mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-02-02 08:35:08 +08:00
Compare commits
7 Commits
06cef71ba6
...
065917bf1c
| Author | SHA1 | Date | |
|---|---|---|---|
| 065917bf1c | |||
| 820934fc77 | |||
| d3d2ccc76c | |||
| c8ab9079b3 | |||
| 0d5589bfda | |||
| b846a0f547 | |||
| 69578ebfce |
@ -137,7 +137,7 @@ class Retrieval(ToolBase, ABC):
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif self._param.meta_data_filter.get("method") == "manual":
|
||||
filters=self._param.meta_data_filter["manual"]
|
||||
filters = self._param.meta_data_filter["manual"]
|
||||
for flt in filters:
|
||||
pat = re.compile(self.variable_ref_patt)
|
||||
s = flt["value"]
|
||||
@ -166,8 +166,8 @@ class Retrieval(ToolBase, ABC):
|
||||
out_parts.append(s[last:])
|
||||
flt["value"] = "".join(out_parts)
|
||||
doc_ids.extend(meta_filter(metas, filters, self._param.meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
if filters and not doc_ids:
|
||||
doc_ids = ["-999"]
|
||||
|
||||
if self._param.cross_languages:
|
||||
query = cross_languages(kbs[0].tenant_id, None, query, self._param.cross_languages)
|
||||
|
||||
@ -311,8 +311,8 @@ async def retrieval_test():
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
if meta_data_filter["manual"] and not doc_ids:
|
||||
doc_ids = ["-999"]
|
||||
|
||||
try:
|
||||
tenants = UserTenantService.query(user_id=current_user.id)
|
||||
|
||||
@ -1445,6 +1445,8 @@ async def retrieval_test(tenant_id):
|
||||
metadata_condition = req.get("metadata_condition", {}) or {}
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
doc_ids = meta_filter(metas, convert_conditions(metadata_condition), metadata_condition.get("logic", "and"))
|
||||
if metadata_condition and not doc_ids:
|
||||
doc_ids = ["-999"]
|
||||
similarity_threshold = float(req.get("similarity_threshold", 0.2))
|
||||
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
||||
top = int(req.get("top_k", 1024))
|
||||
|
||||
@ -446,8 +446,8 @@ async def agent_completions(tenant_id, agent_id):
|
||||
|
||||
if req.get("stream", True):
|
||||
|
||||
def generate():
|
||||
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
||||
async def generate():
|
||||
async for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
||||
if isinstance(answer, str):
|
||||
try:
|
||||
ans = json.loads(answer[5:]) # remove "data:"
|
||||
@ -471,7 +471,7 @@ async def agent_completions(tenant_id, agent_id):
|
||||
full_content = ""
|
||||
reference = {}
|
||||
final_ans = ""
|
||||
for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
||||
async for answer in agent_completion(tenant_id=tenant_id, agent_id=agent_id, **req):
|
||||
try:
|
||||
ans = json.loads(answer[5:])
|
||||
|
||||
@ -873,7 +873,7 @@ async def agent_bot_completions(agent_id):
|
||||
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
|
||||
return resp
|
||||
|
||||
for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
|
||||
async for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
|
||||
return get_result(data=answer)
|
||||
|
||||
|
||||
@ -981,8 +981,8 @@ async def retrieval_test_embedded():
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
if meta_data_filter["manual"] and not doc_ids:
|
||||
doc_ids = ["-999"]
|
||||
|
||||
try:
|
||||
tenants = UserTenantService.query(user_id=tenant_id)
|
||||
|
||||
@ -415,9 +415,10 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
if not attachments:
|
||||
attachments = None
|
||||
elif dialog.meta_data_filter.get("method") == "manual":
|
||||
attachments.extend(meta_filter(metas, dialog.meta_data_filter["manual"], dialog.meta_data_filter.get("logic", "and")))
|
||||
if not attachments:
|
||||
attachments = None
|
||||
conds = dialog.meta_data_filter["manual"]
|
||||
attachments.extend(meta_filter(metas, conds, dialog.meta_data_filter.get("logic", "and")))
|
||||
if conds and not attachments:
|
||||
attachments = ["-999"]
|
||||
|
||||
if prompt_config.get("keyword", False):
|
||||
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
|
||||
@ -787,8 +788,8 @@ def ask(question, kb_ids, tenant_id, chat_llm_name=None, search_config={}):
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
if meta_data_filter["manual"] and not doc_ids:
|
||||
doc_ids = ["-999"]
|
||||
|
||||
kbinfos = retriever.retrieval(
|
||||
question=question,
|
||||
@ -862,8 +863,8 @@ def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
if meta_data_filter["manual"] and not doc_ids:
|
||||
doc_ids = ["-999"]
|
||||
|
||||
ranks = settings.retriever.retrieval(
|
||||
question=question,
|
||||
|
||||
@ -1,38 +1,45 @@
|
||||
import html
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from retry import retry
|
||||
|
||||
from common.data_source.config import (
|
||||
INDEX_BATCH_SIZE,
|
||||
DocumentSource, NOTION_CONNECTOR_DISABLE_RECURSIVE_PAGE_LOOKUP
|
||||
NOTION_CONNECTOR_DISABLE_RECURSIVE_PAGE_LOOKUP,
|
||||
DocumentSource,
|
||||
)
|
||||
from common.data_source.exceptions import (
|
||||
ConnectorMissingCredentialError,
|
||||
ConnectorValidationError,
|
||||
CredentialExpiredError,
|
||||
InsufficientPermissionsError,
|
||||
UnexpectedValidationError,
|
||||
)
|
||||
from common.data_source.interfaces import (
|
||||
LoadConnector,
|
||||
PollConnector,
|
||||
SecondsSinceUnixEpoch
|
||||
SecondsSinceUnixEpoch,
|
||||
)
|
||||
from common.data_source.models import (
|
||||
Document,
|
||||
TextSection, GenerateDocumentsOutput
|
||||
)
|
||||
from common.data_source.exceptions import (
|
||||
ConnectorValidationError,
|
||||
CredentialExpiredError,
|
||||
InsufficientPermissionsError,
|
||||
UnexpectedValidationError, ConnectorMissingCredentialError
|
||||
)
|
||||
from common.data_source.models import (
|
||||
NotionPage,
|
||||
GenerateDocumentsOutput,
|
||||
NotionBlock,
|
||||
NotionSearchResponse
|
||||
NotionPage,
|
||||
NotionSearchResponse,
|
||||
TextSection,
|
||||
)
|
||||
from common.data_source.utils import (
|
||||
rl_requests,
|
||||
batch_generator,
|
||||
datetime_from_string,
|
||||
fetch_notion_data,
|
||||
filter_pages_by_time,
|
||||
properties_to_str,
|
||||
filter_pages_by_time, datetime_from_string
|
||||
rl_requests,
|
||||
)
|
||||
|
||||
|
||||
@ -61,11 +68,9 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
self.recursive_index_enabled = recursive_index_enabled or bool(root_page_id)
|
||||
|
||||
@retry(tries=3, delay=1, backoff=2)
|
||||
def _fetch_child_blocks(
|
||||
self, block_id: str, cursor: Optional[str] = None
|
||||
) -> dict[str, Any] | None:
|
||||
def _fetch_child_blocks(self, block_id: str, cursor: Optional[str] = None) -> dict[str, Any] | None:
|
||||
"""Fetch all child blocks via the Notion API."""
|
||||
logging.debug(f"Fetching children of block with ID '{block_id}'")
|
||||
logging.debug(f"[Notion]: Fetching children of block with ID {block_id}")
|
||||
block_url = f"https://api.notion.com/v1/blocks/{block_id}/children"
|
||||
query_params = {"start_cursor": cursor} if cursor else None
|
||||
|
||||
@ -79,49 +84,42 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
except Exception as e:
|
||||
if hasattr(e, 'response') and e.response.status_code == 404:
|
||||
logging.error(
|
||||
f"Unable to access block with ID '{block_id}'. "
|
||||
f"This is likely due to the block not being shared with the integration."
|
||||
)
|
||||
if hasattr(e, "response") and e.response.status_code == 404:
|
||||
logging.error(f"[Notion]: Unable to access block with ID {block_id}. This is likely due to the block not being shared with the integration.")
|
||||
return None
|
||||
else:
|
||||
logging.exception(f"Error fetching blocks: {e}")
|
||||
logging.exception(f"[Notion]: Error fetching blocks: {e}")
|
||||
raise
|
||||
|
||||
@retry(tries=3, delay=1, backoff=2)
|
||||
def _fetch_page(self, page_id: str) -> NotionPage:
|
||||
"""Fetch a page from its ID via the Notion API."""
|
||||
logging.debug(f"Fetching page for ID '{page_id}'")
|
||||
logging.debug(f"[Notion]: Fetching page for ID {page_id}")
|
||||
page_url = f"https://api.notion.com/v1/pages/{page_id}"
|
||||
|
||||
try:
|
||||
data = fetch_notion_data(page_url, self.headers, "GET")
|
||||
return NotionPage(**data)
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to fetch page, trying database for ID '{page_id}': {e}")
|
||||
logging.warning(f"[Notion]: Failed to fetch page, trying database for ID {page_id}: {e}")
|
||||
return self._fetch_database_as_page(page_id)
|
||||
|
||||
@retry(tries=3, delay=1, backoff=2)
|
||||
def _fetch_database_as_page(self, database_id: str) -> NotionPage:
|
||||
"""Attempt to fetch a database as a page."""
