Compare commits

...

2 Commits

Author SHA1 Message Date
c7efaab30e Feat: debug extractor... (#10294)
### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 10:51:05 +08:00
ff49454501 Feat: fetch KB config for GraphRAG and RAPTOR (#10288)
### What problem does this PR solve?

Fetch KB config for GraphRAG and RAPTOR.

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
2025-09-26 09:39:58 +08:00
12 changed files with 64 additions and 49 deletions

View File

@ -153,6 +153,16 @@ class Graph:
def get_tenant_id(self):
return self._tenant_id
def get_variable_value(self, exp: str) -> Any:
exp = exp.strip("{").strip("}").strip(" ").strip("{").strip("}")
if exp.find("@") < 0:
return self.globals[exp]
cpn_id, var_nm = exp.split("@")
cpn = self.get_component(cpn_id)
if not cpn:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
class Canvas(Graph):
@ -406,16 +416,6 @@ class Canvas(Graph):
return False
return True
def get_variable_value(self, exp: str) -> Any:
exp = exp.strip("{").strip("}").strip(" ").strip("{").strip("}")
if exp.find("@") < 0:
return self.globals[exp]
cpn_id, var_nm = exp.split("@")
cpn = self.get_component(cpn_id)
if not cpn:
raise Exception(f"Can't find variable: '{cpn_id}@{var_nm}'")
return cpn["obj"].output(var_nm)
def get_history(self, window_size):
convs = []
if window_size <= 0:

View File

@ -102,6 +102,8 @@ class LLM(ComponentBase):
def get_input_elements(self) -> dict[str, Any]:
res = self.get_input_elements_from_text(self._param.sys_prompt)
if isinstance(self._param.prompts, str):
self._param.prompts = [{"role": "user", "content": self._param.prompts}]
for prompt in self._param.prompts:
d = self.get_input_elements_from_text(prompt["content"])
res.update(d)
@ -114,6 +116,8 @@ class LLM(ComponentBase):
self._param.sys_prompt += txt
def _sys_prompt_and_msg(self, msg, args):
if isinstance(self._param.prompts, str):
self._param.prompts = [{"role": "user", "content": self._param.prompts}]
for p in self._param.prompts:
if msg and msg[-1]["role"] == p["role"]:
continue

View File

@ -545,9 +545,6 @@ def run_graphrag():
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A Graph Task is already running.")
document_ids = []
sample_document = {}
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
@ -559,13 +556,11 @@ def run_graphrag():
types=[],
suffix=[],
)
for document in documents:
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
if not sample_document and document["parser_config"].get("graphrag", {}).get("use_graphrag", False):
sample_document = document
document_ids.insert(0, document["id"])
else:
document_ids.append(document["id"])
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(doc=sample_document, ty="graphrag", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
@ -586,7 +581,6 @@ def trace_graphrag():
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.graphrag_task_id
if not task_id:
return get_error_data_result(message="GraphRAG Task ID Not Found")
@ -619,9 +613,6 @@ def run_raptor():
if task and task.progress not in [-1, 1]:
return get_error_data_result(message=f"Task {task_id} in progress with status {task.progress}. A RAPTOR Task is already running.")
document_ids = []
sample_document = {}
documents, _ = DocumentService.get_by_kb_id(
kb_id=kb_id,
page_number=0,
@ -633,13 +624,11 @@ def run_raptor():
types=[],
suffix=[],
)
for document in documents:
if not documents:
return get_error_data_result(message=f"No documents in Knowledgebase {kb_id}")
if not sample_document:
sample_document = document
document_ids.insert(0, document["id"])
else:
document_ids.append(document["id"])
sample_document = documents[0]
document_ids = [document["id"] for document in documents]
task_id = queue_raptor_o_graphrag_tasks(doc=sample_document, ty="raptor", priority=0, fake_doc_id=GRAPH_RAPTOR_FAKE_DOC_ID, doc_ids=list(document_ids))
@ -660,7 +649,6 @@ def trace_raptor():
if not ok:
return get_error_data_result(message="Invalid Knowledgebase ID")
task_id = kb.raptor_task_id
if not task_id:
return get_error_data_result(message="RAPTOR Task ID Not Found")

View File

@ -285,7 +285,7 @@ async def run_graphrag_for_kb(
if not with_resolution and not with_community:
now = trio.current_time()
callback(msg=f"[GraphRAG] KB merge only done in {now - start:.2f}s. ok={len(ok_docs)} / total={len(doc_ids)}")
callback(msg=f"[GraphRAG] KB merge done in {now - start:.2f}s. ok={len(ok_docs)} / total={len(doc_ids)}")
return {"ok_docs": ok_docs, "failed_docs": failed_docs, "total_docs": len(doc_ids), "total_chunks": total_chunks, "seconds": now - start}
await kb_lock.spin_acquire()

View File

@ -14,9 +14,10 @@
# limitations under the License.
import random
from agent.component.llm import LLMParam, LLM
from rag.flow.base import ProcessBase, ProcessParamBase
class ExtractorParam(LLMParam):
class ExtractorParam(ProcessParamBase, LLMParam):
def __init__(self):
super().__init__()
self.field_name = ""
@ -26,7 +27,7 @@ class ExtractorParam(LLMParam):
self.check_empty(self.field_name, "Result Destination")
class Extractor(LLM):
class Extractor(ProcessBase, LLM):
component_name = "Extractor"
async def _invoke(self, **kwargs):

View File

@ -30,7 +30,7 @@ class ExtractorFromUpstream(BaseModel):
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: list[str] | None = Field(default=None, alias="html")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")

View File

@ -29,7 +29,7 @@ class HierarchicalMergerFromUpstream(BaseModel):
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: list[str] | None = Field(default=None, alias="html")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")

