Compare commits

...

9 Commits

Author SHA1 Message Date
8d8a5f73b6 Fix: meta data filter with AND logic operations. (#9687)
### What problem does this PR solve?

Close #9648

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 18:29:24 +08:00
d0fa66f4d5 Docs: update API endpoint paths (#9683)
### What problem does this PR solve?

- Update API endpoint paths in docs from `/v1/` to `/api/v1/` for
consistency

### Type of change

- [x] Documentation Update
2025-08-25 17:57:24 +08:00
9dd22e141b fix: validate chunk type before processing to prevent AttributeError (#9698)
### What problem does this PR solve?

This PR fixes a critical bug in the session listing endpoint where the
application crashes with an `AttributeError` when processing chunk data
that contains non-dictionary objects.

**Error before fix:**
```json
{
  "code": 100,
  "data": null,
  "message": "AttributeError(\"'str' object has no attribute 'get'\")"
}
```

**Root cause:**
The code assumes all items in the `chunks` array are dictionary objects
and directly calls the `.get()` method on them. However, in some cases,
the chunks array contains string objects or other non-dictionary types,
causing the application to crash when attempting to call `.get()` on a
string.

**Solution:**
Added type validation to ensure each chunk is a dictionary before
processing. Non-dictionary chunks are safely skipped, preventing the
crash while maintaining functionality for valid chunk data.

This fix improves the robustness of the session listing endpoint and
ensures users can retrieve their conversation sessions without
encountering server errors due to data format inconsistencies.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 17:57:01 +08:00
b6c1ca828e Refa: replace Chat Ollama implementation with LiteLLM (#9693)
### What problem does this PR solve?

replace Chat Ollama implementation with LiteLLM.

### Type of change

- [x] Refactoring
2025-08-25 17:56:31 +08:00
d367c7e226 Fix: Optimize dataset page layout and internationalization and default values for multi selection #3221 (#9695)
### What problem does this PR solve?

Fix: Optimize dataset page layout and internationalization and Fix
setting default values for multi selection drop-down boxes #3221

-Adjust the style and layout of each component on the dataset page
-Add and update multilingual translation content

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 17:29:15 +08:00
a3aa3f0d36 Refa: improve lightrag (#9690)
### What problem does this PR solve?

Improve lightrag.
#9647

### Type of change

- [x] Refactoring
2025-08-25 17:08:44 +08:00
7b8752fe24 fix: Create conversation sessions will lost prologue (#9666)
### What problem does this PR solve?

When create conversation,the prologue hasn't save in conversation.

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 14:09:28 +08:00
5e2c33e5b0 Fix: grow reference list (#9674)
### What problem does this PR solve?

Fix Multiple conversations cause the reference list to grow indefinitely
due to Python's mutable default argument behavior.
Explicitly initialize reference as empty list when creating new sessions

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
2025-08-25 14:08:15 +08:00
e40be8e541 Feat: Exclude operator_permission field from renaming chat fields #3221 (#9692)
### What problem does this PR solve?

Feat: Exclude operator_permission field from renaming chat fields #3221

### Type of change


- [x] New Feature (non-breaking change which adds functionality)
2025-08-25 14:06:06 +08:00
31 changed files with 191 additions and 148 deletions

View File

@ -84,18 +84,10 @@ def create_agent_session(tenant_id, agent_id):
session_id=get_uuid()
canvas = Canvas(cvs.dsl, tenant_id, agent_id)
canvas.reset()
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": user_id,
"message": [],
"source": "agent",
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
cvs.dsl = json.loads(str(canvas))
conv = {"id": session_id, "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv)
conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv)
@ -570,6 +562,9 @@ def list_agent_session(tenant_id, agent_id):
"chunks" in conv["reference"][chunk_num]):
chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks:
# Ensure chunk is a dictionary before calling get method
if not isinstance(chunk, dict):
continue
new_chunk = {
"id": chunk.get("chunk_id", chunk.get("id")),
"content": chunk.get("content_with_weight", chunk.get("content")),

View File

@ -182,7 +182,8 @@ def completion(tenant_id, agent_id, session_id=None, **kwargs):
"user_id": user_id,
"message": [],
"source": "agent",
"dsl": cvs.dsl
"dsl": cvs.dsl,
"reference": []
}
API4ConversationService.save(**conv)
conv = API4Conversation(**conv)

