
return (
@ -89,8 +79,8 @@ function InnerButtonEdge({
<BaseEdge
path={edgePath}
markerEnd={markerEnd}
style={{ ...style, ...selectedStyle, ...highlightStyle }}
className="text-text-secondary"
style={{ ...style, ...selectedStyle, ...showHighlight }}
className={cn('text-text-secondary')}
/>
<EdgeLabelRenderer>

View File

@ -21,6 +21,7 @@ import { useAwaitCompentData } from '../hooks/use-chat-logic';
import { useIsTaskMode } from '../hooks/use-get-begin-query';
function AgentChatBox() {
const { data: canvasInfo, refetch } = useFetchAgent();
const {
value,
scrollRef,
@ -33,13 +34,12 @@ function AgentChatBox() {
sendFormMessage,
findReferenceByMessageId,
appendUploadResponseList,
} = useSendAgentMessage();
} = useSendAgentMessage({ refetch });
const { visible, hideModal, documentId, selectedChunk, clickDocumentButton } =
useClickDrawer();
useGetFileIcon();
const { data: userInfo } = useFetchUserInfo();
const { data: canvasInfo } = useFetchAgent();
const { id: canvasId } = useParams();
const { uploadCanvasFile, loading } = useUploadCanvasFileWithProgress();

View File

@ -194,12 +194,19 @@ export const buildRequestBody = (value: string = '') => {
return msgBody;
};
export const useSendAgentMessage = (
url?: string,
addEventList?: (data: IEventList, messageId: string) => void,
beginParams?: any[],
isShared?: boolean,
) => {
export const useSendAgentMessage = ({
url,
addEventList,
beginParams,
isShared,
refetch,
}: {
url?: string;
addEventList?: (data: IEventList, messageId: string) => void;
beginParams?: any[];
isShared?: boolean;
refetch?: () => void;
}) => {
const { id: agentId } = useParams();
const { handleInputChange, value, setValue } = useHandleMessageInputChange();
const inputs = useSelectBeginNodeDataInputs();
@ -212,8 +219,6 @@ export const useSendAgentMessage = (
const isTaskMode = useIsTaskMode();
// const { refetch } = useFetchAgent(); // This will cause the shared page to also send a request
const { findReferenceByMessageId } = useFindMessageReference(answerList);
const prologue = useGetBeginNodePrologue();
const {
@ -277,7 +282,7 @@ export const useSendAgentMessage = (
setValue(message.content);
removeLatestMessage();
} else {
// refetch(); // pull the message list after sending the message successfully
refetch?.(); // pull the message list after sending the message successfully
}
} catch (error) {
console.log('🚀 ~ useSendAgentMessage ~ error:', error);
@ -293,6 +298,7 @@ export const useSendAgentMessage = (
clearUploadResponseList,
setValue,
removeLatestMessage,
refetch,
],
);
@ -305,9 +311,9 @@ export const useSendAgentMessage = (
role: MessageType.User,
});
await send({ ...body, session_id: sessionId });
// refetch();
refetch?.();
},
[addNewestOneQuestion, send, sessionId],
[addNewestOneQuestion, refetch, send, sessionId],
);
// reset session

View File

@ -65,7 +65,7 @@ const FormSheet = ({
return (
<Sheet open={visible} modal={false}>
<SheetContent
className={cn('top-20 p-0 flex flex-col pb-20 ', {
className={cn('top-20 p-0 flex flex-col pb-20', {
'right-[620px]': chatVisible,
})}
closeIcon={false}