|
||||
logging.debug(f"Fetching database for ID '{database_id}' as a page")
|
||||
logging.debug(f"[Notion]: Fetching database for ID {database_id} as a page")
|
||||
database_url = f"https://api.notion.com/v1/databases/{database_id}"
|
||||
|
||||
data = fetch_notion_data(database_url, self.headers, "GET")
|
||||
database_name = data.get("title")
|
||||
database_name = (
|
||||
database_name[0].get("text", {}).get("content") if database_name else None
|
||||
)
|
||||
database_name = database_name[0].get("text", {}).get("content") if database_name else None
|
||||
|
||||
return NotionPage(**data, database_name=database_name)
|
||||
|
||||
@retry(tries=3, delay=1, backoff=2)
|
||||
def _fetch_database(
|
||||
self, database_id: str, cursor: Optional[str] = None
|
||||
) -> dict[str, Any]:
|
||||
def _fetch_database(self, database_id: str, cursor: Optional[str] = None) -> dict[str, Any]:
|
||||
"""Fetch a database from its ID via the Notion API."""
|
||||
logging.debug(f"Fetching database for ID '{database_id}'")
|
||||
logging.debug(f"[Notion]: Fetching database for ID {database_id}")
|
||||
block_url = f"https://api.notion.com/v1/databases/{database_id}/query"
|
||||
body = {"start_cursor": cursor} if cursor else None
|
||||
|
||||
@ -129,17 +127,12 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
data = fetch_notion_data(block_url, self.headers, "POST", body)
|
||||
return data
|
||||
except Exception as e:
|
||||
if hasattr(e, 'response') and e.response.status_code in [404, 400]:
|
||||
logging.error(
|
||||
f"Unable to access database with ID '{database_id}'. "
|
||||
f"This is likely due to the database not being shared with the integration."
|
||||
)
|
||||
if hasattr(e, "response") and e.response.status_code in [404, 400]:
|
||||
logging.error(f"[Notion]: Unable to access database with ID {database_id}. This is likely due to the database not being shared with the integration.")
|
||||
return {"results": [], "next_cursor": None}
|
||||
raise
|
||||
|
||||
def _read_pages_from_database(
|
||||
self, database_id: str
|
||||
) -> tuple[list[NotionBlock], list[str]]:
|
||||
def _read_pages_from_database(self, database_id: str) -> tuple[list[NotionBlock], list[str]]:
|
||||
"""Returns a list of top level blocks and all page IDs in the database."""
|
||||
result_blocks: list[NotionBlock] = []
|
||||
result_pages: list[str] = []
|
||||
@ -158,10 +151,10 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
|
||||
if self.recursive_index_enabled:
|
||||
if obj_type == "page":
|
||||
logging.debug(f"Found page with ID '{obj_id}' in database '{database_id}'")
|
||||
logging.debug(f"[Notion]: Found page with ID {obj_id} in database {database_id}")
|
||||
result_pages.append(result["id"])
|
||||
elif obj_type == "database":
|
||||
logging.debug(f"Found database with ID '{obj_id}' in database '{database_id}'")
|
||||
logging.debug(f"[Notion]: Found database with ID {obj_id} in database {database_id}")
|
||||
_, child_pages = self._read_pages_from_database(obj_id)
|
||||
result_pages.extend(child_pages)
|
||||
|
||||
@ -172,44 +165,229 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
|
||||
return result_blocks, result_pages
|
||||
|
||||
def _read_blocks(self, base_block_id: str) -> tuple[list[NotionBlock], list[str]]:
|
||||
"""Reads all child blocks for the specified block, returns blocks and child page ids."""
|
||||
def _extract_rich_text(self, rich_text_array: list[dict[str, Any]]) -> str:
|
||||
collected_text: list[str] = []
|
||||
for rich_text in rich_text_array:
|
||||
content = ""
|
||||
r_type = rich_text.get("type")
|
||||
|
||||
if r_type == "equation":
|
||||
expr = rich_text.get("equation", {}).get("expression")
|
||||
if expr:
|
||||
content = expr
|
||||
elif r_type == "mention":
|
||||
mention = rich_text.get("mention", {}) or {}
|
||||
mention_type = mention.get("type")
|
||||
mention_value = mention.get(mention_type, {}) if mention_type else {}
|
||||
if mention_type == "date":
|
||||
start = mention_value.get("start")
|
||||
end = mention_value.get("end")
|
||||
if start and end:
|
||||
content = f"{start} - {end}"
|
||||
elif start:
|
||||
content = start
|
||||
elif mention_type in {"page", "database"}:
|
||||
content = mention_value.get("id", rich_text.get("plain_text", ""))
|
||||
elif mention_type == "link_preview":
|
||||
content = mention_value.get("url", rich_text.get("plain_text", ""))
|
||||
else:
|
||||
content = rich_text.get("plain_text", "") or str(mention_value)
|
||||
else:
|
||||
if rich_text.get("plain_text"):
|
||||
content = rich_text["plain_text"]
|
||||
elif "text" in rich_text and rich_text["text"].get("content"):
|
||||
content = rich_text["text"]["content"]
|
||||
|
||||
href = rich_text.get("href")
|
||||
if content and href:
|
||||
content = f"{content} ({href})"
|
||||
|
||||
if content:
|
||||
collected_text.append(content)
|
||||
|
||||
return "".join(collected_text).strip()
|
||||
|
||||
def _build_table_html(self, table_block_id: str) -> str | None:
|
||||
rows: list[str] = []
|
||||
cursor = None
|
||||
while True:
|
||||
data = self._fetch_child_blocks(table_block_id, cursor)
|
||||
if data is None:
|
||||
break
|
||||
|
||||
for result in data["results"]:
|
||||
if result.get("type") != "table_row":
|
||||
continue
|
||||
cells_html: list[str] = []
|
||||
for cell in result["table_row"].get("cells", []):
|
||||
cell_text = self._extract_rich_text(cell)
|
||||
cell_html = html.escape(cell_text) if cell_text else ""
|
||||
cells_html.append(f"<td>{cell_html}</td>")
|
||||
rows.append(f"<tr>{''.join(cells_html)}</tr>")
|
||||
|
||||
if data.get("next_cursor") is None:
|
||||
break
|
||||
cursor = data["next_cursor"]
|
||||
|
||||
if not rows:
|
||||
return None
|
||||
return "<table>\n" + "\n".join(rows) + "\n</table>"
|
||||
|
||||
def _download_file(self, url: str) -> bytes | None:
|
||||
try:
|
||||
response = rl_requests.get(url, timeout=60)
|
||||
response.raise_for_status()
|
||||
return response.content
|
||||
except Exception as exc:
|
||||
logging.warning(f"[Notion]: Failed to download Notion file from {url}: {exc}")
|
||||
return None
|
||||
|
||||
def _extract_file_metadata(self, result_obj: dict[str, Any], block_id: str) -> tuple[str | None, str, str | None]:
|
||||
file_source_type = result_obj.get("type")
|
||||
file_source = result_obj.get(file_source_type, {}) if file_source_type else {}
|
||||
url = file_source.get("url")
|
||||
|
||||
name = result_obj.get("name") or file_source.get("name")
|
||||
if url and not name:
|
||||
parsed_name = Path(urlparse(url).path).name
|
||||
name = parsed_name or f"notion_file_{block_id}"
|
||||
elif not name:
|
||||
name = f"notion_file_{block_id}"
|
||||
|
||||
caption = self._extract_rich_text(result_obj.get("caption", [])) if "caption" in result_obj else None
|
||||
|
||||
return url, name, caption
|
||||
|
||||
def _build_attachment_document(
|
||||
self,
|
||||
block_id: str,
|
||||
url: str,
|
||||
name: str,
|
||||
caption: Optional[str],
|
||||
page_last_edited_time: Optional[str],
|
||||
) -> Document | None:
|
||||
file_bytes = self._download_file(url)
|
||||
if file_bytes is None:
|
||||
return None
|
||||
|
||||
extension = Path(name).suffix or Path(urlparse(url).path).suffix or ".bin"
|
||||
if extension and not extension.startswith("."):
|
||||
extension = f".{extension}"
|
||||
if not extension:
|
||||
extension = ".bin"
|
||||
|
||||
updated_at = datetime_from_string(page_last_edited_time) if page_last_edited_time else datetime.now(timezone.utc)
|
||||
semantic_identifier = caption or name or f"Notion file {block_id}"
|
||||
|
||||
return Document(
|
||||
id=block_id,
|
||||
blob=file_bytes,
|
||||
source=DocumentSource.NOTION,
|
||||
semantic_identifier=semantic_identifier,
|
||||
extension=extension,
|
||||
size_bytes=len(file_bytes),
|
||||
doc_updated_at=updated_at,
|
||||
)
|
||||
|
||||
def _read_blocks(self, base_block_id: str, page_last_edited_time: Optional[str] = None) -> tuple[list[NotionBlock], list[str], list[Document]]:
|
||||
result_blocks: list[NotionBlock] = []
|
||||
child_pages: list[str] = []
|
||||
attachments: list[Document] = []
|
||||
cursor = None
|
||||
|
||||
while True:
|
||||
data = self._fetch_child_blocks(base_block_id, cursor)
|
||||
|
||||
if data is None:
|
||||
return result_blocks, child_pages
|
||||
return result_blocks, child_pages, attachments
|
||||
|
||||
for result in data["results"]:
|
||||
logging.debug(f"Found child block for block with ID '{base_block_id}': {result}")