View File

@ -256,10 +256,10 @@ def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
def meta_filter(metas: dict, filters: list[dict]):
doc_ids = []
doc_ids = set([])
def filter_out(v2docs, operator, value):
nonlocal doc_ids
ids = []
for input, docids in v2docs.items():
try:
input = float(input)
@ -284,16 +284,24 @@ def meta_filter(metas: dict, filters: list[dict]):
]:
try:
if all(conds):
doc_ids.extend(docids)
ids.extend(docids)
break
except Exception:
pass
return ids
for k, v2docs in metas.items():
for f in filters:
if k != f["key"]:
continue
filter_out(v2docs, f["op"], f["value"])
return doc_ids
ids = filter_out(v2docs, f["op"], f["value"])
if not doc_ids:
doc_ids = set(ids)
else:
doc_ids = doc_ids & set(ids)
if not doc_ids:
return []
return list(doc_ids)
def chat(dialog, messages, stream=True, **kwargs):

View File

@ -17,6 +17,7 @@ import asyncio
import functools
import json
import logging
import os
import queue
import random
import threading
@ -667,7 +668,10 @@ def timeout(seconds: float | int = None, attempts: int = 2, *, exception: Option
for a in range(attempts):
try:
result = result_queue.get(timeout=seconds)
if os.environ.get("ENABLE_TIMEOUT_ASSERTION"):
result = result_queue.get(timeout=seconds)
else:
result = result_queue.get()
if isinstance(result, Exception):
raise result
return result
@ -682,7 +686,10 @@ def timeout(seconds: float | int = None, attempts: int = 2, *, exception: Option
for a in range(attempts):
try:
with trio.fail_after(seconds):
if os.environ.get("ENABLE_TIMEOUT_ASSERTION"):
with trio.fail_after(seconds):
return await func(*args, **kwargs)
else:
return await func(*args, **kwargs)
except trio.TooSlowError:
if a < attempts - 1:

