mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
add use layout or not option (#145)
* add use layout or not option * trival
This commit is contained in:
@ -2,8 +2,8 @@ import copy
|
||||
import re
|
||||
|
||||
from api.db import ParserType
|
||||
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
|
||||
from deepdoc.parser import PdfParser
|
||||
from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
|
||||
from deepdoc.parser import PdfParser, PlainParser
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
|
||||
@ -30,9 +30,7 @@ class Pdf(PdfParser):
|
||||
# print(b)
|
||||
print("OCR:", timer()-start)
|
||||
|
||||
def tag(pn, left, right, top, bottom):
|
||||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||||
.format(pn, left, right, top, bottom)
|
||||
|
||||
|
||||
self._layouts_rec(zoomin)
|
||||
callback(0.65, "Layout analysis finished.")
|
||||
@ -49,6 +47,8 @@ class Pdf(PdfParser):
|
||||
for b in self.boxes:
|
||||
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
|
||||
|
||||
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
||||
|
||||
# set pivot using the most frequent type of title,
|
||||
# then merge between 2 pivot
|
||||
if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1:
|
||||
@ -103,9 +103,10 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
pdf_parser = None
|
||||
|
||||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
cks, tbls = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
pdf_parser = Pdf() if kwargs.get("parser_config",{}).get("layout_recognize", True) else PlainParser()
|
||||
sections, tbls = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
if sections and len(sections[0])<3: cks = [(t, l, [0]*5) for t, l in sections]
|
||||
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
doc = {
|
||||
"docnm_kwd": filename
|
||||
@ -115,13 +116,60 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
||||
# is it English
|
||||
eng = lang.lower() == "english"#pdf_parser.is_english
|
||||
|
||||
# set pivot using the most frequent type of title,
|
||||
# then merge between 2 pivot
|
||||
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
|
||||
max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
|
||||
most_level = max(0, max_lvl - 1)
|
||||
levels = []
|
||||
for txt, _, _ in sections:
|
||||
for t, lvl in pdf_parser.outlines:
|
||||
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
|
||||
tks_ = set([txt[i] + txt[i + 1] for i in range(min(len(t), len(txt) - 1))])
|
||||
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
|
||||
levels.append(lvl)
|
||||
break
|
||||
else:
|
||||
levels.append(max_lvl + 1)
|
||||
else:
|
||||
bull = bullets_category([txt for txt,_,_ in sections])
|
||||
most_level, levels = title_frequency(bull, [(txt, l) for txt, l, poss in sections])
|
||||
|
||||
assert len(sections) == len(levels)
|
||||
sec_ids = []
|
||||
sid = 0
|
||||
for i, lvl in enumerate(levels):
|
||||
if lvl <= most_level and i > 0 and lvl != levels[i - 1]: sid += 1
|
||||
sec_ids.append(sid)
|
||||
# print(lvl, self.boxes[i]["text"], most_level, sid)
|
||||
|
||||
sections = [(txt, sec_ids[i], poss) for i, (txt, _, poss) in enumerate(sections)]
|
||||
for (img, rows), poss in tbls:
|
||||
sections.append((rows if isinstance(rows, str) else rows[0], -1,
|
||||
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
||||
|
||||
def tag(pn, left, right, top, bottom):
|
||||
if pn+left+right+top+bottom == 0:
|
||||
return ""
|
||||
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
||||
.format(pn, left, right, top, bottom)
|
||||
|
||||
chunks = []
|
||||
last_sid = -2
|
||||
tk_cnt = 0
|
||||
for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
||||
poss = "\t".join([tag(*pos) for pos in poss])
|
||||
if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1):
|
||||
if chunks:
|
||||
chunks[-1] += "\n" + txt + poss
|
||||
tk_cnt += num_tokens_from_string(txt)
|
||||
continue
|
||||
chunks.append(txt + poss)
|
||||
tk_cnt = num_tokens_from_string(txt)
|
||||
if sec_id > -1: last_sid = sec_id
|
||||
|
||||
res = tokenize_table(tbls, doc, eng)
|
||||
for ck in cks:
|
||||
d = copy.deepcopy(doc)
|
||||
d["image"], poss = pdf_parser.crop(ck, need_position=True)
|
||||
add_positions(d, poss)
|
||||
tokenize(d, pdf_parser.remove_tag(ck), eng)
|
||||
res.append(d)
|
||||
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
||||
return res
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user