|
||||
logging.debug(f"[Notion]: Found child block for block with ID {base_block_id}: {result}")
|
||||
result_block_id = result["id"]
|
||||
result_type = result["type"]
|
||||
result_obj = result[result_type]
|
||||
|
||||
if result_type in ["ai_block", "unsupported", "external_object_instance_page"]:
|
||||
logging.warning(f"Skipping unsupported block type '{result_type}'")
|
||||
logging.warning(f"[Notion]: Skipping unsupported block type {result_type}")
|
||||
continue
|
||||
|
||||
if result_type == "table":
|
||||
table_html = self._build_table_html(result_block_id)
|
||||
if table_html:
|
||||
result_blocks.append(
|
||||
NotionBlock(
|
||||
id=result_block_id,
|
||||
text=table_html,
|
||||
prefix="\n\n",
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
if result_type == "equation":
|
||||
expr = result_obj.get("expression")
|
||||
if expr:
|
||||
result_blocks.append(
|
||||
NotionBlock(
|
||||
id=result_block_id,
|
||||
text=expr,
|
||||
prefix="\n",
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
cur_result_text_arr = []
|
||||
if "rich_text" in result_obj:
|
||||
for rich_text in result_obj["rich_text"]:
|
||||
if "text" in rich_text:
|
||||
text = rich_text["text"]["content"]
|
||||
cur_result_text_arr.append(text)
|
||||
text = self._extract_rich_text(result_obj["rich_text"])
|
||||
if text:
|
||||
cur_result_text_arr.append(text)
|
||||
|
||||
if result_type == "bulleted_list_item":
|
||||
if cur_result_text_arr:
|
||||
cur_result_text_arr[0] = f"- {cur_result_text_arr[0]}"
|
||||
else:
|
||||
cur_result_text_arr = ["- "]
|
||||
|
||||
if result_type == "numbered_list_item":
|
||||
if cur_result_text_arr:
|
||||
cur_result_text_arr[0] = f"1. {cur_result_text_arr[0]}"
|
||||
else:
|
||||
cur_result_text_arr = ["1. "]
|
||||
|
||||
if result_type == "to_do":
|
||||
checked = result_obj.get("checked")
|
||||
checkbox_prefix = "[x]" if checked else "[ ]"
|
||||
if cur_result_text_arr:
|
||||
cur_result_text_arr = [f"{checkbox_prefix} {cur_result_text_arr[0]}"] + cur_result_text_arr[1:]
|
||||
else:
|
||||
cur_result_text_arr = [checkbox_prefix]
|
||||
|
||||
if result_type in {"file", "image", "pdf", "video", "audio"}:
|
||||
file_url, file_name, caption = self._extract_file_metadata(result_obj, result_block_id)
|
||||
if file_url:
|
||||
attachment_doc = self._build_attachment_document(
|
||||
block_id=result_block_id,
|
||||
url=file_url,
|
||||
name=file_name,
|
||||
caption=caption,
|
||||
page_last_edited_time=page_last_edited_time,
|
||||
)
|
||||
if attachment_doc:
|
||||
attachments.append(attachment_doc)
|
||||
|
||||
attachment_label = caption or file_name
|
||||
if attachment_label:
|
||||
cur_result_text_arr.append(f"{result_type.capitalize()}: {attachment_label}")
|
||||
|
||||
if result["has_children"]:
|
||||
if result_type == "child_page":
|
||||
child_pages.append(result_block_id)
|
||||
else:
|
||||
logging.debug(f"Entering sub-block: {result_block_id}")
|
||||
subblocks, subblock_child_pages = self._read_blocks(result_block_id)
|
||||
logging.debug(f"Finished sub-block: {result_block_id}")
|
||||
logging.debug(f"[Notion]: Entering sub-block: {result_block_id}")
|
||||
subblocks, subblock_child_pages, subblock_attachments = self._read_blocks(result_block_id, page_last_edited_time)
|
||||
logging.debug(f"[Notion]: Finished sub-block: {result_block_id}")
|
||||
result_blocks.extend(subblocks)
|
||||
child_pages.extend(subblock_child_pages)
|
||||
attachments.extend(subblock_attachments)
|
||||
|
||||
if result_type == "child_database":
|
||||
inner_blocks, inner_child_pages = self._read_pages_from_database(result_block_id)
|
||||
@ -231,7 +409,7 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
|
||||
cursor = data["next_cursor"]
|
||||
|
||||
return result_blocks, child_pages
|
||||
return result_blocks, child_pages, attachments
|
||||
|
||||
def _read_page_title(self, page: NotionPage) -> Optional[str]:
|
||||
"""Extracts the title from a Notion page."""
|
||||
@ -245,9 +423,7 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
|
||||
return None
|
||||
|
||||
def _read_pages(
|
||||
self, pages: list[NotionPage]
|
||||
) -> Generator[Document, None, None]:
|
||||
def _read_pages(self, pages: list[NotionPage], start: SecondsSinceUnixEpoch | None = None, end: SecondsSinceUnixEpoch | None = None) -> Generator[Document, None, None]:
|
||||
"""Reads pages for rich text content and generates Documents."""
|
||||
all_child_page_ids: list[str] = []
|
||||
|
||||
@ -255,11 +431,17 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
if isinstance(page, dict):
|
||||
page = NotionPage(**page)
|
||||
if page.id in self.indexed_pages:
|
||||
logging.debug(f"Already indexed page with ID '{page.id}'. Skipping.")
|
||||
logging.debug(f"[Notion]: Already indexed page with ID {page.id}. Skipping.")
|
||||
continue
|
||||
|
||||
logging.info(f"Reading page with ID '{page.id}', with url {page.url}")
|
||||
page_blocks, child_page_ids = self._read_blocks(page.id)
|
||||
if start is not None and end is not None:
|
||||
page_ts = datetime_from_string(page.last_edited_time).timestamp()
|
||||
if not (page_ts > start and page_ts <= end):
|
||||
logging.debug(f"[Notion]: Skipping page {page.id} outside polling window.")
|
||||
continue
|
||||
|
||||
logging.info(f"[Notion]: Reading page with ID {page.id}, with url {page.url}")
|
||||
page_blocks, child_page_ids, attachment_docs = self._read_blocks(page.id, page.last_edited_time)
|
||||
all_child_page_ids.extend(child_page_ids)
|
||||
self.indexed_pages.add(page.id)
|
||||
|
||||
@ -268,14 +450,12 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
|
||||
if not page_blocks:
|
||||
if not raw_page_title:
|
||||
logging.warning(f"No blocks OR title found for page with ID '{page.id}'. Skipping.")
|
||||
logging.warning(f"[Notion]: No blocks OR title found for page with ID {page.id}. Skipping.")
|
||||
continue
|
||||
|
||||
text = page_title
|
||||
if page.properties:
|
||||
text += "\n\n" + "\n".join(
|
||||
[f"{key}: {value}" for key, value in page.properties.items()]
|
||||
)
|
||||
text += "\n\n" + "\n".join([f"{key}: {value}" for key, value in page.properties.items()])
|
||||
sections = [TextSection(link=page.url, text=text)]
|
||||
else:
|
||||
sections = [
|
||||
@ -286,45 +466,39 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
for block in page_blocks
|
||||
]
|
||||
|
||||
blob = ("\n".join([sec.text for sec in sections])).encode("utf-8")
|
||||
joined_text = "\n".join(sec.text for sec in sections)
|
||||
blob = joined_text.encode("utf-8")
|
||||
yield Document(
|
||||
id=page.id,
|
||||
blob=blob,
|
||||
source=DocumentSource.NOTION,
|
||||
semantic_identifier=page_title,
|
||||
extension=".txt",
|
||||
size_bytes=len(blob),
|
||||
doc_updated_at=datetime_from_string(page.last_edited_time)
|
||||
id=page.id, blob=blob, source=DocumentSource.NOTION, semantic_identifier=page_title, extension=".txt", size_bytes=len(blob), doc_updated_at=datetime_from_string(page.last_edited_time)
|
||||
)
|
||||
|
||||
for attachment_doc in attachment_docs:
|
||||
yield attachment_doc
|
||||
|
||||
if self.recursive_index_enabled and all_child_page_ids:
|
||||
for child_page_batch_ids in batch_generator(all_child_page_ids, INDEX_BATCH_SIZE):
|
||||
child_page_batch = [
|
||||
self._fetch_page(page_id)
|
||||
for page_id in child_page_batch_ids
|
||||
if page_id not in self.indexed_pages
|
||||
]
|
||||
yield from self._read_pages(child_page_batch)
|
||||
child_page_batch = [self._fetch_page(page_id) for page_id in child_page_batch_ids if page_id not in self.indexed_pages]
|
||||
yield from self._read_pages(child_page_batch, start, end)
|
||||
|
||||
@retry(tries=3, delay=1, backoff=2)
|
||||
def _search_notion(self, query_dict: dict[str, Any]) -> NotionSearchResponse:
|
||||
"""Search for pages from a Notion database."""
|
||||
logging.debug(f"Searching for pages in Notion with query_dict: {query_dict}")
|
||||
logging.debug(f"[Notion]: Searching for pages in Notion with query_dict: {query_dict}")
|
||||
data = fetch_notion_data("https://api.notion.com/v1/search", self.headers, "POST", query_dict)
|
||||
return NotionSearchResponse(**data)
|
||||
|
||||
def _recursive_load(self) -> Generator[list[Document], None, None]:
|
||||
def _recursive_load(self, start: SecondsSinceUnixEpoch | None = None, end: SecondsSinceUnixEpoch | None = None) -> Generator[list[Document], None, None]:
|
||||
"""Recursively load pages starting from root page ID."""