View File

@ -3501,7 +3501,7 @@ Failure:
### Generate related questions
**POST** `/v1/sessions/related_questions`
**POST** `/api/v1/sessions/related_questions`
Generates five to ten alternative question strings from the user's original query to retrieve more relevant search results.
@ -3516,7 +3516,7 @@ The chat model autonomously determines the number of questions to generate based
#### Request
- Method: POST
- URL: `/v1/sessions/related_questions`
- URL: `/api/v1/sessions/related_questions`
- Headers:
- `'content-Type: application/json'`
- `'Authorization: Bearer <YOUR_LOGIN_TOKEN>'`
@ -3528,7 +3528,7 @@ The chat model autonomously determines the number of questions to generate based
```bash
curl --request POST \
--url http://{address}/v1/sessions/related_questions \
--url http://{address}/api/v1/sessions/related_questions \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <YOUR_LOGIN_TOKEN>' \
--data '

View File

@ -15,6 +15,7 @@
#
import logging
import itertools
import os
import re
from dataclasses import dataclass
from typing import Any, Callable
@ -106,7 +107,8 @@ class EntityResolution(Extractor):
nonlocal remain_candidates_to_resolve, callback
async with semaphore:
try:
with trio.move_on_after(280) as cancel_scope:
enable_timeout_assertion = os.environ.get("ENABLE_TIMEOUT_ASSERTION")
with trio.move_on_after(280 if enable_timeout_assertion else 1000000000) as cancel_scope:
await self._resolve_candidate(candidate_batch, result_set, result_lock)
remain_candidates_to_resolve = remain_candidates_to_resolve - len(candidate_batch[1])
callback(msg=f"Resolved {len(candidate_batch[1])} pairs, {remain_candidates_to_resolve} are remained to resolve. ")
@ -169,7 +171,8 @@ class EntityResolution(Extractor):
logging.info(f"Created resolution prompt {len(text)} bytes for {len(candidate_resolution_i[1])} entity pairs of type {candidate_resolution_i[0]}")
async with chat_limiter:
try:
with trio.move_on_after(280) as cancel_scope:
enable_timeout_assertion = os.environ.get("ENABLE_TIMEOUT_ASSERTION")
with trio.move_on_after(280 if enable_timeout_assertion else 1000000000) as cancel_scope:
response = await trio.to_thread.run_sync(self._chat, text, [{"role": "user", "content": "Output:"}], {})
if cancel_scope.cancelled_caught:
logging.warning("_resolve_candidate._chat timeout, skipping...")

View File

@ -7,6 +7,7 @@ Reference:
import logging
import json
import os
import re
from typing import Callable
from dataclasses import dataclass
@ -51,6 +52,7 @@ class CommunityReportsExtractor(Extractor):
self._max_report_length = max_report_length or 1500
async def __call__(self, graph: nx.Graph, callback: Callable | None = None):
enable_timeout_assertion = os.environ.get("ENABLE_TIMEOUT_ASSERTION")
for node_degree in graph.degree:
graph.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
@ -92,7 +94,7 @@ class CommunityReportsExtractor(Extractor):
text = perform_variable_replacements(self._extraction_prompt, variables=prompt_variables)
async with chat_limiter:
try:
with trio.move_on_after(180) as cancel_scope:
with trio.move_on_after(180 if enable_timeout_assertion else 1000000000) as cancel_scope:
response = await trio.to_thread.run_sync( self._chat, text, [{"role": "user", "content": "Output:"}], {})
if cancel_scope.cancelled_caught:
logging.warning("extract_community_report._chat timeout, skipping...")

View File

@ -15,6 +15,8 @@
#
import json
import logging
import os
import networkx as nx
import trio
@ -49,6 +51,7 @@ async def run_graphrag(
embedding_model,
callback,
):
enable_timeout_assertion=os.environ.get("ENABLE_TIMEOUT_ASSERTION")
start = trio.current_time()
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"]
chunks = []
@ -57,7 +60,7 @@ async def run_graphrag(
):
chunks.append(d["content_with_weight"])
with trio.fail_after(max(120, len(chunks)*60*10)):
with trio.fail_after(max(120, len(chunks)*60*10) if enable_timeout_assertion else 10000000000):
subgraph = await generate_subgraph(
LightKGExt
if "method" not in row["kb_parser_config"].get("graphrag", {}) or row["kb_parser_config"]["graphrag"]["method"] != "general"

View File

@ -130,7 +130,36 @@ Output:
PROMPTS[
"entiti_continue_extraction"
] = """MANY entities were missed in the last extraction. Add them below using the same format:
] = """
MANY entities and relationships were missed in the last extraction. Please find only the missing entities and relationships from previous text.
