Move api.settings to common.settings (#11036)

### What problem does this PR solve?

As title

### Type of change

- [x] Refactoring

---------

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
This commit is contained in:
Jin Hai
2025-11-06 09:36:38 +08:00
committed by GitHub
parent 87c9a054d3
commit f98b24c9bf
68 changed files with 675 additions and 718 deletions

View File

@ -55,20 +55,18 @@ from api.db.services.document_service import DocumentService
from api.db.services.llm_service import LLMBundle
from api.db.services.task_service import TaskService, has_canceled, CANVAS_DEBUG_DOC_ID, GRAPH_RAPTOR_FAKE_DOC_ID
from api.db.services.file2document_service import File2DocumentService
from api import settings
from api.versions import get_ragflow_version
from api.db.db_models import close_connection
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
email, tag
from rag.nlp import search, rag_tokenizer, add_positions
from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
from rag.settings import DOC_MAXIMUM_SIZE, DOC_BULK_SIZE, EMBEDDING_BATCH_SIZE, SVR_CONSUMER_GROUP_NAME, get_svr_queue_name, get_svr_queue_names, print_rag_settings, TAG_FLD, PAGERANK_FLD
from common.token_utils import num_tokens_from_string, truncate
from rag.utils.redis_conn import REDIS_CONN, RedisDistributedLock
from rag.utils.storage_factory import STORAGE_IMPL
from graphrag.utils import chat_limiter
from common.signal_utils import start_tracemalloc_and_snapshot, stop_tracemalloc
from common import globals
from common import settings
from common.constants import PAGERANK_FLD, TAG_FLD, SVR_CONSUMER_GROUP_NAME
BATCH_SIZE = 64
@ -170,7 +168,7 @@ async def collect():
global CONSUMER_NAME, DONE_TASKS, FAILED_TASKS
global UNACKED_ITERATOR
svr_queue_names = get_svr_queue_names()
svr_queue_names = settings.get_svr_queue_names()
try:
if not UNACKED_ITERATOR:
UNACKED_ITERATOR = REDIS_CONN.get_unacked_iterator(svr_queue_names, SVR_CONSUMER_GROUP_NAME, CONSUMER_NAME)
@ -223,14 +221,14 @@ async def collect():
async def get_storage_binary(bucket, name):
return await trio.to_thread.run_sync(lambda: STORAGE_IMPL.get(bucket, name))
return await trio.to_thread.run_sync(lambda: settings.STORAGE_IMPL.get(bucket, name))
@timeout(60*80, 1)
async def build_chunks(task, progress_callback):
if task["size"] > DOC_MAXIMUM_SIZE:
if task["size"] > settings.DOC_MAXIMUM_SIZE:
set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
(int(settings.DOC_MAXIMUM_SIZE / 1024 / 1024)))
return []
chunker = FACTORY[task["parser_id"].lower()]
@ -287,7 +285,7 @@ async def build_chunks(task, progress_callback):
d["img_id"] = ""
docs.append(d)
return
await image2id(d, partial(STORAGE_IMPL.put, tenant_id=task["tenant_id"]), d["id"], task["kb_id"])
await image2id(d, partial(settings.STORAGE_IMPL.put, tenant_id=task["tenant_id"]), d["id"], task["kb_id"])
docs.append(d)
except Exception:
logging.exception(
@ -350,7 +348,7 @@ async def build_chunks(task, progress_callback):
examples = []
all_tags = get_tags_from_cache(kb_ids)
if not all_tags:
all_tags = globals.retriever.all_tags_in_portion(tenant_id, kb_ids, S)
all_tags = settings.retriever.all_tags_in_portion(tenant_id, kb_ids, S)
set_tags_to_cache(kb_ids, all_tags)
else:
all_tags = json.loads(all_tags)
@ -363,7 +361,7 @@ async def build_chunks(task, progress_callback):
if task_canceled:
progress_callback(-1, msg="Task has been canceled.")
return
if globals.retriever.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
if settings.retriever.tag_content(tenant_id, kb_ids, d, all_tags, topn_tags=topn_tags, S=S) and len(d[TAG_FLD]) > 0:
examples.append({"content": d["content_with_weight"], TAG_FLD: d[TAG_FLD]})
else:
docs_to_tag.append(d)
@ -424,7 +422,7 @@ def build_TOC(task, docs, progress_callback):
def init_kb(row, vector_size: int):
idxnm = search.index_name(row["tenant_id"])
return globals.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size)
return settings.docStoreConn.createIdx(idxnm, row.get("kb_id", ""), vector_size)
async def embedding(docs, mdl, parser_config=None, callback=None):
@ -453,9 +451,9 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
return mdl.encode([truncate(c, mdl.max_length-10) for c in txts])
cnts_ = np.array([])
for i in range(0, len(cnts), EMBEDDING_BATCH_SIZE):
for i in range(0, len(cnts), settings.EMBEDDING_BATCH_SIZE):
async with embed_limiter:
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(cnts[i: i + EMBEDDING_BATCH_SIZE]))
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(cnts[i: i + settings.EMBEDDING_BATCH_SIZE]))
if len(cnts_) == 0:
cnts_ = vts
else:
@ -529,19 +527,19 @@ async def run_dataflow(task: dict):
return embedding_model.encode([truncate(c, embedding_model.max_length - 10) for c in txts])
vects = np.array([])
texts = [o.get("questions", o.get("summary", o["text"])) for o in chunks]
delta = 0.20/(len(texts)//EMBEDDING_BATCH_SIZE+1)