View File

@ -31,7 +31,7 @@ import {
} from '../../constant';
import { INextOperatorForm } from '../../interface';
import useGraphStore from '../../store';
import { isBottomSubAgent } from '../../utils';
import { hasSubAgentOrTool, isBottomSubAgent } from '../../utils';
import { buildOutputList } from '../../utils/build-output-list';
import { DescriptionField } from '../components/description-field';
import { FormWrapper } from '../components/form-wrapper';
@ -39,6 +39,7 @@ import { Output } from '../components/output';
import { PromptEditor } from '../components/prompt-editor';
import { QueryVariable } from '../components/query-variable';
import { AgentTools, Agents } from './agent-tools';
import { useBuildPromptExtraPromptOptions } from './use-build-prompt-options';
import { useValues } from './use-values';
import { useWatchFormChange } from './use-watch-change';
@ -85,6 +86,8 @@ function AgentForm({ node }: INextOperatorForm) {
const defaultValues = useValues(node);
const { extraOptions } = useBuildPromptExtraPromptOptions(edges, node?.id);
const ExceptionMethodOptions = Object.values(AgentExceptionMethod).map(
(x) => ({
label: t(`flow.${x}`),
@ -150,6 +153,7 @@ function AgentForm({ node }: INextOperatorForm) {
{...field}
placeholder={t('flow.messagePlaceholder')}
showToolbar={false}
extraOptions={extraOptions}
></PromptEditor>
</FormControl>
</FormItem>
@ -227,18 +231,20 @@ function AgentForm({ node }: INextOperatorForm) {
</FormItem>
)}
/>
<FormField
control={form.control}
name={`max_rounds`}
render={({ field }) => (
<FormItem className="flex-1">
<FormLabel>{t('flow.maxRounds')}</FormLabel>
<FormControl>
<NumberInput {...field}></NumberInput>
</FormControl>
</FormItem>
)}
/>
{hasSubAgentOrTool(edges, node?.id) && (
<FormField
control={form.control}
name={`max_rounds`}
render={({ field }) => (
<FormItem className="flex-1">
<FormLabel>{t('flow.maxRounds')}</FormLabel>
<FormControl>
<NumberInput {...field}></NumberInput>
</FormControl>
</FormItem>
)}
/>
)}
<FormField
control={form.control}
name={`exception_method`}

View File

@ -0,0 +1,43 @@
import { useFetchPrompt } from '@/hooks/use-agent-request';
import { Edge } from '@xyflow/react';
import { useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { hasSubAgentOrTool } from '../../utils';
export const PromptIdentity = 'RAGFlow-Prompt';
function wrapPromptWithTag(text: string, tag: string) {
const capitalTag = tag.toUpperCase();
return `<${capitalTag}>
${text}
</${capitalTag}>`;
}
export function useBuildPromptExtraPromptOptions(
edges: Edge[],
nodeId?: string,
) {
const { data: prompts } = useFetchPrompt();
const { t } = useTranslation();
const has = hasSubAgentOrTool(edges, nodeId);
const options = useMemo(() => {
return Object.entries(prompts || {})
.map(([key, value]) => ({
label: key,
value: wrapPromptWithTag(value, key),
}))
.filter((x) => {
if (!has) {
return x.label === 'citation_guidelines';
}
return true;
});
}, [has, prompts]);
const extraOptions = [
{ label: PromptIdentity, title: t('flow.frameworkPrompts'), options },
];
return { extraOptions };
}

View File

@ -29,7 +29,9 @@ import { PasteHandlerPlugin } from './paste-handler-plugin';
import theme from './theme';
import { VariableNode } from './variable-node';
import { VariableOnChangePlugin } from './variable-on-change-plugin';
import VariablePickerMenuPlugin from './variable-picker-plugin';
import VariablePickerMenuPlugin, {
VariablePickerMenuPluginProps,
} from './variable-picker-plugin';
// Catch any errors that occur during Lexical updates and log them
// or throw them as needed. If you don't throw them, Lexical will
@ -52,7 +54,8 @@ type IProps = {
value?: string;
onChange?: (value?: string) => void;
placeholder?: ReactNode;
} & PromptContentProps;
} & PromptContentProps &
Pick<VariablePickerMenuPluginProps, 'extraOptions'>;
function PromptContent({
showToolbar = true,
@ -122,6 +125,7 @@ export function PromptEditor({
placeholder,
showToolbar,
multiLine = true,
extraOptions,
}: IProps) {
const { t } = useTranslation();
const initialConfig: InitialConfigType = {
@ -170,7 +174,10 @@ export function PromptEditor({
}
ErrorBoundary={LexicalErrorBoundary}
/>
<VariablePickerMenuPlugin value={value}></VariablePickerMenuPlugin>
<VariablePickerMenuPlugin
value={value}
extraOptions={extraOptions}
></VariablePickerMenuPlugin>
<PasteHandlerPlugin />
<VariableOnChangePlugin
onChange={onValueChange}

