mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Move api.settings to common.settings (#11036)
### What problem does this PR solve? As title ### Type of change - [x] Refactoring --------- Signed-off-by: Jin Hai <haijin.chn@gmail.com>
This commit is contained in:
@ -47,8 +47,8 @@ from api.utils.validation_utils import (
|
||||
validate_and_parse_request_args,
|
||||
)
|
||||
from rag.nlp import search
|
||||
from rag.settings import PAGERANK_FLD
|
||||
from common import globals
|
||||
from common.constants import PAGERANK_FLD
|
||||
from common import settings
|
||||
|
||||
|
||||
@manager.route("/datasets", methods=["POST"]) # noqa: F821
|
||||
@ -360,11 +360,11 @@ def update(tenant_id, dataset_id):
|
||||
return get_error_argument_result(message="'pagerank' can only be set when doc_engine is elasticsearch")
|
||||
|
||||
if req["pagerank"] > 0:
|
||||
globals.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
|
||||
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
else:
|
||||
# Elasticsearch requires PAGERANK_FLD be non-zero!
|
||||
globals.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
|
||||
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
|
||||
if not KnowledgebaseService.update_by_id(kb.id, req):
|
||||
@ -493,9 +493,9 @@ def knowledge_graph(tenant_id, dataset_id):
|
||||
}
|
||||
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
if not globals.docStoreConn.indexExist(search.index_name(kb.tenant_id), dataset_id):
|
||||
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), dataset_id):
|
||||
return get_result(data=obj)
|
||||
sres = globals.retriever.search(req, search.index_name(kb.tenant_id), [dataset_id])
|
||||
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [dataset_id])
|
||||
if not len(sres.ids):
|
||||
return get_result(data=obj)
|
||||
|
||||
@ -528,7 +528,7 @@ def delete_knowledge_graph(tenant_id, dataset_id):
|
||||
code=RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
_, kb = KnowledgebaseService.get_by_id(dataset_id)
|
||||
globals.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]},
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]},
|
||||
search.index_name(kb.tenant_id), dataset_id)
|
||||
|
||||
return get_result(data=True)
|
||||
|
||||
@ -20,12 +20,11 @@ from flask import request, jsonify
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api import settings
|
||||
from api.utils.api_utils import validate_request, build_error_result, apikey_required
|
||||
from rag.app.tag import label_question
|
||||
from api.db.services.dialog_service import meta_filter, convert_conditions
|
||||
from common.constants import RetCode, LLMType
|
||||
from common import globals
|
||||
from common import settings
|
||||
|
||||
@manager.route('/dify/retrieval', methods=['POST']) # noqa: F821
|
||||
@apikey_required
|
||||
@ -138,7 +137,7 @@ def retrieval(tenant_id):
|
||||
# print("doc_ids", doc_ids)
|
||||
if not doc_ids and metadata_condition is not None:
|
||||
doc_ids = ['-999']
|
||||
ranks = globals.retriever.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question,
|
||||
embd_mdl,
|
||||
kb.tenant_id,
|
||||
|
||||
@ -24,7 +24,6 @@ from flask import request, send_file
|
||||
from peewee import OperationalError
|
||||
from pydantic import BaseModel, Field, validator
|
||||
|
||||
from api import settings
|
||||
from api.constants import FILE_NAME_LEN_LIMIT
|
||||
from api.db import FileType
|
||||
from api.db.db_models import File, Task
|
||||
@ -41,10 +40,9 @@ from rag.app.qa import beAdoc, rmPrefix
|
||||
from rag.app.tag import label_question
|
||||
from rag.nlp import rag_tokenizer, search
|
||||
from rag.prompts.generator import cross_languages, keyword_extraction
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
from common.string_utils import remove_redundant_spaces
|
||||
from common.constants import RetCode, LLMType, ParserType, TaskStatus, FileSource
|
||||
from common import globals
|
||||
from common import settings
|
||||
|
||||
MAXIMUM_OF_UPLOADING_FILES = 256
|
||||
|
||||
@ -308,7 +306,7 @@ def update_doc(tenant_id, dataset_id, document_id):
|
||||
)
|
||||
if not e:
|
||||
return get_error_data_result(message="Document not found!")
|
||||
globals.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
|
||||
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
|
||||
|
||||
if "enabled" in req:
|
||||
status = int(req["enabled"])
|
||||
@ -317,7 +315,7 @@ def update_doc(tenant_id, dataset_id, document_id):
|
||||
if not DocumentService.update_by_id(doc.id, {"status": str(status)}):
|
||||
return get_error_data_result(message="Database error (Document update)!")
|
||||
|
||||
globals.docStoreConn.update({"doc_id": doc.id}, {"available_int": status}, search.index_name(kb.tenant_id), doc.kb_id)
|
||||
settings.docStoreConn.update({"doc_id": doc.id}, {"available_int": status}, search.index_name(kb.tenant_id), doc.kb_id)
|
||||
return get_result(data=True)
|
||||
except Exception as e:
|
||||
return server_error_response(e)
|
||||
@ -402,7 +400,7 @@ def download(tenant_id, dataset_id, document_id):
|
||||
return get_error_data_result(message=f"The dataset not own the document {document_id}.")