|
||||
if self.root_page_id is None or not self.recursive_index_enabled:
|
||||
raise RuntimeError("Recursive page lookup is not enabled")
|
||||
|
||||
logging.info(f"Recursively loading pages from Notion based on root page with ID: {self.root_page_id}")
|
||||
logging.info(f"[Notion]: Recursively loading pages from Notion based on root page with ID: {self.root_page_id}")
|
||||
pages = [self._fetch_page(page_id=self.root_page_id)]
|
||||
yield from batch_generator(self._read_pages(pages), self.batch_size)
|
||||
yield from batch_generator(self._read_pages(pages, start, end), self.batch_size)
|
||||
|
||||
def load_credentials(self, credentials: dict[str, Any]) -> dict[str, Any] | None:
|
||||
"""Applies integration token to headers."""
|
||||
self.headers["Authorization"] = f'Bearer {credentials["notion_integration_token"]}'
|
||||
self.headers["Authorization"] = f"Bearer {credentials['notion_integration_token']}"
|
||||
return None
|
||||
|
||||
def load_from_state(self) -> GenerateDocumentsOutput:
|
||||
@ -348,12 +522,10 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
else:
|
||||
break
|
||||
|
||||
def poll_source(
|
||||
self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch
|
||||
) -> GenerateDocumentsOutput:
|
||||
def poll_source(self, start: SecondsSinceUnixEpoch, end: SecondsSinceUnixEpoch) -> GenerateDocumentsOutput:
|
||||
"""Poll Notion for updated pages within a time period."""
|
||||
if self.recursive_index_enabled and self.root_page_id:
|
||||
yield from self._recursive_load()
|
||||
yield from self._recursive_load(start, end)
|
||||
return
|
||||
|
||||
query_dict = {
|
||||
@ -367,7 +539,7 @@ class NotionConnector(LoadConnector, PollConnector):
|
||||
pages = filter_pages_by_time(db_res.results, start, end, "last_edited_time")
|
||||
|
||||
if pages:
|
||||
yield from batch_generator(self._read_pages(pages), self.batch_size)
|
||||
yield from batch_generator(self._read_pages(pages, start, end), self.batch_size)
|
||||
if db_res.has_more:
|
||||
query_dict["start_cursor"] = db_res.next_cursor
|
||||
else:
|
||||
|
||||
@ -187,7 +187,7 @@ class DoclingParser(RAGFlowPdfParser):
|
||||
bbox = _BBox(int(pn), bb[0], bb[1], bb[2], bb[3])
|
||||
yield (DoclingContentType.EQUATION.value, text, bbox)
|
||||
|
||||
def _transfer_to_sections(self, doc) -> list[tuple[str, str]]:
|
||||
def _transfer_to_sections(self, doc, parse_method: str) -> list[tuple[str, str]]:
|
||||
sections: list[tuple[str, str]] = []
|
||||
for typ, payload, bbox in self._iter_doc_items(doc):
|
||||
if typ == DoclingContentType.TEXT.value:
|
||||
@ -200,7 +200,12 @@ class DoclingParser(RAGFlowPdfParser):
|
||||
continue
|
||||
|
||||
tag = self._make_line_tag(bbox) if isinstance(bbox,_BBox) else ""
|
||||
sections.append((section, tag))
|
||||
if parse_method == "manual":
|
||||
sections.append((section, typ, tag))
|
||||
elif parse_method == "paper":
|
||||
sections.append((section + tag, typ))
|
||||
else:
|
||||
sections.append((section, tag))
|
||||
return sections
|
||||
|
||||
def cropout_docling_table(self, page_no: int, bbox: tuple[float, float, float, float], zoomin: int = 1):
|
||||
@ -282,7 +287,8 @@ class DoclingParser(RAGFlowPdfParser):
|
||||
output_dir: Optional[str] = None,
|
||||
lang: Optional[str] = None,
|
||||
method: str = "auto",
|
||||
delete_output: bool = True,
|
||||
delete_output: bool = True,
|
||||
parse_method: str = "raw"
|
||||
):
|
||||
|
||||
if not self.check_installation():
|
||||
@ -318,7 +324,7 @@ class DoclingParser(RAGFlowPdfParser):
|
||||
if callback:
|
||||
callback(0.7, f"[Docling] Parsed doc: {getattr(doc, 'num_pages', 'n/a')} pages")
|
||||
|
||||
sections = self._transfer_to_sections(doc)
|
||||
sections = self._transfer_to_sections(doc, parse_method=parse_method)
|
||||
tables = self._transfer_to_tables(doc)
|
||||
|
||||
if callback:
|
||||
|
||||
@ -476,7 +476,7 @@ class MinerUParser(RAGFlowPdfParser):
|
||||
item[key] = str((subdir / item[key]).resolve())
|
||||
return data
|
||||
|
||||
def _transfer_to_sections(self, outputs: list[dict[str, Any]]):
|
||||
def _transfer_to_sections(self, outputs: list[dict[str, Any]], parse_method: str = None):
|
||||
sections = []
|
||||
for output in outputs:
|
||||
match output["type"]:
|
||||
@ -497,7 +497,11 @@ class MinerUParser(RAGFlowPdfParser):
|
||||
case MinerUContentType.DISCARDED:
|
||||
pass
|
||||
|
||||
if section:
|
||||
if section and parse_method == "manual":
|
||||
sections.append((section, output["type"], self._line_tag(output)))
|
||||
elif section and parse_method == "paper":
|
||||
sections.append((section + self._line_tag(output), output["type"]))
|
||||
else:
|
||||
sections.append((section, self._line_tag(output)))
|
||||
return sections
|
||||
|
||||
@ -516,6 +520,7 @@ class MinerUParser(RAGFlowPdfParser):
|
||||
method: str = "auto",
|
||||
server_url: Optional[str] = None,
|
||||
delete_output: bool = True,
|
||||
parse_method: str = "raw"
|
||||
) -> tuple:
|
||||
import shutil
|
||||
|
||||
@ -565,7 +570,8 @@ class MinerUParser(RAGFlowPdfParser):
|
||||
self.logger.info(f"[MinerU] Parsed {len(outputs)} blocks from PDF.")
|
||||
if callback:
|
||||
callback(0.75, f"[MinerU] Parsed {len(outputs)} blocks from PDF.")
|
||||
return self._transfer_to_sections(outputs), self._transfer_to_tables(outputs)
|
||||
|
||||
return self._transfer_to_sections(outputs, parse_method), self._transfer_to_tables(outputs)
|
||||
finally:
|
||||
if temp_pdf and temp_pdf.exists():
|
||||
try:
|
||||
|
||||
@ -33,6 +33,8 @@ import xgboost as xgb
|
||||
from huggingface_hub import snapshot_download
|
||||
from PIL import Image
|
||||
from pypdf import PdfReader as pdf2_read
|
||||
from sklearn.cluster import KMeans
|
||||
from sklearn.metrics import silhouette_score
|
||||
|
||||
from common.file_utils import get_project_base_directory
|
||||
from common.misc_utils import pip_install_torch
|
||||
@ -353,7 +355,6 @@ class RAGFlowPdfParser:
|
||||
def _assign_column(self, boxes, zoomin=3):
|
||||
if not boxes:
|
||||
return boxes
|
||||
|
||||
if all("col_id" in b for b in boxes):
|
||||
return boxes
|
||||
|
||||
@ -361,61 +362,80 @@ class RAGFlowPdfParser:
|
||||
for b in boxes:
|
||||
by_page[b["page_number"]].append(b)
|
||||
|
||||
page_info = {} # pg -> dict(page_w, left_edge, cand_cols)
|
||||
counter = Counter()
|
||||
page_cols = {}
|
||||
|
||||
for pg, bxs in by_page.items():
|
||||
if not bxs:
|
||||
page_info[pg] = {"page_w": 1.0, "left_edge": 0.0, "cand": 1}
|
||||
counter[1] += 1
|
||||
page_cols[pg] = 1
|
||||
continue
|
||||
|
||||
if hasattr(self, "page_images") and self.page_images and len(self.page_images) >= pg:
|
||||
page_w = self.page_images[pg - 1].size[0] / max(1, zoomin)
|
||||
left_edge = 0.0
|
||||
else:
|
||||
xs0 = [box["x0"] for box in bxs]
|
||||
xs1 = [box["x1"] for box in bxs]
|
||||
left_edge = float(min(xs0))
|
||||
page_w = max(1.0, float(max(xs1) - left_edge))
|
||||
x0s_raw = np.array([b["x0"] for b in bxs], dtype=float)
|
||||
|
||||
widths = [max(1.0, (box["x1"] - box["x0"])) for box in bxs]
|
||||
median_w = float(np.median(widths)) if widths else 1.0
|
||||
min_x0 = np.min(x0s_raw)
|
||||
max_x1 = np.max([b["x1"] for b in bxs])
|
||||
width = max_x1 - min_x0
|
||||
|
||||
raw_cols = int(page_w / max(1.0, median_w))