delta = 0.20/(len(texts)//settings.EMBEDDING_BATCH_SIZE+1)
prog = 0.8
for i in range(0, len(texts), EMBEDDING_BATCH_SIZE):
for i in range(0, len(texts), settings.EMBEDDING_BATCH_SIZE):
async with embed_limiter:
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i : i + EMBEDDING_BATCH_SIZE]))
vts, c = await trio.to_thread.run_sync(lambda: batch_encode(texts[i : i + settings.EMBEDDING_BATCH_SIZE]))
if len(vects) == 0:
vects = vts
else:
vects = np.concatenate((vects, vts), axis=0)
embedding_token_consumption += c
prog += delta
if i % (len(texts)//EMBEDDING_BATCH_SIZE/100+1) == 1:
set_progress(task_id, prog=prog, msg=f"{i+1} / {len(texts)//EMBEDDING_BATCH_SIZE}")
if i % (len(texts)//settings.EMBEDDING_BATCH_SIZE/100+1) == 1:
set_progress(task_id, prog=prog, msg=f"{i+1} / {len(texts)//settings.EMBEDDING_BATCH_SIZE}")
assert len(vects) == len(chunks)
for i, ck in enumerate(chunks):
@ -648,7 +646,7 @@ async def run_raptor_for_kb(row, kb_parser_config, chat_mdl, embd_mdl, vector_si
chunks = []
vctr_nm = "q_%d_vec"%vector_size
for doc_id in doc_ids:
for d in globals.retriever.chunk_list(doc_id, row["tenant_id"], [str(row["kb_id"])],
for d in settings.retriever.chunk_list(doc_id, row["tenant_id"], [str(row["kb_id"])],
fields=["content_with_weight", vctr_nm],
sort_by_position=True):
chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
@ -691,15 +689,15 @@ async def run_raptor_for_kb(row, kb_parser_config, chat_mdl, embd_mdl, vector_si
async def delete_image(kb_id, chunk_id):
try:
async with minio_limiter:
STORAGE_IMPL.delete(kb_id, chunk_id)
settings.STORAGE_IMPL.delete(kb_id, chunk_id)
except Exception:
logging.exception(f"Deleting image of chunk {chunk_id} got exception")
raise
async def insert_es(task_id, task_tenant_id, task_dataset_id, chunks, progress_callback):
for b in range(0, len(chunks), DOC_BULK_SIZE):
doc_store_result = await trio.to_thread.run_sync(lambda: globals.docStoreConn.insert(chunks[b:b + DOC_BULK_SIZE], search.index_name(task_tenant_id), task_dataset_id))
for b in range(0, len(chunks), settings.DOC_BULK_SIZE):
doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert(chunks[b:b + settings.DOC_BULK_SIZE], search.index_name(task_tenant_id), task_dataset_id))
task_canceled = has_canceled(task_id)
if task_canceled:
progress_callback(-1, msg="Task has been canceled.")
@ -710,13 +708,13 @@ async def insert_es(task_id, task_tenant_id, task_dataset_id, chunks, progress_c
error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!"
progress_callback(-1, msg=error_message)
raise Exception(error_message)
chunk_ids = [chunk["id"] for chunk in chunks[:b + DOC_BULK_SIZE]]
chunk_ids = [chunk["id"] for chunk in chunks[:b + settings.DOC_BULK_SIZE]]
chunk_ids_str = " ".join(chunk_ids)
try:
TaskService.update_chunk_ids(task_id, chunk_ids_str)
except DoesNotExist:
logging.warning(f"do_handle_task update_chunk_ids failed since task {task_id} is unknown.")
doc_store_result = await trio.to_thread.run_sync(lambda: globals.docStoreConn.delete({"id": chunk_ids}, search.index_name(task_tenant_id), task_dataset_id))
doc_store_result = await trio.to_thread.run_sync(lambda: settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(task_tenant_id), task_dataset_id))
async with trio.open_nursery() as nursery:
for chunk_id in chunk_ids:
nursery.start_soon(delete_image, task_dataset_id, chunk_id)
@ -752,7 +750,7 @@ async def do_handle_task(task):
progress_callback = partial(set_progress, task_id, task_from_page, task_to_page)
# FIXME: workaround, Infinity doesn't support table parsing method, this check is to notify user
lower_case_doc_engine = globals.DOC_ENGINE.lower()
lower_case_doc_engine = settings.DOC_ENGINE.lower()
if lower_case_doc_engine == 'infinity' and task['parser_id'].lower() == 'table':
error_message = "Table parsing method is not supported by Infinity, please use other parsing methods or use Elasticsearch as the document engine."
progress_callback(-1, msg=error_message)
@ -971,7 +969,7 @@ async def report_status():
while True:
try:
now = datetime.now()
group_info = REDIS_CONN.queue_info(get_svr_queue_name(0), SVR_CONSUMER_GROUP_NAME)
group_info = REDIS_CONN.queue_info(settings.get_svr_queue_name(0), SVR_CONSUMER_GROUP_NAME)
if group_info is not None:
PENDING_TASKS = int(group_info.get("pending", 0))
LAG_TASKS = int(group_info.get("lag", 0))
@ -1033,9 +1031,9 @@ async def main():
logging.info(f'RAGFlow version: {get_ragflow_version()}')
show_configs()
settings.init_settings()
from common import globals
logging.info(f'globals.EMBEDDING_CFG: {globals.EMBEDDING_CFG}')
print_rag_settings()
settings.check_and_install_torch()
logging.info(f'settings.EMBEDDING_CFG: {settings.EMBEDDING_CFG}')
settings.print_rag_settings()
if sys.platform != "win32":
signal.signal(signal.SIGUSR1, start_tracemalloc_and_snapshot)
signal.signal(signal.SIGUSR2, stop_tracemalloc)