---Remember Steps---
1. Identify all entities. For each identified entity, extract the following information:
- entity_name: Name of the entity, use same language as input text. If English, capitalized the name
- entity_type: One of the following types: [{entity_types}]
- entity_description: Provide a comprehensive description of the entity's attributes and activities *based solely on the information present in the input text*. **Do not infer or hallucinate information not explicitly stated.** If the text provides insufficient information to create a comprehensive description, state "Description not available in text."
Format each entity as ("entity"{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>)
2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity) that are *clearly related* to each other.
For each pair of related entities, extract the following information:
- source_entity: name of the source entity, as identified in step 1
- target_entity: name of the target entity, as identified in step 1
- relationship_description: explanation as to why you think the source entity and the target entity are related to each other
- relationship_strength: a numeric score indicating strength of the relationship between the source entity and target entity
- relationship_keywords: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details
Format each relationship as ("relationship"{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>{tuple_delimiter}<relationship_description>{tuple_delimiter}<relationship_keywords>{tuple_delimiter}<relationship_strength>)
3. Identify high-level key words that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document.
Format the content-level key words as ("content_keywords"{tuple_delimiter}<high_level_keywords>)
4. Return output in {language} as a single list of all the entities and relationships identified in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.
5. When finished, output {completion_delimiter}
---Output---
Add new entities and relations below using the same format, and do not include entities and relations that have been previously extracted. :
"""
PROMPTS[
@ -252,4 +281,4 @@ When handling information with timestamps:
- List up to 5 most important reference sources at the end under "References", clearly indicating whether each source is from Knowledge Graph (KG) or Vector Data (VD)
Format: [KG/VD] Source content
Add sections and commentary to the response as appropriate for the length and format. If the provided information is insufficient to answer the question, clearly state that you don't know or cannot provide an answer in the same language as the user's question."""
Add sections and commentary to the response as appropriate for the length and format. If the provided information is insufficient to answer the question, clearly state that you don't know or cannot provide an answer in the same language as the user's question."""

View File

@ -307,6 +307,7 @@ def chunk_id(chunk):
async def graph_node_to_chunk(kb_id, embd_mdl, ent_name, meta, chunks):
global chat_limiter
enable_timeout_assertion=os.environ.get("ENABLE_TIMEOUT_ASSERTION")
chunk = {
"id": get_uuid(),
"important_kwd": [ent_name],
@ -324,7 +325,7 @@ async def graph_node_to_chunk(kb_id, embd_mdl, ent_name, meta, chunks):
ebd = get_embed_cache(embd_mdl.llm_name, ent_name)
if ebd is None:
async with chat_limiter:
with trio.fail_after(3):
with trio.fail_after(3 if enable_timeout_assertion else 30000000):
ebd, _ = await trio.to_thread.run_sync(lambda: embd_mdl.encode([ent_name]))
ebd = ebd[0]
set_embed_cache(embd_mdl.llm_name, ent_name, ebd)
@ -362,6 +363,7 @@ def get_relation(tenant_id, kb_id, from_ent_name, to_ent_name, size=1):
async def graph_edge_to_chunk(kb_id, embd_mdl, from_ent_name, to_ent_name, meta, chunks):
enable_timeout_assertion=os.environ.get("ENABLE_TIMEOUT_ASSERTION")
chunk = {
"id": get_uuid(),
"from_entity_kwd": from_ent_name,
@ -380,7 +382,7 @@ async def graph_edge_to_chunk(kb_id, embd_mdl, from_ent_name, to_ent_name, meta,
ebd = get_embed_cache(embd_mdl.llm_name, txt)
if ebd is None:
async with chat_limiter:
with trio.fail_after(3):
with trio.fail_after(3 if enable_timeout_assertion else 300000000):
ebd, _ = await trio.to_thread.run_sync(lambda: embd_mdl.encode([txt+f": {meta['description']}"]))
ebd = ebd[0]
set_embed_cache(embd_mdl.llm_name, txt, ebd)
