Inner prompt parameter setting. (#4806)

### What problem does this PR solve?

#4764

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu
2025-02-08 18:09:02 +08:00
committed by GitHub
parent 5a51bdd824
commit f64ae9dc33
13 changed files with 10744 additions and 9935 deletions

View File

@ -69,10 +69,8 @@ class Generate(ComponentBase):
component_name = "Generate"
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.parameters \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs[1:] if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def set_cite(self, retrieval_res, answer):
@ -110,10 +108,26 @@ class Generate(ComponentBase):
return res
def get_input_elements(self):
if self._param.parameters:
return [{"key": "user", "name": "Input your question here:"}, *self._param.parameters]
return [{"key": "user", "name": "Input your question here:"}]
key_set = set([])
res = [{"key": "user", "name": "Input your question here:"}]
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.prompt, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_compnent_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
@ -121,22 +135,20 @@ class Generate(ComponentBase):
retrieval_res = []
self._param.inputs = []
for para in self._param.parameters:
if not para.get("component_id"):
continue
component_id = para["component_id"].split("@")[0]
if para["component_id"].lower().find("@") >= 0:
cpn_id, key = para["component_id"].split("@")
for para in self.get_input_elements()[1:]:
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["component_id"], "content": kwargs[para["key"]]})
{"component_id": para["key"], "content": kwargs[para["key"]]})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
@ -152,8 +164,8 @@ class Generate(ComponentBase):
else:
if cpn.component_name.lower() == "retrieval":
retrieval_res.append(out)
kwargs[para["key"]] = " - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})
kwargs[para["key"]] = " - " + "\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["key"], "content": kwargs[para["key"]]})
if retrieval_res:
retrieval_res = pd.concat(retrieval_res, ignore_index=True)
@ -175,16 +187,16 @@ class Generate(ComponentBase):
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
return pd.DataFrame([res])
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
@ -196,18 +208,18 @@ class Generate(ComponentBase):
def stream_output(self, chat_mdl, prompt, retrieval_res):
res = None
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
yield res
self.set_output(res)
return
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": ""})
msg.append({"role": "user", "content": "Output: "})
answer = ""
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
res = {"content": ans, "reference": []}
@ -230,5 +242,6 @@ class Generate(ComponentBase):
for n, v in kwargs.items():
prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
ans = chat_mdl.chat(prompt, [{"role": "user", "content": kwargs.get("user", "")}], self._param.gen_conf())
u = kwargs.get("user")
ans = chat_mdl.chat(prompt, [{"role": "user", "content": u if u else "Output: "}], self._param.gen_conf())
return pd.DataFrame([ans])