|
||||
# The process of downloading
|
||||
doc_id, doc_location = File2DocumentService.get_storage_address(doc_id=document_id) # minio address
|
||||
file_stream = STORAGE_IMPL.get(doc_id, doc_location)
|
||||
file_stream = settings.STORAGE_IMPL.get(doc_id, doc_location)
|
||||
if not file_stream:
|
||||
return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR)
|
||||
file = BytesIO(file_stream)
|
||||
@ -672,7 +670,7 @@ def delete(tenant_id, dataset_id):
|
||||
)
|
||||
File2DocumentService.delete_by_document_id(doc_id)
|
||||
|
||||
STORAGE_IMPL.rm(b, n)
|
||||
settings.STORAGE_IMPL.rm(b, n)
|
||||
success_count += 1
|
||||
except Exception as e:
|
||||
errors += str(e)
|
||||
@ -756,7 +754,7 @@ def parse(tenant_id, dataset_id):
|
||||
return get_error_data_result("Can't parse document that is currently being processed")
|
||||
info = {"run": "1", "progress": 0, "progress_msg": "", "chunk_num": 0, "token_num": 0}
|
||||
DocumentService.update_by_id(id, info)
|
||||
globals.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
|
||||
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
|
||||
TaskService.filter_delete([Task.doc_id == id])
|
||||
e, doc = DocumentService.get_by_id(id)
|
||||
doc = doc.to_dict()
|
||||
@ -836,7 +834,7 @@ def stop_parsing(tenant_id, dataset_id):
|
||||
return get_error_data_result("Can't stop parsing document with progress at 0 or 1")
|
||||
info = {"run": "2", "progress": 0, "chunk_num": 0}
|
||||
DocumentService.update_by_id(id, info)
|
||||
globals.docStoreConn.delete({"doc_id": doc[0].id}, search.index_name(tenant_id), dataset_id)
|
||||
settings.docStoreConn.delete({"doc_id": doc[0].id}, search.index_name(tenant_id), dataset_id)
|
||||
success_count += 1
|
||||
if duplicate_messages:
|
||||
if success_count > 0:
|
||||
@ -969,7 +967,7 @@ def list_chunks(tenant_id, dataset_id, document_id):
|
||||
|
||||
res = {"total": 0, "chunks": [], "doc": renamed_doc}
|
||||
if req.get("id"):
|
||||
chunk = globals.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
|
||||
chunk = settings.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
|
||||
if not chunk:
|
||||
return get_result(message=f"Chunk not found: {dataset_id}/{req.get('id')}", code=RetCode.NOT_FOUND)
|
||||
k = []
|
||||
@ -996,8 +994,8 @@ def list_chunks(tenant_id, dataset_id, document_id):
|
||||
res["chunks"].append(final_chunk)
|
||||
_ = Chunk(**final_chunk)
|
||||
|
||||
elif globals.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
|
||||
sres = globals.retriever.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
|
||||
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
|
||||
sres = settings.retriever.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None, highlight=True)
|
||||
res["total"] = sres.total
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
@ -1121,7 +1119,7 @@ def add_chunk(tenant_id, dataset_id, document_id):
|
||||
v, c = embd_mdl.encode([doc.name, req["content"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
|
||||
v = 0.1 * v[0] + 0.9 * v[1]
|
||||
d["q_%d_vec" % len(v)] = v.tolist()
|
||||
globals.docStoreConn.insert([d], search.index_name(tenant_id), dataset_id)
|
||||
settings.docStoreConn.insert([d], search.index_name(tenant_id), dataset_id)
|
||||
|
||||
DocumentService.increment_chunk_num(doc.id, doc.kb_id, c, 1, 0)
|
||||
# rename keys
|
||||
@ -1202,7 +1200,7 @@ def rm_chunk(tenant_id, dataset_id, document_id):
|
||||
if "chunk_ids" in req:
|
||||
unique_chunk_ids, duplicate_messages = check_duplicate_ids(req["chunk_ids"], "chunk")
|
||||
condition["id"] = unique_chunk_ids
|
||||
chunk_number = globals.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
|
||||
chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
|
||||
if chunk_number != 0:
|
||||
DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
|
||||
if "chunk_ids" in req and chunk_number != len(unique_chunk_ids):
|
||||
@ -1274,7 +1272,7 @@ def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
|
||||
schema:
|
||||
type: object
|
||||
"""
|
||||
chunk = globals.docStoreConn.get(chunk_id, search.index_name(tenant_id), [dataset_id])
|
||||
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), [dataset_id])
|
||||
if chunk is None:
|
||||
return get_error_data_result(f"Can't find this chunk {chunk_id}")
|
||||
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
|
||||