@ -514,9 +516,10 @@ async def set_graph(tenant_id: str, kb_id: str, embd_mdl, graph: nx.Graph, chang
callback(msg=f"set_graph converted graph change to {len(chunks)} chunks in {now - start:.2f}s.")
start = now
enable_timeout_assertion=os.environ.get("ENABLE_TIMEOUT_ASSERTION")
es_bulk_size = 4
for b in range(0, len(chunks), es_bulk_size):
with trio.fail_after(3):
with trio.fail_after(3 if enable_timeout_assertion else 30000000):
doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert(chunks[b:b + es_bulk_size], search.index_name(tenant_id), kb_id))
if b % 100 == es_bulk_size and callback:
callback(msg=f"Insert chunks: {b}/{len(chunks)}")

View File

@ -36,6 +36,7 @@ class SupportedLiteLLMProvider(StrEnum):
Nvidia = "NVIDIA"
TogetherAI = "TogetherAI"
Anthropic = "Anthropic"
Ollama = "Ollama"
FACTORY_DEFAULT_BASE_URL = {
@ -59,6 +60,7 @@ LITELLM_PROVIDER_PREFIX = {
SupportedLiteLLMProvider.Nvidia: "nvidia_nim/",
SupportedLiteLLMProvider.TogetherAI: "together_ai/",
SupportedLiteLLMProvider.Anthropic: "", # don't need a prefix
SupportedLiteLLMProvider.Ollama: "ollama_chat/",
}
ChatModel = globals().get("ChatModel", {})

View File

@ -29,7 +29,6 @@ import json_repair
import litellm
import openai
import requests
from ollama import Client
from openai import OpenAI
from openai.lib.azure import AzureOpenAI
from strenum import StrEnum
@ -683,73 +682,6 @@ class ZhipuChat(Base):
return super().chat_streamly_with_tools(system, history, gen_conf)
class OllamaChat(Base):
_FACTORY_NAME = "Ollama"
def __init__(self, key, model_name, base_url=None, **kwargs):
super().__init__(key, model_name, base_url=base_url, **kwargs)
self.client = Client(host=base_url) if not key or key == "x" else Client(host=base_url, headers={"Authorization": f"Bearer {key}"})
self.model_name = model_name
self.keep_alive = kwargs.get("ollama_keep_alive", int(os.environ.get("OLLAMA_KEEP_ALIVE", -1)))
def _clean_conf(self, gen_conf):
options = {}
if "max_tokens" in gen_conf:
options["num_predict"] = gen_conf["max_tokens"]
for k in ["temperature", "top_p", "presence_penalty", "frequency_penalty"]:
if k not in gen_conf:
continue
options[k] = gen_conf[k]
return options
def _chat(self, history, gen_conf={}, **kwargs):
# Calculate context size
ctx_size = self._calculate_dynamic_ctx(history)
gen_conf["num_ctx"] = ctx_size
response = self.client.chat(model=self.model_name, messages=history, options=gen_conf, keep_alive=self.keep_alive)
ans = response["message"]["content"].strip()
token_count = response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
return ans, token_count
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
if system:
history.insert(0, {"role": "system", "content": system})
if "max_tokens" in gen_conf:
del gen_conf["max_tokens"]
try:
# Calculate context size
ctx_size = self._calculate_dynamic_ctx(history)
options = {"num_ctx": ctx_size}
if "temperature" in gen_conf:
options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf:
options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf:
options["top_p"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf:
options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf:
options["frequency_penalty"] = gen_conf["frequency_penalty"]
ans = ""
try:
response = self.client.chat(model=self.model_name, messages=history, stream=True, options=options, keep_alive=self.keep_alive)
for resp in response:
if resp["done"]:
token_count = resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
yield token_count
ans = resp["message"]["content"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
except Exception as e:
yield "**ERROR**: " + str(e)
yield 0
class LocalAIChat(Base):
_FACTORY_NAME = "LocalAI"
@ -1422,7 +1354,7 @@ class Ai302Chat(Base):
class LiteLLMBase(ABC):
_FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic"]
_FACTORY_NAME = ["Tongyi-Qianwen", "Bedrock", "Moonshot", "xAI", "DeepInfra", "Groq", "Cohere", "Gemini", "DeepSeek", "NVIDIA", "TogetherAI", "Anthropic", "Ollama"]
def __init__(self, key, model_name, base_url=None, **kwargs):
self.timeout = int(os.environ.get("LM_TIMEOUT_SECONDS", 600))

View File

@ -21,7 +21,7 @@ import sys
import threading
import time
from api.utils.api_utils import timeout, is_strong_enough
from api.utils.api_utils import timeout
from api.utils.log_utils import init_root_logger, get_project_base_directory
from graphrag.general.index import run_graphrag