View File

@ -1,7 +1,5 @@
import { BeginId } from '@/pages/flow/constant';
import { DecoratorNode, LexicalNode, NodeKey } from 'lexical';
import { ReactNode } from 'react';
const prefix = BeginId + '@';
export class VariableNode extends DecoratorNode<ReactNode> {
__value: string;

View File

@ -3,7 +3,7 @@ import { EditorState, LexicalEditor } from 'lexical';
import { useEffect } from 'react';
import { ProgrammaticTag } from './constant';
interface IProps {
interface VariableOnChangePluginProps {
onChange: (
editorState: EditorState,
editor?: LexicalEditor,
@ -11,7 +11,9 @@ interface IProps {
) => void;
}
export function VariableOnChangePlugin({ onChange }: IProps) {
export function VariableOnChangePlugin({
onChange,
}: VariableOnChangePluginProps) {
// Access the editor through the LexicalComposerContext
const [editor] = useLexicalComposerContext();
// Wrap our listener in useEffect to handle the teardown and avoid stale references.

View File

@ -32,6 +32,7 @@ import * as ReactDOM from 'react-dom';
import { $createVariableNode } from './variable-node';
import { useBuildQueryVariableOptions } from '@/pages/agent/hooks/use-get-begin-query';
import { PromptIdentity } from '../../agent-form/use-build-prompt-options';
import { ProgrammaticTag } from './constant';
import './index.css';
class VariableInnerOption extends MenuOption {
@ -108,11 +109,18 @@ function VariablePickerMenuItem({
);
}
export type VariablePickerMenuPluginProps = {
value?: string;
extraOptions?: Array<{
label: string;
title: string;
options: Array<{ label: string; value: string; icon?: ReactNode }>;
}>;
};
export default function VariablePickerMenuPlugin({
value,
}: {
value?: string;
}): JSX.Element {
extraOptions,
}: VariablePickerMenuPluginProps): JSX.Element {
const [editor] = useLexicalComposerContext();
const isFirstRender = useRef(true);
@ -122,10 +130,10 @@ export default function VariablePickerMenuPlugin({
const [queryString, setQueryString] = React.useState<string | null>('');
const options = useBuildQueryVariableOptions();
let options = useBuildQueryVariableOptions();
const buildNextOptions = useCallback(() => {
let filteredOptions = options;
let filteredOptions = [...options, ...(extraOptions ?? [])];
if (queryString) {
const lowerQuery = queryString.toLowerCase();
filteredOptions = options
@ -140,7 +148,7 @@ export default function VariablePickerMenuPlugin({
.filter((x) => x.options.length > 0);
}
const nextOptions: VariableOption[] = filteredOptions.map(
const finalOptions: VariableOption[] = filteredOptions.map(
(x) =>
new VariableOption(
x.label,
@ -150,8 +158,8 @@ export default function VariablePickerMenuPlugin({
}),
),
);
return nextOptions;
}, [options, queryString]);
return finalOptions;
}, [extraOptions, options, queryString]);
const findItemByValue = useCallback(
(value: string) => {
@ -173,7 +181,7 @@ export default function VariablePickerMenuPlugin({
const onSelectOption = useCallback(
(
selectedOption: VariableOption | VariableInnerOption,
selectedOption: VariableInnerOption,
nodeToRemove: TextNode | null,
closeMenu: () => void,
) => {
@ -193,7 +201,11 @@ export default function VariablePickerMenuPlugin({
selectedOption.parentLabel as string | ReactNode,
selectedOption.icon as ReactNode,
);
selection.insertNodes([variableNode]);
if (selectedOption.parentLabel === PromptIdentity) {
selection.insertText(selectedOption.value);
} else {
selection.insertNodes([variableNode]);
}
closeMenu();
});
@ -269,7 +281,13 @@ export default function VariablePickerMenuPlugin({
return (
<LexicalTypeaheadMenuPlugin<VariableOption | VariableInnerOption>
onQueryChange={setQueryString}
onSelectOption={onSelectOption}
onSelectOption={(option, textNodeContainingQuery, closeMenu) =>
onSelectOption(
option as VariableInnerOption, // Only the second level menu can be selected
textNodeContainingQuery,
closeMenu,
)
}
triggerFn={checkForTriggerMatch}
options={buildNextOptions()}
menuRenderFn={(anchorElementRef, { selectOptionAndCleanUp }) => {