View File

@ -143,6 +143,10 @@ class Pipeline(Graph):
async def invoke():
nonlocal last_cpn, cpn_obj
await cpn_obj.invoke(**last_cpn.output())
#if inspect.iscoroutinefunction(cpn_obj.invoke):
# await cpn_obj.invoke(**last_cpn.output())
#else:
# cpn_obj.invoke(**last_cpn.output())
async with trio.open_nursery() as nursery:
nursery.start_soon(invoke)

View File

@ -30,7 +30,7 @@ class SplitterFromUpstream(BaseModel):
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: list[str] | None = Field(default=None, alias="html")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")

View File

@ -31,7 +31,7 @@ class TokenizerFromUpstream(BaseModel):
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
markdown_result: str | None = Field(default=None, alias="markdown")
text_result: str | None = Field(default=None, alias="text")
html_result: list[str] | None = Field(default=None, alias="html")
html_result: str | None = Field(default=None, alias="html")
model_config = ConfigDict(populate_by_name=True, extra="forbid")

View File

@ -119,7 +119,7 @@ class Tokenizer(ProcessBase):
if ck.get("questions"):
ck["question_tks"] = rag_tokenizer.tokenize("\n".join(ck["questions"]))
if ck.get("keywords"):
ck["important_tks"] = rag_tokenizer.tokenize("\n".join(ck["keywords"]))
ck["important_tks"] = rag_tokenizer.tokenize(",".join(ck["keywords"]))
if ck.get("summary"):
ck["content_ltks"] = rag_tokenizer.tokenize(ck["summary"])
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])

View File

@ -222,10 +222,9 @@ async def collect():
return None, None
canceled = False
if msg.get("doc_id", "") == GRAPH_RAPTOR_FAKE_DOC_ID:
if msg.get("doc_id", "") in [GRAPH_RAPTOR_FAKE_DOC_ID, CANVAS_DEBUG_DOC_ID]:
task = msg
if task["task_type"] in ["graphrag", "raptor"] and msg.get("doc_ids", []):
print(f"hack {msg['doc_ids']=}=",flush=True)
task = TaskService.get_task(msg["id"], msg["doc_ids"])
task["doc_ids"] = msg["doc_ids"]
else:
@ -637,9 +636,11 @@ async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
@timeout(3600)
async def run_raptor_for_kb(row, chat_mdl, embd_mdl, vector_size, callback=None, doc_ids=[]):
async def run_raptor_for_kb(row, kb_parser_config, chat_mdl, embd_mdl, vector_size, callback=None, doc_ids=[]):
fake_doc_id = GRAPH_RAPTOR_FAKE_DOC_ID
raptor_config = kb_parser_config.get("raptor", {})
chunks = []
vctr_nm = "q_%d_vec"%vector_size
for doc_id in doc_ids:
@ -649,12 +650,12 @@ async def run_raptor_for_kb(row, chat_mdl, embd_mdl, vector_size, callback=None,
chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
raptor = Raptor(
row["parser_config"]["raptor"].get("max_cluster", 64),
raptor_config.get("max_cluster", 64),
chat_mdl,
embd_mdl,
row["parser_config"]["raptor"]["prompt"],
row["parser_config"]["raptor"]["max_token"],
row["parser_config"]["raptor"]["threshold"]
raptor_config["prompt"],
raptor_config["max_token"],
raptor_config["threshold"],
)
original_length = len(chunks)
chunks = await raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
@ -773,6 +774,15 @@ async def do_handle_task(task):
return
if task_type == "raptor":
ok, kb = KnowledgebaseService.get_by_id(task_dataset_id)
if not ok:
progress_callback(prog=-1.0, msg="Cannot found valid knowledgebase for RAPTOR task")
return
kb_parser_config = kb.parser_config
if not kb_parser_config.get("raptor", {}).get("use_raptor", False):
progress_callback(prog=-1.0, msg="Internal error: Invalid RAPTOR configuration")
return
# bind LLM for raptor
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
# run RAPTOR
@ -780,6 +790,7 @@ async def do_handle_task(task):
# chunks, token_count = await run_raptor(task, chat_model, embedding_model, vector_size, progress_callback)
chunks, token_count = await run_raptor_for_kb(
row=task,
kb_parser_config=kb_parser_config,
chat_mdl=chat_model,
embd_mdl=embedding_model,
vector_size=vector_size,
@ -788,10 +799,17 @@ async def do_handle_task(task):
)
# Either using graphrag or Standard chunking methods
elif task_type == "graphrag":
if not task_parser_config.get("graphrag", {}).get("use_graphrag", False):
progress_callback(prog=-1.0, msg="Internal configuration error.")
ok, kb = KnowledgebaseService.get_by_id(task_dataset_id)
if not ok:
progress_callback(prog=-1.0, msg="Cannot found valid knowledgebase for GraphRAG task")
return
graphrag_conf = task["kb_parser_config"].get("graphrag", {})
kb_parser_config = kb.parser_config
if not kb_parser_config.get("graphrag", {}).get("use_graphrag", False):
progress_callback(prog=-1.0, msg="Internal error: Invalid GraphRAG configuration")
return
graphrag_conf = kb_parser_config.get("graphrag", {})
start_ts = timer()
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
with_resolution = graphrag_conf.get("resolution", False)
@ -802,7 +820,7 @@ async def do_handle_task(task):
row=task,
doc_ids=task.get("doc_ids", []),
language=task_language,
kb_parser_config=task_parser_config,
kb_parser_config=kb_parser_config,
chat_model=chat_model,
embedding_model=embedding_model,
callback=progress_callback,