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
@ -478,8 +478,6 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
@timeout(3600)
async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
# Pressure test for GraphRAG task
await is_strong_enough(chat_mdl, embd_mdl)
chunks = []
vctr_nm = "q_%d_vec"%vector_size
for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
@ -553,7 +551,6 @@ async def do_handle_task(task):
try:
# bind embedding model
embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language)
await is_strong_enough(None, embedding_model)
vts, _ = embedding_model.encode(["ok"])
vector_size = len(vts[0])
except Exception as e:
@ -568,7 +565,6 @@ async def do_handle_task(task):
if task.get("task_type", "") == "raptor":
# bind LLM for raptor
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
await is_strong_enough(chat_model, None)
# run RAPTOR
async with kg_limiter:
chunks, token_count = await run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
@ -580,7 +576,6 @@ async def do_handle_task(task):
graphrag_conf = task["kb_parser_config"].get("graphrag", {})
start_ts = timer()
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
await is_strong_enough(chat_model, None)
with_resolution = graphrag_conf.get("resolution", False)
with_community = graphrag_conf.get("community", False)
async with kg_limiter:

View File

@ -2,7 +2,6 @@ import { Toaster as Sonner } from '@/components/ui/sonner';
import { Toaster } from '@/components/ui/toaster';
import i18n from '@/locales/config';
import { QueryClient, QueryClientProvider } from '@tanstack/react-query';
import { ReactQueryDevtools } from '@tanstack/react-query-devtools';
import { App, ConfigProvider, ConfigProviderProps, theme } from 'antd';
import pt_BR from 'antd/lib/locale/pt_BR';
import deDE from 'antd/locale/de_DE';
@ -85,7 +84,7 @@ function Root({ children }: React.PropsWithChildren) {
<Sonner position={'top-right'} expand richColors closeButton></Sonner>
<Toaster />
</ConfigProvider>
<ReactQueryDevtools buttonPosition={'top-left'} initialIsOpen={false} />
{/* <ReactQueryDevtools buttonPosition={'top-left'} initialIsOpen={false} /> */}
</>
);
}

View File

@ -68,7 +68,7 @@ export function LayoutRecognizeFormField() {
<div className="flex items-center">
<FormLabel
tooltip={t('layoutRecognizeTip')}
className="text-sm text-muted-foreground whitespace-nowrap w-1/4"
className="text-sm text-muted-foreground whitespace-wrap w-1/4"
>
{t('layoutRecognize')}
</FormLabel>

View File

@ -28,6 +28,7 @@ import {
PopoverTrigger,
} from '@/components/ui/popover';
import { cn } from '@/lib/utils';
import { t } from 'i18next';
import { RAGFlowSelectOptionType } from '../ui/select';
import { Separator } from '../ui/separator';
@ -114,7 +115,9 @@ export const SelectWithSearch = forwardRef<
<span className="leading-none truncate">{selectLabel}</span>
</span>
) : (
<span className="text-muted-foreground">Select value</span>
<span className="text-muted-foreground">
{t('common.selectPlaceholder')}
</span>
)}
<div className="flex items-center justify-between">
{value && allowClear && (

View File

@ -3,7 +3,7 @@ import { DocumentParserType } from '@/constants/knowledge';
import { useTranslate } from '@/hooks/common-hooks';
import random from 'lodash/random';
import { Plus } from 'lucide-react';
import { useCallback, useEffect } from 'react';
import { useCallback } from 'react';
import { useFormContext, useWatch } from 'react-hook-form';
import { SliderInputFormField } from '../slider-input-form-field';
import { Button } from '../ui/button';
@ -57,15 +57,19 @@ const RaptorFormFields = () => {
const form = useFormContext();
const { t } = useTranslate('knowledgeConfiguration');
const useRaptor = useWatch({ name: UseRaptorField });
useEffect(() => {
if (useRaptor) {
form.setValue(MaxTokenField, 256);
form.setValue(ThresholdField, 0.1);
form.setValue(MaxCluster, 64);
form.setValue(RandomSeedField, 0);
form.setValue(Prompt, t('promptText'));
}
}, [form, useRaptor, t]);
const changeRaptor = useCallback(
(isUseRaptor: boolean) => {
if (isUseRaptor) {
form.setValue(MaxTokenField, 256);
form.setValue(ThresholdField, 0.1);
form.setValue(MaxCluster, 64);
form.setValue(RandomSeedField, 0);
form.setValue(Prompt, t('promptText'));
}
},
[form],
);
const handleGenerate = useCallback(() => {
form.setValue(RandomSeedField, random(10000));
@ -97,7 +101,10 @@ const RaptorFormFields = () => {