@ -1319,7 +1317,7 @@ def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
|
||||
v, c = embd_mdl.encode([doc.name, d["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
|
||||
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
||||
d["q_%d_vec" % len(v)] = v.tolist()
|
||||
globals.docStoreConn.update({"id": chunk_id}, d, search.index_name(tenant_id), dataset_id)
|
||||
settings.docStoreConn.update({"id": chunk_id}, d, search.index_name(tenant_id), dataset_id)
|
||||
return get_result()
|
||||
|
||||
|
||||
@ -1465,7 +1463,7 @@ def retrieval_test(tenant_id):
|
||||
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
ranks = globals.retriever.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question,
|
||||
embd_mdl,
|
||||
tenant_ids,
|
||||
|
||||
@ -32,7 +32,7 @@ from api.db.services import duplicate_name
|
||||
from api.db.services.file_service import FileService
|
||||
from api.utils.api_utils import get_json_result
|
||||
from api.utils.file_utils import filename_type
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
from common import settings
|
||||
|
||||
|
||||
@manager.route('/file/upload', methods=['POST']) # noqa: F821
|
||||
@ -126,7 +126,7 @@ def upload(tenant_id):
|
||||
|
||||
filetype = filename_type(file_obj_names[file_len - 1])
|
||||
location = file_obj_names[file_len - 1]
|
||||
while STORAGE_IMPL.obj_exist(last_folder.id, location):
|
||||
while settings.STORAGE_IMPL.obj_exist(last_folder.id, location):
|
||||
location += "_"
|
||||
blob = file_obj.read()
|
||||
filename = duplicate_name(FileService.query, name=file_obj_names[file_len - 1], parent_id=last_folder.id)
|
||||
@ -142,7 +142,7 @@ def upload(tenant_id):
|
||||
"size": len(blob),
|
||||
}
|
||||
file = FileService.insert(file)
|
||||
STORAGE_IMPL.put(last_folder.id, location, blob)
|
||||
settings.STORAGE_IMPL.put(last_folder.id, location, blob)
|
||||
file_res.append(file.to_json())
|
||||
return get_json_result(data=file_res)
|
||||
except Exception as e:
|
||||
@ -497,10 +497,10 @@ def rm(tenant_id):
|
||||
e, file = FileService.get_by_id(inner_file_id)
|
||||
if not e:
|
||||
return get_json_result(message="File not found!", code=404)
|
||||
STORAGE_IMPL.rm(file.parent_id, file.location)
|
||||
settings.STORAGE_IMPL.rm(file.parent_id, file.location)
|
||||
FileService.delete_folder_by_pf_id(tenant_id, file_id)
|
||||
else:
|
||||
STORAGE_IMPL.rm(file.parent_id, file.location)
|
||||
settings.STORAGE_IMPL.rm(file.parent_id, file.location)
|
||||
if not FileService.delete(file):
|
||||
return get_json_result(message="Database error (File removal)!", code=500)
|
||||
|
||||
@ -614,10 +614,10 @@ def get(tenant_id, file_id):
|
||||
if not e:
|
||||
return get_json_result(message="Document not found!", code=404)
|
||||
|
||||
blob = STORAGE_IMPL.get(file.parent_id, file.location)
|
||||
blob = settings.STORAGE_IMPL.get(file.parent_id, file.location)
|
||||
if not blob:
|
||||
b, n = File2DocumentService.get_storage_address(file_id=file_id)
|
||||
blob = STORAGE_IMPL.get(b, n)
|
||||
blob = settings.STORAGE_IMPL.get(b, n)
|
||||
|
||||
response = flask.make_response(blob)
|
||||
ext = re.search(r"\.([^.]+)$", file.name)
|
||||
|
||||
@ -21,7 +21,6 @@ import tiktoken
|
||||
from flask import Response, jsonify, request
|
||||
|
||||
from agent.canvas import Canvas
|
||||
from api import settings
|
||||
from api.db.db_models import APIToken
|
||||
from api.db.services.api_service import API4ConversationService
|
||||
from api.db.services.canvas_service import UserCanvasService, completion_openai
|
||||
@ -41,7 +40,7 @@ from rag.app.tag import label_question
|
||||
from rag.prompts.template import load_prompt
|
||||
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
|
||||
from common.constants import RetCode, LLMType, StatusEnum
|
||||
from common import globals
|
||||
from common import settings
|
||||
|
||||
@manager.route("/chats/<chat_id>/sessions", methods=["POST"]) # noqa: F821
|
||||
@token_required
|
||||
@ -1016,7 +1015,7 @@ def retrieval_test_embedded():
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
labels = label_question(question, [kb])
|
||||
ranks = globals.retriever.retrieval(
|
||||
ranks = settings.retriever.retrieval(
|
||||
question, embd_mdl, tenant_ids, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl, highlight=req.get("highlight"), rank_feature=labels
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user