mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
apply pep8 formalize (#155)
This commit is contained in:
@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from zhipuai import ZhipuAI
|
||||
import os
|
||||
from abc import ABC
|
||||
|
||||
@ -40,11 +41,11 @@ flag_model = FlagModel(model_dir,
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
pass
|
||||
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
@ -67,11 +68,11 @@ class HuEmbedding(Base):
|
||||
"""
|
||||
self.model = flag_model
|
||||
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
texts = [t[:2000] for t in texts]
|
||||
token_count = 0
|
||||
for t in texts: token_count += num_tokens_from_string(t)
|
||||
for t in texts:
|
||||
token_count += num_tokens_from_string(t)
|
||||
res = []
|
||||
for i in range(0, len(texts), batch_size):
|
||||
res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
|
||||
@ -90,7 +91,8 @@ class OpenAIEmbed(Base):
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
res = self.client.embeddings.create(input=texts,
|
||||
model=self.model_name)
|
||||
return np.array([d.embedding for d in res.data]), res.usage.total_tokens
|
||||
return np.array([d.embedding for d in res.data]
|
||||
), res.usage.total_tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=[text],
|
||||
@ -111,7 +113,7 @@ class QWenEmbed(Base):
|
||||
for i in range(0, len(texts), batch_size):
|
||||
resp = dashscope.TextEmbedding.call(
|
||||
model=self.model_name,
|
||||
input=texts[i:i+batch_size],
|
||||
input=texts[i:i + batch_size],
|
||||
text_type="document"
|
||||
)
|
||||
embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
|
||||
@ -123,14 +125,14 @@ class QWenEmbed(Base):
|
||||
|
||||
def encode_queries(self, text):
|
||||
resp = dashscope.TextEmbedding.call(
|
||||
model=self.model_name,
|
||||
input=text[:2048],
|
||||
text_type="query"
|
||||
)
|
||||
return np.array(resp["output"]["embeddings"][0]["embedding"]), resp["usage"]["total_tokens"]
|
||||
model=self.model_name,
|
||||
input=text[:2048],
|
||||
text_type="query"
|
||||
)
|
||||
return np.array(resp["output"]["embeddings"][0]
|
||||
["embedding"]), resp["usage"]["total_tokens"]
|
||||
|
||||
|
||||
from zhipuai import ZhipuAI
|
||||
class ZhipuEmbed(Base):
|
||||
def __init__(self, key, model_name="embedding-2"):
|
||||
self.client = ZhipuAI(api_key=key)
|
||||
@ -139,9 +141,10 @@ class ZhipuEmbed(Base):
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
res = self.client.embeddings.create(input=texts,
|
||||
model=self.model_name)
|
||||
return np.array([d.embedding for d in res.data]), res.usage.total_tokens
|
||||
return np.array([d.embedding for d in res.data]
|
||||
), res.usage.total_tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=text,
|
||||
model=self.model_name)
|
||||
return np.array(res["data"][0]["embedding"]), res.usage.total_tokens
|
||||
return np.array(res["data"][0]["embedding"]), res.usage.total_tokens
|
||||
|
||||
Reference in New Issue
Block a user