<FormControl>
<Switch
checked={field.value}
onCheckedChange={field.onChange}
onCheckedChange={(e) => {
changeRaptor(e);
field.onChange(e);
}}
></Switch>
</FormControl>
</div>
@ -127,7 +134,13 @@ const RaptorFormFields = () => {
</FormLabel>
<div className="w-3/4">
<FormControl>
<Textarea {...field} rows={8} />
<Textarea
{...field}
rows={8}
onChange={(e) => {
field.onChange(e?.target?.value);
}}
/>
</FormControl>
</div>
</div>

View File

@ -209,10 +209,16 @@ export const MultiSelect = React.forwardRef<
const [isAnimating, setIsAnimating] = React.useState(false);
React.useEffect(() => {
if (selectedValues === undefined) {
if (!selectedValues && props.value) {
setSelectedValues(props.value as string[]);
}
}, [props.value, selectedValues]);
React.useEffect(() => {
if (!selectedValues && !props.value && defaultValue) {
setSelectedValues(defaultValue);
}
}, [defaultValue, selectedValues]);
}, [defaultValue, props.value, selectedValues]);
const flatOptions = React.useMemo(() => {
return options.flatMap((option) =>
@ -293,15 +299,18 @@ export const MultiSelect = React.forwardRef<
variant="secondary"
className={cn(
isAnimating ? 'animate-bounce' : '',
'px-1',
multiSelectVariants({ variant }),
)}
style={{ animationDuration: `${animation}s` }}
>
<div className="flex items-center gap-1">
<div className="flex justify-between items-center gap-1">
{IconComponent && (
<IconComponent className="h-4 w-4" />
)}
<div>{option?.label}</div>
<div className="max-w-28 text-ellipsis overflow-hidden">
{option?.label}
</div>
<XCircle
className="h-4 w-4 cursor-pointer"
onClick={(event) => {

View File

@ -1,6 +1,7 @@
export default {
translation: {
common: {
selectPlaceholder: 'select value',
delete: 'Delete',
deleteModalTitle: 'Are you sure to delete this item?',
ok: 'Yes',
@ -94,6 +95,16 @@ export default {
noMoreData: `That's all. Nothing more.`,
},
knowledgeDetails: {
created: 'Created',
learnMore: 'Learn More',
general: 'General',
chunkMethodTab: 'Chunk Method',
testResults: 'Test Results',
testSetting: 'Test Setting',
retrievalTesting: 'Retrieval Testing',
retrievalTestingDescription:
'Conduct a retrieval test to check if RAGFlow can recover the intended content for the LLM.',
Parse: 'Parse',
dataset: 'Dataset',
testing: 'Retrieval testing',
files: 'files',

View File

@ -1,6 +1,7 @@
export default {
translation: {
common: {
selectPlaceholder: '请选择',
delete: '删除',
deleteModalTitle: '确定删除吗?',
ok: '是',
@ -86,6 +87,16 @@ export default {
noMoreData: '没有更多数据了',
},
knowledgeDetails: {
created: '创建于',
learnMore: '了解更多',
general: '通用',
chunkMethodTab: '切片方法',
testResults: '测试结果',
testSetting: '测试设置',
retrievalTesting: '知识检索测试',
retrievalTestingDescription:
'进行检索测试,检查 RAGFlow 是否能够为大语言模型LLM恢复预期的内容。',
Parse: '解析',
dataset: '数据集',
testing: '检索测试',
configuration: '配置',

View File

@ -30,7 +30,9 @@ export default function DatasetWrapper() {
</BreadcrumbItem>
<BreadcrumbSeparator />
<BreadcrumbItem>
<BreadcrumbPage>{data.name}</BreadcrumbPage>
<BreadcrumbPage className="w-28 whitespace-nowrap text-ellipsis overflow-hidden">
{data.name}
</BreadcrumbPage>
</BreadcrumbItem>
</BreadcrumbList>
</Breadcrumb>

View File

@ -1,5 +1,6 @@
import { Button } from '@/components/ui/button';
import { cn } from '@/lib/utils';
import { t } from 'i18next';
import { X } from 'lucide-react';
import { useState } from 'react';
import CategoryPanel from './category-panel';
@ -26,7 +27,7 @@ export default ({
setVisible(!visible);
}}
>
Learn More
{t('knowledgeDetails.learnMore')}
</Button>
</div>
<div

View File

@ -29,7 +29,7 @@ export function ChunkMethodItem() {
<div className="flex items-center">
<FormLabel
tooltip={t('chunkMethodTip')}
className="text-sm text-muted-foreground whitespace-nowrap w-1/4"
className="text-sm text-muted-foreground whitespace-wrap w-1/4"
>
{t('chunkMethod')}
</FormLabel>
@ -69,7 +69,7 @@ export function EmbeddingModelItem() {
<div className="flex items-center">
<FormLabel
tooltip={t('embeddingModelTip')}
className="text-sm text-muted-foreground whitespace-nowrap w-1/4"
className="text-sm text-muted-foreground whitespace-wrap w-1/4"
>
{t('embeddingModel')}
</FormLabel>

View File

@ -107,7 +107,7 @@ export default function DatasetSettings() {
>
<div className="flex w-full h-full justify-center items-center">
<span className="h-full group-data-[state=active]:border-b-2 border-foreground ">
General
{t('knowledgeDetails.general')}