|
||||
INDENT_TOL = width * 0.12
|
||||
x0s = []
|
||||
for x in x0s_raw:
|
||||
if abs(x - min_x0) < INDENT_TOL:
|
||||
x0s.append([min_x0])
|
||||
else:
|
||||
x0s.append([x])
|
||||
x0s = np.array(x0s, dtype=float)
|
||||
|
||||
max_try = min(4, len(bxs))
|
||||
if max_try < 2:
|
||||
max_try = 1
|
||||
best_k = 1
|
||||
best_score = -1
|
||||
|
||||
# cand = raw_cols if (raw_cols >= 2 and median_w < page_w / raw_cols * 0.8) else 1
|
||||
cand = raw_cols
|
||||
for k in range(1, max_try + 1):
|
||||
km = KMeans(n_clusters=k, n_init="auto")
|
||||
labels = km.fit_predict(x0s)
|
||||
|
||||
page_info[pg] = {"page_w": page_w, "left_edge": left_edge, "cand": cand}
|
||||
counter[cand] += 1
|
||||
centers = np.sort(km.cluster_centers_.flatten())
|
||||
if len(centers) > 1:
|
||||
try:
|
||||
score = silhouette_score(x0s, labels)
|
||||
except ValueError:
|
||||
continue
|
||||
else:
|
||||
score = 0
|
||||
print(f"{k=},{score=}",flush=True)
|
||||
if score > best_score:
|
||||
best_score = score
|
||||
best_k = k
|
||||
|
||||
logging.info(f"[Page {pg}] median_w={median_w:.2f}, page_w={page_w:.2f}, raw_cols={raw_cols}, cand={cand}")
|
||||
page_cols[pg] = best_k
|
||||
logging.info(f"[Page {pg}] best_score={best_score:.2f}, best_k={best_k}")
|
||||
|
||||
global_cols = counter.most_common(1)[0][0]
|
||||
|
||||
global_cols = Counter(page_cols.values()).most_common(1)[0][0]
|
||||
logging.info(f"Global column_num decided by majority: {global_cols}")
|
||||
|
||||
|
||||
for pg, bxs in by_page.items():
|
||||
if not bxs:
|
||||
continue
|
||||
k = page_cols[pg]
|
||||
if len(bxs) < k:
|
||||
k = 1
|
||||
x0s = np.array([[b["x0"]] for b in bxs], dtype=float)
|
||||
km = KMeans(n_clusters=k, n_init="auto")
|
||||
labels = km.fit_predict(x0s)
|
||||
|
||||
page_w = page_info[pg]["page_w"]
|
||||
left_edge = page_info[pg]["left_edge"]
|
||||
centers = km.cluster_centers_.flatten()
|
||||
order = np.argsort(centers)
|
||||
|
||||
if global_cols == 1:
|
||||
for box in bxs:
|
||||
box["col_id"] = 0
|
||||
continue
|
||||
remap = {orig: new for new, orig in enumerate(order)}
|
||||
|
||||
for box in bxs:
|
||||
w = box["x1"] - box["x0"]
|
||||
if w >= 0.8 * page_w:
|
||||
box["col_id"] = 0
|
||||
continue
|
||||
cx = 0.5 * (box["x0"] + box["x1"])
|
||||
norm_cx = (cx - left_edge) / page_w
|
||||
norm_cx = max(0.0, min(norm_cx, 0.999999))
|
||||
box["col_id"] = int(min(global_cols - 1, norm_cx * global_cols))
|
||||
for b, lb in zip(bxs, labels):
|
||||
b["col_id"] = remap[lb]
|
||||
|
||||
grouped = defaultdict(list)
|
||||
for b in bxs:
|
||||
grouped[b["col_id"]].append(b)
|
||||
|
||||
return boxes
|
||||
|
||||
@ -1303,7 +1323,10 @@ class RAGFlowPdfParser:
|
||||
|
||||
positions = []
|
||||
for ii, (pns, left, right, top, bottom) in enumerate(poss):
|
||||
right = left + max_width
|
||||
if 0 < ii < len(poss) - 1:
|
||||
right = max(left + 10, right)
|
||||
else:
|
||||
right = left + max_width
|
||||
bottom *= ZM
|
||||
for pn in pns[1:]:
|
||||
if 0 <= pn - 1 < page_count:
|
||||
|
||||
@ -230,9 +230,16 @@ REGISTER_ENABLED=1
|
||||
# SANDBOX_MAX_MEMORY=256m # b, k, m, g
|
||||
# SANDBOX_TIMEOUT=10s # s, m, 1m30s
|
||||
|
||||
# Enable DocLing and Mineru
|
||||
# Enable DocLing
|
||||
USE_DOCLING=false
|
||||
|
||||
# Enable Mineru
|
||||
USE_MINERU=false
|
||||
MINERU_EXECUTABLE="$HOME/uv_tools/.venv/bin/mineru"
|
||||
MINERU_DELETE_OUTPUT=0 # keep output directory
|
||||
MINERU_BACKEND=pipeline # or another backend you prefer
|
||||
|
||||
|
||||
|
||||
# pptx support
|
||||
DOTNET_SYSTEM_GLOBALIZATION_INVARIANT=1
|
||||
@ -213,6 +213,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
lang = lang,
|
||||
callback = callback,
|
||||
pdf_cls = Pdf,
|
||||
parse_method = "manual",
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@ -225,7 +226,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
elif len(section) != 3:
|
||||
raise ValueError(f"Unexpected section length: {len(section)} (value={section!r})")
|
||||
|
||||
txt, sec_id, poss = section
|
||||
txt, layoutno, poss = section
|
||||
if isinstance(poss, str):
|
||||
poss = pdf_parser.extract_positions(poss)
|
||||
first = poss[0] # tuple: ([pn], x1, x2, y1, y2)
|
||||
@ -235,7 +236,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
pn = pn[0] # [pn] -> pn
|
||||
poss[0] = (pn, *first[1:])
|
||||
|
||||
return (txt, sec_id, poss)
|
||||
return (txt, layoutno, poss)
|
||||
|
||||
|
||||
sections = [_normalize_section(sec) for sec in sections]
|
||||
|
||||
@ -59,6 +59,7 @@ def by_mineru(filename, binary=None, from_page=0, to_page=100000, lang="Chinese"
|
||||
mineru_executable = os.environ.get("MINERU_EXECUTABLE", "mineru")
|
||||
mineru_api = os.environ.get("MINERU_APISERVER", "http://host.docker.internal:9987")
|
||||
pdf_parser = MinerUParser(mineru_path=mineru_executable, mineru_api=mineru_api)
|
||||
parse_method = kwargs.get("parse_method", "raw")
|
||||
|
||||
if not pdf_parser.check_installation():
|
||||
callback(-1, "MinerU not found.")
|
||||
@ -72,12 +73,14 @@ def by_mineru(filename, binary=None, from_page=0, to_page=100000, lang="Chinese"
|
||||
backend=os.environ.get("MINERU_BACKEND", "pipeline"),
|
||||
server_url=os.environ.get("MINERU_SERVER_URL", ""),
|
||||
delete_output=bool(int(os.environ.get("MINERU_DELETE_OUTPUT", 1))),
|
||||
parse_method=parse_method
|
||||
)
|
||||
return sections, tables, pdf_parser
|
||||
|
||||
|
||||
def by_docling(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, pdf_cls = None ,**kwargs):
|
||||
pdf_parser = DoclingParser()
|
||||
parse_method = kwargs.get("parse_method", "raw")
|
||||
|
||||
if not pdf_parser.check_installation():
|
||||
callback(-1, "Docling not found.")
|
||||
@ -89,6 +92,7 @@ def by_docling(filename, binary=None, from_page=0, to_page=100000, lang="Chinese
|
||||
callback=callback,
|
||||
output_dir=os.environ.get("MINERU_OUTPUT_DIR", ""),
|
||||
delete_output=bool(int(os.environ.get("MINERU_DELETE_OUTPUT", 1))),
|
||||
parse_method=parse_method
|
||||
)
|
||||
return sections, tables, pdf_parser
|
||||
|
||||
|
||||
@ -21,8 +21,10 @@ import re
|
||||
from deepdoc.parser.figure_parser import vision_figure_parser_pdf_wrapper
|
||||
from common.constants import ParserType
|
||||
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
|
||||
from deepdoc.parser import PdfParser, PlainParser
|
||||
from deepdoc.parser import PdfParser
|
||||
import numpy as np
|
||||
from rag.app.naive import by_plaintext, PARSERS
|
||||
|
||||
|
||||
class Pdf(PdfParser):
|
||||
def __init__(self):
|
||||
@ -147,19 +149,40 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
||||
"parser_config", {
|
||||
"chunk_token_num": 512, "delimiter": "\n!?。;!?", "layout_recognize": "DeepDOC"})
|
||||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
if parser_config.get("layout_recognize", "DeepDOC") == "Plain Text":
|
||||
pdf_parser = PlainParser()
|
||||
layout_recognizer = parser_config.get("layout_recognize", "DeepDOC")
|
||||
|
||||
if isinstance(layout_recognizer, bool):
|
||||
layout_recognizer = "DeepDOC" if layout_recognizer else "Plain Text"
|
||||
|
||||
name = layout_recognizer.strip().lower()
|
||||
pdf_parser = PARSERS.get(name, by_plaintext)
|
||||
callback(0.1, "Start to parse.")
