mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
add support for LocalLLM (#1744)
### What problem does this PR solve? add support for LocalLLM ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
@ -27,6 +27,8 @@ from groq import Groq
|
||||
import os
|
||||
import json
|
||||
import requests
|
||||
import asyncio
|
||||
from rag.svr.jina_server import Prompt,Generation
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name, base_url):
|
||||
@ -381,8 +383,10 @@ class LocalLLM(Base):
|
||||
|
||||
def __conn(self):
|
||||
from multiprocessing.connection import Client
|
||||
|
||||
self._connection = Client(
|
||||
(self.host, self.port), authkey=b'infiniflow-token4kevinhu')
|
||||
(self.host, self.port), authkey=b"infiniflow-token4kevinhu"
|
||||
)
|
||||
|
||||
def __getattr__(self, name):
|
||||
import pickle
|
||||
@ -390,8 +394,7 @@ class LocalLLM(Base):
|
||||
def do_rpc(*args, **kwargs):
|
||||
for _ in range(3):
|
||||
try:
|
||||
self._connection.send(
|
||||
pickle.dumps((name, args, kwargs)))
|
||||
self._connection.send(pickle.dumps((name, args, kwargs)))
|
||||
return pickle.loads(self._connection.recv())
|
||||
except Exception as e:
|
||||
self.__conn()
|
||||
@ -399,35 +402,45 @@ class LocalLLM(Base):
|
||||
|
||||
return do_rpc
|
||||
|
||||
def __init__(self, key, model_name="glm-3-turbo"):
|
||||
self.client = LocalLLM.RPCProxy("127.0.0.1", 7860)
|
||||
def __init__(self, key, model_name):
|
||||
from jina import Client
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
self.client = Client(port=12345, protocol="grpc", asyncio=True)
|
||||
|
||||
def _prepare_prompt(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
try:
|
||||
ans = self.client.chat(
|
||||
history,
|
||||
gen_conf
|
||||
)
|
||||
return ans, num_tokens_from_string(ans)
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
if "max_tokens" in gen_conf:
|
||||
gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
|
||||
return Prompt(message=history, gen_conf=gen_conf)
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system:
|
||||
history.insert(0, {"role": "system", "content": system})
|
||||
token_count = 0
|
||||
def _stream_response(self, endpoint, prompt):
|
||||
answer = ""
|
||||
try:
|
||||
for ans in self.client.chat_streamly(history, gen_conf):
|
||||
answer += ans
|
||||
token_count += 1
|
||||
yield answer
|
||||
res = self.client.stream_doc(
|
||||
on=endpoint, inputs=prompt, return_type=Generation
|
||||
)
|
||||
loop = asyncio.get_event_loop()
|
||||
try:
|
||||
while True:
|
||||
answer = loop.run_until_complete(res.__anext__()).text
|
||||
yield answer
|
||||
except StopAsyncIteration:
|
||||
pass
|
||||
except Exception as e:
|
||||
yield answer + "\n**ERROR**: " + str(e)
|
||||
yield num_tokens_from_string(answer)
|
||||
|
||||
yield token_count
|
||||
def chat(self, system, history, gen_conf):
|
||||
prompt = self._prepare_prompt(system, history, gen_conf)
|
||||
chat_gen = self._stream_response("/chat", prompt)
|
||||
ans = next(chat_gen)
|
||||
total_tokens = next(chat_gen)
|
||||
return ans, total_tokens
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
prompt = self._prepare_prompt(system, history, gen_conf)
|
||||
return self._stream_response("/stream", prompt)
|
||||
|
||||
|
||||
class VolcEngineChat(Base):
|
||||
|
||||
93
rag/svr/jina_server.py
Normal file
93
rag/svr/jina_server.py
Normal file
@ -0,0 +1,93 @@
|
||||
from jina import Deployment
|
||||
from docarray import BaseDoc
|
||||
from jina import Executor, requests
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
import argparse
|
||||
import torch
|
||||
|
||||
|
||||
class Prompt(BaseDoc):
|
||||
message: list[dict]
|
||||
gen_conf: dict
|
||||
|
||||
|
||||
class Generation(BaseDoc):
|
||||
text: str
|
||||
|
||||
|
||||
tokenizer = None
|
||||
model_name = ""
|
||||
|
||||
|
||||
class TokenStreamingExecutor(Executor):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", torch_dtype="auto"
|
||||
)
|
||||
|
||||
@requests(on="/chat")
|
||||
async def generate(self, doc: Prompt, **kwargs) -> Generation:
|
||||
text = tokenizer.apply_chat_template(
|
||||
doc.message,
|
||||
tokenize=False,
|
||||
)
|
||||
inputs = tokenizer([text], return_tensors="pt")
|
||||
generation_config = GenerationConfig(
|
||||
**doc.gen_conf,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
generated_ids = self.model.generate(
|
||||
inputs.input_ids, generation_config=generation_config
|
||||
)
|
||||
generated_ids = [
|
||||
output_ids[len(input_ids) :]
|
||||
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
|
||||
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
yield Generation(text=response)
|
||||
|
||||
@requests(on="/stream")
|
||||
async def task(self, doc: Prompt, **kwargs) -> Generation:
|
||||
text = tokenizer.apply_chat_template(
|
||||
doc.message,
|
||||
tokenize=False,
|
||||
)
|
||||
input = tokenizer([text], return_tensors="pt")
|
||||
input_len = input["input_ids"].shape[1]
|
||||
max_new_tokens = 512
|
||||
if "max_new_tokens" in doc.gen_conf:
|
||||
max_new_tokens = doc.gen_conf.pop("max_new_tokens")
|
||||
generation_config = GenerationConfig(
|
||||
**doc.gen_conf,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.eos_token_id
|
||||
)
|
||||
for _ in range(max_new_tokens):
|
||||
output = self.model.generate(
|
||||
**input, max_new_tokens=1, generation_config=generation_config
|
||||
)
|
||||
if output[0][-1] == tokenizer.eos_token_id:
|
||||
break
|
||||
yield Generation(
|
||||
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True)
|
||||
)
|
||||
input = {
|
||||
"input_ids": output,
|
||||
"attention_mask": torch.ones(1, len(output[0])),
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_name", type=str, help="Model name or path")
|
||||
parser.add_argument("--port", default=12345, type=int, help="Jina serving port")
|
||||
args = parser.parse_args()
|
||||
model_name = args.model_name
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
||||
with Deployment(
|
||||
uses=TokenStreamingExecutor, port=args.port, protocol="grpc"
|
||||
) as dep:
|
||||
dep.block()
|
||||
Reference in New Issue
Block a user