</span>
</div>
</TabsTrigger>
@ -117,7 +117,7 @@ export default function DatasetSettings() {
>
<div className="flex w-full h-full justify-center items-center">
<span className="h-full group-data-[state=active]:border-b-2 border-foreground ">
Chunk Method
{t('knowledgeDetails.chunkMethodTab')}
</span>
</div>
</TabsTrigger>

View File

@ -67,10 +67,14 @@ export function SideBar({ refreshCount }: PropType) {
{data.name}
</h3>
<div className="flex justify-between">
<span>{data.doc_num} files</span>
<span>
{data.doc_num} {t('knowledgeDetails.files')}
</span>
<span>{formatBytes(data.size)}</span>
</div>
<div>Created {formatPureDate(data.create_time)}</div>
<div>
{t('knowledgeDetails.created')} {formatPureDate(data.create_time)}
</div>
</div>
</div>

View File

@ -1,4 +1,5 @@
import { useTestRetrieval } from '@/hooks/use-knowledge-request';
import { t } from 'i18next';
import { useState } from 'react';
import { TopTitle } from '../dataset-title';
import TestingForm from './testing-form';
@ -23,8 +24,8 @@ export default function RetrievalTesting() {
<div className="p-5">
<section className="flex justify-between items-center">
<TopTitle
title={'Retrieval testing'}
description={`Conduct a retrieval test to check if RAGFlow can recover the intended content for the LLM.`}
title={t('knowledgeDetails.retrievalTesting')}
description={t('knowledgeDetails.retrievalTestingDescription')}
></TopTitle>
{/* <Button>Save as Preset</Button> */}
</section>
@ -33,7 +34,7 @@ export default function RetrievalTesting() {
<div className="p-4 flex-1">
<div className="flex justify-between pb-2.5">
<span className="text-text-primary font-semibold text-2xl">
Test setting
{t('knowledgeDetails.testSetting')}
</span>
{/* <Button variant={'outline'} onClick={addCount}>
<Plus /> Add New Test

View File

@ -6,6 +6,7 @@ import { RAGFlowPagination } from '@/components/ui/ragflow-pagination';
import { useTranslate } from '@/hooks/common-hooks';
import { useTestRetrieval } from '@/hooks/use-knowledge-request';
import { ITestingChunk } from '@/interfaces/database/knowledge';
import { t } from 'i18next';
import camelCase from 'lodash/camelCase';
import { useMemo } from 'react';
@ -66,7 +67,7 @@ export function TestingResult({
<div className="p-4 flex-1">
<div className="flex justify-between pb-2.5">
<span className="text-text-primary font-semibold text-2xl">
Test results
{t('knowledgeDetails.testResults')}
</span>
<FilterPopover
filters={filters}

View File

@ -39,7 +39,7 @@ export function SeeAllCard() {
const { navigateToDatasetList } = useNavigatePage();
return (
<Card className="w-40 flex-none" onClick={navigateToDatasetList}>
<Card className="w-40 flex-none h-full" onClick={navigateToDatasetList}>
<CardContent className="p-2.5 pt-1 w-full h-full flex items-center justify-center gap-1.5 text-text-secondary">
See All <ChevronRight className="size-4" />
</CardContent>

View File

@ -31,16 +31,20 @@ export function Datasets() {
</div>
) : (
<div className="grid gap-6 sm:grid-cols-1 md:grid-cols-2 lg:grid-cols-4 xl:grid-cols-6 2xl:grid-cols-8 max-h-[78vh] overflow-auto">
{kbs.slice(0, 6).map((dataset) => (
<DatasetCard
key={dataset.id}
dataset={dataset}
showDatasetRenameModal={showDatasetRenameModal}
></DatasetCard>
))}
{kbs
?.slice(0, 6)
.map((dataset) => (
<DatasetCard
key={dataset.id}
dataset={dataset}
showDatasetRenameModal={showDatasetRenameModal}
></DatasetCard>
))}
<div className="min-h-24">
<SeeAllCard></SeeAllCard>
</div>
</div>
)}
<SeeAllCard></SeeAllCard>
</div>
{datasetRenameVisible && (
<RenameDialog

View File

@ -9,6 +9,7 @@ import {
setLLMSettingEnabledValues,
} from '@/utils/form';
import { zodResolver } from '@hookform/resolvers/zod';
import { omit } from 'lodash';
import { X } from 'lucide-react';
import { useEffect } from 'react';
import { useForm } from 'react-hook-form';
@ -69,7 +70,7 @@ export function ChatSettings({ switchSettingVisible }: ChatSettingsProps) {
? await transformFile2Base64(icon[0])
: '';
setDialog({
...data,
...omit(data, 'operator_permission'),
...nextValues,
icon: avatar,
dialog_id: id,

View File

@ -48,7 +48,10 @@ export const useRenameChat = () => {
const nextChat = {
...(isEmpty(chat)
? InitialData
: { ...omit(chat, 'nickname', 'tenant_avatar'), dialog_id: chat.id }),
: {
...omit(chat, 'nickname', 'tenant_avatar', 'operator_permission'),
dialog_id: chat.id,
}),
name,
};
const ret = await setDialog(nextChat);