|
||||
|
||||
if name == "deepdoc":
|
||||
pdf_parser = Pdf()
|
||||
paper = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
else:
|
||||
sections, tables, pdf_parser = pdf_parser(
|
||||
filename=filename,
|
||||
binary=binary,
|
||||
from_page=from_page,
|
||||
to_page=to_page,
|
||||
lang=lang,
|
||||
callback=callback,
|
||||
pdf_cls=Pdf,
|
||||
parse_method="paper",
|
||||
**kwargs
|
||||
)
|
||||
|
||||
paper = {
|
||||
"title": filename,
|
||||
"authors": " ",
|
||||
"abstract": "",
|
||||
"sections": pdf_parser(filename if not binary else binary, from_page=from_page, to_page=to_page)[0],
|
||||
"tables": []
|
||||
"sections": sections,
|
||||
"tables": tables
|
||||
}
|
||||
else:
|
||||
pdf_parser = Pdf()
|
||||
paper = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
|
||||
tbls=paper["tables"]
|
||||
tbls=vision_figure_parser_pdf_wrapper(tbls=tbls,callback=callback,**kwargs)
|
||||
paper["tables"] = tbls
|
||||
|
||||
@ -355,75 +355,102 @@ class Dealer:
|
||||
rag_tokenizer.tokenize(ans).split(),
|
||||
rag_tokenizer.tokenize(inst).split())
|
||||
|
||||
def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2,
|
||||
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True,
|
||||
rerank_mdl=None, highlight=False,
|
||||
rank_feature: dict | None = {PAGERANK_FLD: 10}):
|
||||
def retrieval(
|
||||
self,
|
||||
question,
|
||||
embd_mdl,
|
||||
tenant_ids,
|
||||
kb_ids,
|
||||
page,
|
||||
page_size,
|
||||
similarity_threshold=0.2,
|
||||
vector_similarity_weight=0.3,
|
||||
top=1024,
|
||||
doc_ids=None,
|
||||
aggs=True,
|
||||
rerank_mdl=None,
|
||||
highlight=False,
|
||||
rank_feature: dict | None = {PAGERANK_FLD: 10},
|
||||
):
|
||||
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
||||
if not question:
|
||||
return ranks
|
||||
|
||||
# Ensure RERANK_LIMIT is multiple of page_size
|
||||
RERANK_LIMIT = math.ceil(64/page_size) * page_size if page_size>1 else 1
|
||||
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "page": math.ceil(page_size*page/RERANK_LIMIT), "size": RERANK_LIMIT,
|
||||
"question": question, "vector": True, "topk": top,
|
||||
"similarity": similarity_threshold,
|
||||
"available_int": 1}
|
||||
|
||||
RERANK_LIMIT = math.ceil(64 / page_size) * page_size if page_size > 1 else 1
|
||||
req = {
|
||||
"kb_ids": kb_ids,
|
||||
"doc_ids": doc_ids,
|
||||
"page": math.ceil(page_size * page / RERANK_LIMIT),
|
||||
"size": RERANK_LIMIT,
|
||||
"question": question,
|
||||
"vector": True,
|
||||
"topk": top,
|
||||
"similarity": similarity_threshold,
|
||||
"available_int": 1,
|
||||
}
|
||||
|
||||
if isinstance(tenant_ids, str):
|
||||
tenant_ids = tenant_ids.split(",")
|
||||
|
||||
sres = self.search(req, [index_name(tid) for tid in tenant_ids],
|
||||
kb_ids, embd_mdl, highlight, rank_feature=rank_feature)
|
||||
sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight, rank_feature=rank_feature)
|
||||
|
||||
if rerank_mdl and sres.total > 0:
|
||||
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
|
||||
sres, question, 1 - vector_similarity_weight,
|
||||
vector_similarity_weight,
|
||||
rank_feature=rank_feature)
|
||||
sim, tsim, vsim = self.rerank_by_model(
|
||||
rerank_mdl,
|
||||
sres,
|
||||
question,
|
||||
1 - vector_similarity_weight,
|
||||
vector_similarity_weight,
|
||||
rank_feature=rank_feature,
|
||||
)
|
||||
else:
|
||||
lower_case_doc_engine = os.getenv('DOC_ENGINE', 'elasticsearch')
|
||||
if lower_case_doc_engine in ["elasticsearch","opensearch"]:
|
||||
lower_case_doc_engine = os.getenv("DOC_ENGINE", "elasticsearch")
|
||||
if lower_case_doc_engine in ["elasticsearch", "opensearch"]:
|
||||
# ElasticSearch doesn't normalize each way score before fusion.
|
||||
sim, tsim, vsim = self.rerank(
|
||||
sres, question, 1 - vector_similarity_weight, vector_similarity_weight,
|
||||
rank_feature=rank_feature)
|
||||
sres,
|
||||
question,
|
||||
1 - vector_similarity_weight,
|
||||
vector_similarity_weight,
|
||||
rank_feature=rank_feature,
|
||||
)
|
||||
else:
|
||||
# Don't need rerank here since Infinity normalizes each way score before fusion.
|
||||
sim = [sres.field[id].get("_score", 0.0) for id in sres.ids]
|
||||
sim = [s if s is not None else 0. for s in sim]
|
||||
sim = [s if s is not None else 0.0 for s in sim]
|
||||
tsim = sim
|
||||
vsim = sim
|
||||
# Already paginated in search function
|
||||
max_pages = RERANK_LIMIT // page_size
|
||||
page_index = (page % max_pages) - 1
|
||||
begin = max(page_index * page_size, 0)
|
||||
sim = sim[begin : begin + page_size]
|
||||
|
||||
sim_np = np.array(sim, dtype=np.float64)
|
||||
idx = np.argsort(sim_np * -1)
|
||||
if sim_np.size == 0:
|
||||
return ranks
|
||||
|
||||
sorted_idx = np.argsort(sim_np * -1)
|
||||
|
||||
valid_idx = [int(i) for i in sorted_idx if sim_np[i] >= similarity_threshold]
|
||||
filtered_count = len(valid_idx)
|
||||
ranks["total"] = int(filtered_count)
|
||||
|
||||
if filtered_count == 0:
|
||||
return ranks
|
||||
|
||||
max_pages = max(RERANK_LIMIT // max(page_size, 1), 1)
|
||||
page_index = (page - 1) % max_pages
|
||||
begin = page_index * page_size
|
||||
end = begin + page_size
|
||||
page_idx = valid_idx[begin:end]
|
||||
|
||||
dim = len(sres.query_vector)
|
||||
vector_column = f"q_{dim}_vec"
|
||||
zero_vector = [0.0] * dim
|
||||
filtered_count = (sim_np >= similarity_threshold).sum()
|
||||
ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error
|
||||
for i in idx:
|
||||
if np.float64(sim[i]) < similarity_threshold:
|
||||
break
|
||||
|
||||
for i in page_idx:
|
||||
id = sres.ids[i]
|
||||
chunk = sres.field[id]
|
||||
dnm = chunk.get("docnm_kwd", "")
|
||||
did = chunk.get("doc_id", "")
|
||||
|
||||
if len(ranks["chunks"]) >= page_size:
|
||||
if aggs:
|
||||
if dnm not in ranks["doc_aggs"]:
|
||||
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
|
||||
ranks["doc_aggs"][dnm]["count"] += 1
|
||||
continue
|
||||
break
|
||||
|
||||
position_int = chunk.get("position_int", [])
|
||||
d = {
|
||||
"chunk_id": id,
|
||||
@ -434,12 +461,12 @@ class Dealer:
|
||||
"kb_id": chunk["kb_id"],
|
||||
"important_kwd": chunk.get("important_kwd", []),
|
||||
"image_id": chunk.get("img_id", ""),
|
||||
"similarity": sim[i],
|
||||
"vector_similarity": vsim[i],
|
||||
"term_similarity": tsim[i],
|
||||
"similarity": float(sim_np[i]),
|
||||
"vector_similarity": float(vsim[i]),
|
||||
"term_similarity": float(tsim[i]),
|
||||
"vector": chunk.get(vector_column, zero_vector),
|
||||
"positions": position_int,
|
||||
"doc_type_kwd": chunk.get("doc_type_kwd", "")
|
||||
"doc_type_kwd": chunk.get("doc_type_kwd", ""),
|
||||
}
|
||||
if highlight and sres.highlight:
|
||||
if id in sres.highlight:
|
||||
@ -447,15 +474,30 @@ class Dealer:
|
||||
else:
|
||||
d["highlight"] = d["content_with_weight"]
|
||||
ranks["chunks"].append(d)
|
||||
if dnm not in ranks["doc_aggs"]:
|
||||
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
|
||||
ranks["doc_aggs"][dnm]["count"] += 1
|
||||
ranks["doc_aggs"] = [{"doc_name": k,
|
||||
"doc_id": v["doc_id"],
|
||||
"count": v["count"]} for k,
|
||||
v in sorted(ranks["doc_aggs"].items(),
|
||||
key=lambda x: x[1]["count"] * -1)]
|
||||
ranks["chunks"] = ranks["chunks"][:page_size]
|
||||
|
||||
