apply pep8 formalize (#155)

This commit is contained in:
KevinHuSh
2024-03-27 11:33:46 +08:00
committed by GitHub
parent a02e836790
commit fd7fcb5baf
55 changed files with 1568 additions and 753 deletions

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
from zhipuai import ZhipuAI
import os
from abc import ABC
@ -40,11 +41,11 @@ flag_model = FlagModel(model_dir,
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available())
class Base(ABC):
def __init__(self, key, model_name):
pass
def encode(self, texts: list, batch_size=32):
raise NotImplementedError("Please implement encode method!")
@ -67,11 +68,11 @@ class HuEmbedding(Base):
"""
self.model = flag_model
def encode(self, texts: list, batch_size=32):
texts = [t[:2000] for t in texts]
token_count = 0
for t in texts: token_count += num_tokens_from_string(t)
for t in texts:
token_count += num_tokens_from_string(t)
res = []
for i in range(0, len(texts), batch_size):
res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
@ -90,7 +91,8 @@ class OpenAIEmbed(Base):
def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts,
model=self.model_name)
return np.array([d.embedding for d in res.data]), res.usage.total_tokens
return np.array([d.embedding for d in res.data]
), res.usage.total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=[text],
@ -111,7 +113,7 @@ class QWenEmbed(Base):
for i in range(0, len(texts), batch_size):
resp = dashscope.TextEmbedding.call(
model=self.model_name,
input=texts[i:i+batch_size],
input=texts[i:i + batch_size],
text_type="document"
)
embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
@ -123,14 +125,14 @@ class QWenEmbed(Base):
def encode_queries(self, text):
resp = dashscope.TextEmbedding.call(
model=self.model_name,
input=text[:2048],
text_type="query"
)
return np.array(resp["output"]["embeddings"][0]["embedding"]), resp["usage"]["total_tokens"]
model=self.model_name,
input=text[:2048],
text_type="query"
)
return np.array(resp["output"]["embeddings"][0]
["embedding"]), resp["usage"]["total_tokens"]
from zhipuai import ZhipuAI
class ZhipuEmbed(Base):
def __init__(self, key, model_name="embedding-2"):
self.client = ZhipuAI(api_key=key)
@ -139,9 +141,10 @@ class ZhipuEmbed(Base):
def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts,
model=self.model_name)
return np.array([d.embedding for d in res.data]), res.usage.total_tokens
return np.array([d.embedding for d in res.data]
), res.usage.total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=text,
model=self.model_name)
return np.array(res["data"][0]["embedding"]), res.usage.total_tokens
return np.array(res["data"][0]["embedding"]), res.usage.total_tokens