View File

@ -0,0 +1,8 @@
import { useSize } from 'ahooks';
export function useCalculateSheetRight() {
const size = useSize(document.querySelector('body'));
const bodyWidth = size?.width ?? 0;
return bodyWidth > 1800 ? 'right-[620px]' : `right-1/3`;
}

View File

@ -1,13 +1,16 @@
import { SharedFrom } from '@/constants/chat';
import { useSetModalState } from '@/hooks/common-hooks';
import { useFetchExternalAgentInputs } from '@/hooks/use-agent-request';
import { IEventList } from '@/hooks/use-send-message';
import {
buildRequestBody,
useSendAgentMessage,
} from '@/pages/agent/chat/use-send-agent-message';
import { isEmpty } from 'lodash';
import trim from 'lodash/trim';
import { useCallback, useState } from 'react';
import { useCallback, useEffect, useRef, useState } from 'react';
import { useSearchParams } from 'umi';
import { AgentDialogueMode } from '../constant';
export const useSendButtonDisabled = (value: string) => {
return trim(value) === '';
@ -35,12 +38,15 @@ export const useGetSharedChatSearchParams = () => {
export const useSendNextSharedMessage = (
addEventList: (data: IEventList, messageId: string) => void,
isTaskMode: boolean,
) => {
const { from, sharedId: conversationId } = useGetSharedChatSearchParams();
const url = `/api/v1/${from === SharedFrom.Agent ? 'agentbots' : 'chatbots'}/${conversationId}/completions`;
const { data: inputsData } = useFetchExternalAgentInputs();
const [params, setParams] = useState<any[]>([]);
const sendedTaskMessage = useRef<boolean>(false);
const isTaskMode = inputsData.mode === AgentDialogueMode.Task;
const {
visible: parameterDialogVisible,
@ -48,7 +54,12 @@ export const useSendNextSharedMessage = (
showModal: showParameterDialog,
} = useSetModalState();
const ret = useSendAgentMessage(url, addEventList, params, true);
const ret = useSendAgentMessage({
url,
addEventList,
beginParams: params,
isShared: true,
});
const ok = useCallback(
(params: any[]) => {
@ -68,10 +79,27 @@ export const useSendNextSharedMessage = (
[hideParameterDialog, isTaskMode, ret],
);
const runTask = useCallback(() => {
if (
isTaskMode &&
isEmpty(inputsData?.inputs) &&
!sendedTaskMessage.current
) {
ok([]);
sendedTaskMessage.current = true;
}
}, [inputsData?.inputs, isTaskMode, ok]);
useEffect(() => {
runTask();
}, [runTask]);
return {
...ret,
hasError: false,
parameterDialogVisible,
inputsData,
isTaskMode,
hideParameterDialog,
showParameterDialog,
ok,

View File

@ -5,6 +5,7 @@ import {
SheetTitle,
} from '@/components/ui/sheet';
import { IModalProps } from '@/interfaces/common';
import { cn } from '@/lib/utils';
import { NotebookText } from 'lucide-react';
import 'react18-json-view/src/style.css';
import { useCacheChatLog } from '../hooks/use-cache-chat-log';
@ -24,7 +25,7 @@ export function LogSheet({
}: LogSheetProps) {
return (
<Sheet open onOpenChange={hideModal} modal={false}>
<SheetContent className="top-20 right-[620px]">
<SheetContent className={cn('top-20 right-[620px]')}>
<SheetHeader>
<SheetTitle className="flex items-center gap-1">
<NotebookText className="size-4" />