if aggs:
|
||||
for i in valid_idx:
|
||||
id = sres.ids[i]
|
||||
chunk = sres.field[id]
|
||||
dnm = chunk.get("docnm_kwd", "")
|
||||
did = chunk.get("doc_id", "")
|
||||
if dnm not in ranks["doc_aggs"]:
|
||||
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
|
||||
ranks["doc_aggs"][dnm]["count"] += 1
|
||||
|
||||
ranks["doc_aggs"] = [
|
||||
{
|
||||
"doc_name": k,
|
||||
"doc_id": v["doc_id"],
|
||||
"count": v["count"],
|
||||
}
|
||||
for k, v in sorted(
|
||||
ranks["doc_aggs"].items(),
|
||||
key=lambda x: x[1]["count"] * -1,
|
||||
)
|
||||
]
|
||||
else:
|
||||
ranks["doc_aggs"] = []
|
||||
|
||||
return ranks
|
||||
|
||||
@ -564,7 +606,7 @@ class Dealer:
|
||||
ids = relevant_chunks_with_toc(query, toc, chat_mdl, topn*2)
|
||||
if not ids:
|
||||
return chunks
|
||||
|
||||
|
||||
vector_size = 1024
|
||||
id2idx = {ck["chunk_id"]: i for i, ck in enumerate(chunks)}
|
||||
for cid, sim in ids:
|
||||
|
||||
96
web/package-lock.json
generated
96
web/package-lock.json
generated
@ -66,6 +66,7 @@
|
||||
"input-otp": "^1.4.1",
|
||||
"js-base64": "^3.7.5",
|
||||
"jsencrypt": "^3.3.2",
|
||||
"jsoneditor": "^10.4.2",
|
||||
"lexical": "^0.23.1",
|
||||
"lodash": "^4.17.21",
|
||||
"lucide-react": "^0.546.0",
|
||||
@ -8998,6 +8999,12 @@
|
||||
"@sinonjs/commons": "^3.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@sphinxxxx/color-conversion": {
|
||||
"version": "2.2.2",
|
||||
"resolved": "https://registry.npmmirror.com/@sphinxxxx/color-conversion/-/color-conversion-2.2.2.tgz",
|
||||
"integrity": "sha512-XExJS3cLqgrmNBIP3bBw6+1oQ1ksGjFh0+oClDKFYpCCqx/hlqwWO5KO/S63fzUo67SxI9dMrF0y5T/Ey7h8Zw==",
|
||||
"license": "ISC"
|
||||
},
|
||||
"node_modules/@storybook/addon-docs": {
|
||||
"version": "9.1.4",
|
||||
"resolved": "https://registry.npmmirror.com/@storybook/addon-docs/-/addon-docs-9.1.4.tgz",
|
||||
@ -12962,6 +12969,12 @@
|
||||
"node": ">= 0.6"
|
||||
}
|
||||
},
|
||||
"node_modules/ace-builds": {
|
||||
"version": "1.43.4",
|
||||
"resolved": "https://registry.npmmirror.com/ace-builds/-/ace-builds-1.43.4.tgz",
|
||||
"integrity": "sha512-8hAxVfo2ImICd69BWlZwZlxe9rxDGDjuUhh+WeWgGDvfBCE+r3lkynkQvIovDz4jcMi8O7bsEaFygaDT+h9sBA==",
|
||||
"license": "BSD-3-Clause"
|
||||
},
|
||||
"node_modules/acorn": {
|
||||
"version": "8.15.0",
|
||||
"resolved": "https://registry.npmmirror.com/acorn/-/acorn-8.15.0.tgz",
|
||||
@ -21894,6 +21907,12 @@
|
||||
"@pkgjs/parseargs": "^0.11.0"
|
||||
}
|
||||
},
|
||||
"node_modules/javascript-natural-sort": {
|
||||
"version": "0.7.1",
|
||||
"resolved": "https://registry.npmmirror.com/javascript-natural-sort/-/javascript-natural-sort-0.7.1.tgz",
|
||||
"integrity": "sha512-nO6jcEfZWQXDhOiBtG2KvKyEptz7RVbpGP4vTD2hLBdmNQSsCiicO2Ioinv6UI4y9ukqnBpy+XZ9H6uLNgJTlw==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/javascript-stringify": {
|
||||
"version": "2.1.0",
|
||||
"resolved": "https://registry.npmmirror.com/javascript-stringify/-/javascript-stringify-2.1.0.tgz",
|
||||
@ -24253,6 +24272,15 @@
|
||||
"jiti": "bin/jiti.js"
|
||||
}
|
||||
},
|
||||
"node_modules/jmespath": {
|
||||
"version": "0.16.0",
|
||||
"resolved": "https://registry.npmmirror.com/jmespath/-/jmespath-0.16.0.tgz",
|
||||
"integrity": "sha512-9FzQjJ7MATs1tSpnco1K6ayiYE3figslrXA72G2HQ/n76RzvYlofyi5QM+iX4YRs/pu3yzxlVQSST23+dMDknw==",
|
||||
"license": "Apache-2.0",
|
||||
"engines": {
|
||||
"node": ">= 0.6.0"
|
||||
}
|
||||
},
|
||||
"node_modules/js-base64": {
|
||||
"version": "3.7.5",
|
||||
"resolved": "https://registry.npmmirror.com/js-base64/-/js-base64-3.7.5.tgz",
|
||||
@ -24357,6 +24385,12 @@
|
||||
"integrity": "sha512-NM8/P9n3XjXhIZn1lLhkFaACTOURQXjWhV4BA/RnOv8xvgqtqpAX9IO4mRQxSx1Rlo4tqzeqb0sOlruaOy3dug==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/json-source-map": {
|
||||
"version": "0.6.1",
|
||||
"resolved": "https://registry.npmmirror.com/json-source-map/-/json-source-map-0.6.1.tgz",
|
||||
"integrity": "sha512-1QoztHPsMQqhDq0hlXY5ZqcEdUzxQEIxgFkKl4WUp2pgShObl+9ovi4kRh2TfvAfxAoHOJ9vIMEqk3k4iex7tg==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/json-stable-stringify-without-jsonify": {
|
||||
"version": "1.0.1",
|
||||
"resolved": "https://registry.npmmirror.com/json-stable-stringify-without-jsonify/-/json-stable-stringify-without-jsonify-1.0.1.tgz",
|
||||
@ -24393,6 +24427,44 @@
|
||||
"node": ">=6"
|
||||
}
|
||||
},
|
||||
"node_modules/jsoneditor": {
|
||||
"version": "10.4.2",
|
||||
"resolved": "https://registry.npmmirror.com/jsoneditor/-/jsoneditor-10.4.2.tgz",
|
||||
"integrity": "sha512-SQPCXlanU4PqdVsYuj2X7yfbLiiJYjklbksGfMKPsuwLhAIPxDlG43jYfXieGXvxpuq1fkw08YoRbkKXKabcLA==",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"ace-builds": "^1.36.2",
|
||||
"ajv": "^6.12.6",
|
||||
"javascript-natural-sort": "^0.7.1",
|
||||
"jmespath": "^0.16.0",
|
||||
"json-source-map": "^0.6.1",
|
||||
"jsonrepair": "^3.8.1",
|
||||
"picomodal": "^3.0.0",
|
||||
"vanilla-picker": "^2.12.3"
|
||||
}
|
||||
},
|
||||
"node_modules/jsoneditor/node_modules/ajv": {
|
||||
"version": "6.12.6",
|
||||
"resolved": "https://registry.npmmirror.com/ajv/-/ajv-6.12.6.tgz",
|
||||
"integrity": "sha512-j3fVLgvTo527anyYyJOGTYJbG+vnnQYvE0m5mmkc1TK+nxAppkCLMIL0aZ4dblVCNoGShhm+kzE4ZUykBoMg4g==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"fast-deep-equal": "^3.1.1",
|
||||
"fast-json-stable-stringify": "^2.0.0",
|
||||
"json-schema-traverse": "^0.4.1",
|
||||
"uri-js": "^4.2.2"
|
||||
},
|
||||
"funding": {
|
||||
"type": "github",
|
||||
"url": "https://github.com/sponsors/epoberezkin"
|
||||
}
|
||||
},
|
||||
"node_modules/jsoneditor/node_modules/json-schema-traverse": {
|
||||
"version": "0.4.1",
|
||||
"resolved": "https://registry.npmmirror.com/json-schema-traverse/-/json-schema-traverse-0.4.1.tgz",
|
||||
"integrity": "sha512-xbbCH5dCYU5T8LcEhhuh7HJ88HXuW3qsI3Y0zOZFKfZEHcpWiHU/Jxzk629Brsab/mMiHQti9wMP+845RPe3Vg==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/jsonfile": {
|
||||
"version": "6.1.0",
|
||||
"resolved": "https://registry.npmmirror.com/jsonfile/-/jsonfile-6.1.0.tgz",
|
||||
@ -24404,6 +24476,15 @@
|
||||
"graceful-fs": "^4.1.6"
|
||||
}
|
||||
},
|
||||
"node_modules/jsonrepair": {
|
||||
"version": "3.13.1",
|
||||
"resolved": "https://registry.npmmirror.com/jsonrepair/-/jsonrepair-3.13.1.tgz",
|
||||
"integrity": "sha512-WJeiE0jGfxYmtLwBTEk8+y/mYcaleyLXWaqp5bJu0/ZTSeG0KQq/wWQ8pmnkKenEdN6pdnn6QtcoSUkbqDHWNw==",
|
||||
"license": "ISC",
|
||||
"bin": {
|
||||
"jsonrepair": "bin/cli.js"
|
||||
}
|
||||
},
|
||||
"node_modules/jsx-ast-utils": {
|
||||
"version": "3.3.5",
|
||||
"resolved": "https://registry.npmmirror.com/jsx-ast-utils/-/jsx-ast-utils-3.3.5.tgz",
|
||||
@ -27499,6 +27580,12 @@
|
||||
"node": ">=8.6"
|
||||
}
|
||||
},
|
||||
"node_modules/picomodal": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmmirror.com/picomodal/-/picomodal-3.0.0.tgz",
|
||||
"integrity": "sha512-FoR3TDfuLlqUvcEeK5ifpKSVVns6B4BQvc8SDF6THVMuadya6LLtji0QgUDSStw0ZR2J7I6UGi5V2V23rnPWTw==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/pidtree": {
|
||||
"version": "0.6.0",
|
||||
"resolved": "https://registry.npmmirror.com/pidtree/-/pidtree-0.6.0.tgz",
|
||||
@ -36235,6 +36322,15 @@
|
||||
"dev": true,
|
||||
"peer": true
|
||||
},
|