View File

@ -5,10 +5,7 @@ import MessageItem from '@/components/next-message-item';
import PdfDrawer from '@/components/pdf-drawer';
import { useClickDrawer } from '@/components/pdf-drawer/hooks';
import { MessageType } from '@/constants/chat';
import {
useFetchExternalAgentInputs,
useUploadCanvasFileWithProgress,
} from '@/hooks/use-agent-request';
import { useUploadCanvasFileWithProgress } from '@/hooks/use-agent-request';
import { cn } from '@/lib/utils';
import i18n from '@/locales/config';
import DebugContent from '@/pages/agent/debug-content';
@ -18,7 +15,6 @@ import { useSendButtonDisabled } from '@/pages/chat/hooks';
import { buildMessageUuidWithRole } from '@/utils/chat';
import { isEmpty } from 'lodash';
import React, { forwardRef, useCallback } from 'react';
import { AgentDialogueMode } from '../constant';
import {
useGetSharedChatSearchParams,
useSendNextSharedMessage,
@ -43,9 +39,6 @@ const ChatContainer = () => {
clearEventList,
} = useCacheChatLog();
const { data: inputsData } = useFetchExternalAgentInputs();
const isTaskMode = inputsData.mode === AgentDialogueMode.Task;
const {
handlePressEnter,
handleInputChange,
@ -55,6 +48,8 @@ const ChatContainer = () => {
messageContainerRef,
derivedMessages,
hasError,
inputsData,
isTaskMode,
stopOutputMessage,
findReferenceByMessageId,
appendUploadResponseList,
@ -64,7 +59,8 @@ const ChatContainer = () => {
addNewestOneAnswer,
ok,
resetSession,
} = useSendNextSharedMessage(addEventList, isTaskMode);
} = useSendNextSharedMessage(addEventList);
const { buildInputList, handleOk, isWaitting } = useAwaitCompentData({
derivedMessages,
sendFormMessage,
@ -72,6 +68,12 @@ const ChatContainer = () => {
});
const sendDisabled = useSendButtonDisabled(value);
const showBeginParameterDialog = useCallback(() => {
if (inputsData && inputsData.inputs && !isEmpty(inputsData.inputs)) {
showParameterDialog();
}
}, [inputsData, showParameterDialog]);
const handleUploadFile: NonNullable<FileUploadProps['onUpload']> =
useCallback(
async (files, options) => {
@ -96,10 +98,8 @@ const ChatContainer = () => {
}, [inputsData.prologue, addNewestOneAnswer, isTaskMode]);
React.useEffect(() => {
if (inputsData && inputsData.inputs && !isEmpty(inputsData.inputs)) {
showParameterDialog();
}
}, [inputsData, showParameterDialog]);
showBeginParameterDialog();
}, [showBeginParameterDialog]);
const handleInputsModalOk = (params: any[]) => {
ok(params);
@ -107,10 +107,12 @@ const ChatContainer = () => {
const handleReset = () => {
resetSession();
clearEventList();
showBeginParameterDialog();
};
if (!conversationId) {
return <div>empty</div>;
}
return (
<>
<EmbedContainer

View File

@ -152,6 +152,16 @@ export function isBottomSubAgent(edges: Edge[], nodeId?: string) {
return !!edge;
}
export function hasSubAgentOrTool(edges: Edge[], nodeId?: string) {
const edge = edges.find(
(x) =>
x.source === nodeId &&
(x.sourceHandle === NodeHandleId.Tool ||
x.sourceHandle === NodeHandleId.AgentBottom),
);
return !!edge;
}
// construct a dsl based on the node information of the graph
export const buildDslComponentsByGraph = (
nodes: RAGFlowNodeType[],

Some files were not shown because too many files have changed in this diff Show More