||||
"node_modules/vanilla-picker": {
|
||||
"version": "2.12.3",
|
||||
"resolved": "https://registry.npmmirror.com/vanilla-picker/-/vanilla-picker-2.12.3.tgz",
|
||||
"integrity": "sha512-qVkT1E7yMbUsB2mmJNFmaXMWE2hF8ffqzMMwe9zdAikd8u2VfnsVY2HQcOUi2F38bgbxzlJBEdS1UUhOXdF9GQ==",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"@sphinxxxx/color-conversion": "^2.2.2"
|
||||
}
|
||||
},
|
||||
"node_modules/vary": {
|
||||
"version": "1.1.2",
|
||||
"resolved": "https://registry.npmmirror.com/vary/-/vary-1.1.2.tgz",
|
||||
|
||||
@ -22,7 +22,8 @@ import { Switch } from '@/components/ui/switch';
|
||||
import { LlmModelType } from '@/constants/knowledge';
|
||||
import { useFindLlmByUuid } from '@/hooks/use-llm-request';
|
||||
import { zodResolver } from '@hookform/resolvers/zod';
|
||||
import { memo, useCallback, useEffect, useMemo } from 'react';
|
||||
import { get } from 'lodash';
|
||||
import { memo, useEffect, useMemo } from 'react';
|
||||
import { useForm, useWatch } from 'react-hook-form';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { z } from 'zod';
|
||||
@ -45,7 +46,10 @@ import { AgentTools, Agents } from './agent-tools';
|
||||
import { StructuredOutputDialog } from './structured-output-dialog';
|
||||
import { StructuredOutputPanel } from './structured-output-panel';
|
||||
import { useBuildPromptExtraPromptOptions } from './use-build-prompt-options';
|
||||
import { useShowStructuredOutputDialog } from './use-show-structured-output-dialog';
|
||||
import {
|
||||
useHandleShowStructuredOutput,
|
||||
useShowStructuredOutputDialog,
|
||||
} from './use-show-structured-output-dialog';
|
||||
import { useValues } from './use-values';
|
||||
import { useWatchFormChange } from './use-watch-change';
|
||||
|
||||
@ -121,22 +125,19 @@ function AgentForm({ node }: INextOperatorForm) {
|
||||
});
|
||||
|
||||
const {
|
||||
initialStructuredOutput,
|
||||
showStructuredOutputDialog,
|
||||
structuredOutputDialogVisible,
|
||||
hideStructuredOutputDialog,
|
||||
handleStructuredOutputDialogOk,
|
||||
} = useShowStructuredOutputDialog(node?.id);
|
||||
|
||||
const updateNodeForm = useGraphStore((state) => state.updateNodeForm);
|
||||
const structuredOutput = get(
|
||||
node,
|
||||
`data.form.outputs.${AgentStructuredOutputField}`,
|
||||
);
|
||||
|
||||
const handleShowStructuredOutput = useCallback(
|
||||
(val: boolean) => {
|
||||
if (node?.id && val) {
|
||||
updateNodeForm(node?.id, {}, ['outputs', AgentStructuredOutputField]);
|
||||
}
|
||||
},
|
||||
[node?.id, updateNodeForm],
|
||||
const { handleShowStructuredOutput } = useHandleShowStructuredOutput(
|
||||
node?.id,
|
||||
);
|
||||
|
||||
useEffect(() => {
|
||||
@ -327,7 +328,7 @@ function AgentForm({ node }: INextOperatorForm) {
|
||||
</div>
|
||||
|
||||
<StructuredOutputPanel
|
||||
value={initialStructuredOutput}
|
||||
value={structuredOutput}
|
||||
></StructuredOutputPanel>
|
||||
</section>
|
||||
)}
|
||||
@ -337,7 +338,7 @@ function AgentForm({ node }: INextOperatorForm) {
|
||||
<StructuredOutputDialog
|
||||
hideModal={hideStructuredOutputDialog}
|
||||
onOk={handleStructuredOutputDialogOk}
|
||||
initialValues={initialStructuredOutput}
|
||||
initialValues={structuredOutput}
|
||||
></StructuredOutputDialog>
|
||||
)}
|
||||
</>
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
import { JSONSchema } from '@/components/jsonjoy-builder';
|
||||
import { AgentStructuredOutputField } from '@/constants/agent';
|
||||
import { useSetModalState } from '@/hooks/common-hooks';
|
||||
import { useCallback } from 'react';
|
||||
import { initialAgentValues } from '../../constant';
|
||||
import useGraphStore from '../../store';
|
||||
|
||||
export function useShowStructuredOutputDialog(nodeId?: string) {
|
||||
@ -9,15 +11,13 @@ export function useShowStructuredOutputDialog(nodeId?: string) {
|
||||
showModal: showStructuredOutputDialog,
|
||||
hideModal: hideStructuredOutputDialog,
|
||||
} = useSetModalState();
|
||||
const { updateNodeForm, getNode } = useGraphStore((state) => state);
|
||||
|
||||
const initialStructuredOutput = getNode(nodeId)?.data.form.outputs.structured;
|
||||
const { updateNodeForm } = useGraphStore((state) => state);
|
||||
|
||||
const handleStructuredOutputDialogOk = useCallback(
|
||||
(values: JSONSchema) => {
|
||||
// Sync data to canvas
|
||||
if (nodeId) {
|
||||
updateNodeForm(nodeId, values, ['outputs', 'structured']);
|
||||
updateNodeForm(nodeId, values, ['outputs', AgentStructuredOutputField]);
|
||||
}
|
||||
hideStructuredOutputDialog();
|
||||
},
|
||||
@ -25,10 +25,30 @@ export function useShowStructuredOutputDialog(nodeId?: string) {
|
||||
);
|
||||
|
||||
return {
|
||||
initialStructuredOutput,
|
||||
structuredOutputDialogVisible,
|
||||
showStructuredOutputDialog,
|
||||
hideStructuredOutputDialog,
|
||||
handleStructuredOutputDialogOk,
|
||||
};
|
||||
}
|
||||
|
||||
export function useHandleShowStructuredOutput(nodeId?: string) {
|
||||
const updateNodeForm = useGraphStore((state) => state.updateNodeForm);
|
||||
|
||||
const handleShowStructuredOutput = useCallback(
|
||||
(val: boolean) => {
|
||||
if (nodeId) {
|
||||
if (val) {
|
||||
updateNodeForm(nodeId, {}, ['outputs', AgentStructuredOutputField]);
|
||||
} else {
|
||||
updateNodeForm(nodeId, initialAgentValues.outputs, ['outputs']);
|
||||
}
|
||||
}
|
||||
},
|
||||
[nodeId, updateNodeForm],
|
||||
);
|
||||
|
||||
return {
|
||||
handleShowStructuredOutput,
|
||||
};
|
||||
}
|
||||
|
||||
@ -6,8 +6,10 @@ import { initialAgentValues } from '../../constant';
|
||||
|
||||
// You need to exclude the mcp and tools fields that are not in the form,
|
||||
// otherwise the form data update will reset the tools or mcp data to an array
|
||||
// Exclude data that is not in the form to avoid writing this data to the canvas when using useWatch.
|
||||
// Outputs, tools, and MCP data are directly synchronized to the canvas without going through the form.
|
||||
function omitToolsAndMcp(values: Record<string, any>) {
|
||||
return omit(values, ['mcp', 'tools']);
|
||||
return omit(values, ['mcp', 'tools', 'outputs']);
|
||||
}
|
||||
|
||||
export function useValues(node?: RAGFlowNodeType) {
|
||||
|
||||
@ -1,7 +1,6 @@
|
||||
import { omit } from 'lodash';
|
||||
import { useEffect } from 'react';
|
||||
import { UseFormReturn, useWatch } from 'react-hook-form';
|
||||
import { AgentStructuredOutputField, PromptRole } from '../../constant';
|
||||
import { PromptRole } from '../../constant';
|
||||
import useGraphStore from '../../store';
|
||||
|
||||
export function useWatchFormChange(id?: string, form?: UseFormReturn<any>) {
|
||||
@ -17,14 +16,6 @@ export function useWatchFormChange(id?: string, form?: UseFormReturn<any>) {
|
||||
prompts: [{ role: PromptRole.User, content: values.prompts }],
|
||||
};
|
||||
|
||||
if (!values.showStructuredOutput) {
|
||||
nextValues = {
|
||||
...nextValues,
|
||||
outputs: omit(values.outputs, [AgentStructuredOutputField]),
|
||||
};
|
||||
} else {
|
||||
nextValues = omit(nextValues, 'outputs');
|
||||
}
|
||||
updateNodeForm(id, nextValues);
|
||||
}
|
||||
}, [form?.formState.isDirty, id, updateNodeForm, values]);
|
||||
|
||||
Reference in New Issue
Block a user