mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Integration with Infinity (#2894)
### What problem does this PR solve? Integration with Infinity - Replaced ELASTICSEARCH with dataStoreConn - Renamed deleteByQuery with delete - Renamed bulk to upsertBulk - getHighlight, getAggregation - Fix KGSearch.search - Moved Dealer.sql_retrieval to es_conn.py ### Type of change - [x] Refactoring
This commit is contained in:
436
rag/utils/infinity_conn.py
Normal file
436
rag/utils/infinity_conn.py
Normal file
@ -0,0 +1,436 @@
|
||||
import os
|
||||
import re
|
||||
import json
|
||||
from typing import List, Dict
|
||||
import infinity
|
||||
from infinity.common import ConflictType, InfinityException
|
||||
from infinity.index import IndexInfo, IndexType
|
||||
from infinity.connection_pool import ConnectionPool
|
||||
from rag import settings
|
||||
from rag.settings import doc_store_logger
|
||||
from rag.utils import singleton
|
||||
import polars as pl
|
||||
from polars.series.series import Series
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
|
||||
from rag.utils.doc_store_conn import (
|
||||
DocStoreConnection,
|
||||
MatchExpr,
|
||||
MatchTextExpr,
|
||||
MatchDenseExpr,
|
||||
FusionExpr,
|
||||
OrderByExpr,
|
||||
)
|
||||
|
||||
|
||||
def equivalent_condition_to_str(condition: dict) -> str:
|
||||
assert "_id" not in condition
|
||||
cond = list()
|
||||
for k, v in condition.items():
|
||||
if not isinstance(k, str) or not v:
|
||||
continue
|
||||
if isinstance(v, list):
|
||||
inCond = list()
|
||||
for item in v:
|
||||
if isinstance(item, str):
|
||||
inCond.append(f"'{item}'")
|
||||
else:
|
||||
inCond.append(str(item))
|
||||
if inCond:
|
||||
strInCond = ", ".join(inCond)
|
||||
strInCond = f"{k} IN ({strInCond})"
|
||||
cond.append(strInCond)
|
||||
elif isinstance(v, str):
|
||||
cond.append(f"{k}='{v}'")
|
||||
else:
|
||||
cond.append(f"{k}={str(v)}")
|
||||
return " AND ".join(cond)
|
||||
|
||||
|
||||
@singleton
|
||||
class InfinityConnection(DocStoreConnection):
|
||||
def __init__(self):
|
||||
self.dbName = settings.INFINITY.get("db_name", "default_db")
|
||||
infinity_uri = settings.INFINITY["uri"]
|
||||
if ":" in infinity_uri:
|
||||
host, port = infinity_uri.split(":")
|
||||
infinity_uri = infinity.common.NetworkAddress(host, int(port))
|
||||
self.connPool = ConnectionPool(infinity_uri)
|
||||
doc_store_logger.info(f"Connected to infinity {infinity_uri}.")
|
||||
|
||||
"""
|
||||
Database operations
|
||||
"""
|
||||
|
||||
def dbType(self) -> str:
|
||||
return "infinity"
|
||||
|
||||
def health(self) -> dict:
|
||||
"""
|
||||
Return the health status of the database.
|
||||
TODO: Infinity-sdk provides health() to wrap `show global variables` and `show tables`
|
||||
"""
|
||||
inf_conn = self.connPool.get_conn()
|
||||
res = infinity.show_current_node()
|
||||
self.connPool.release_conn(inf_conn)
|
||||
color = "green" if res.error_code == 0 else "red"
|
||||
res2 = {
|
||||
"type": "infinity",
|
||||
"status": f"{res.role} {color}",
|
||||
"error": res.error_msg,
|
||||
}
|
||||
return res2
|
||||
|
||||
"""
|
||||
Table operations
|
||||
"""
|
||||
|
||||
def createIdx(self, indexName: str, knowledgebaseId: str, vectorSize: int):
|
||||
table_name = f"{indexName}_{knowledgebaseId}"
|
||||
inf_conn = self.connPool.get_conn()
|
||||
inf_db = inf_conn.create_database(self.dbName, ConflictType.Ignore)
|
||||
|
||||
fp_mapping = os.path.join(
|
||||
get_project_base_directory(), "conf", "infinity_mapping.json"
|
||||
)
|
||||
if not os.path.exists(fp_mapping):
|
||||
raise Exception(f"Mapping file not found at {fp_mapping}")
|
||||
schema = json.load(open(fp_mapping))
|
||||
vector_name = f"q_{vectorSize}_vec"
|
||||
schema[vector_name] = {"type": f"vector,{vectorSize},float"}
|
||||
inf_table = inf_db.create_table(
|
||||
table_name,
|
||||
schema,
|
||||
ConflictType.Ignore,
|
||||
)
|
||||
inf_table.create_index(
|
||||
"q_vec_idx",
|
||||
IndexInfo(
|
||||
vector_name,
|
||||
IndexType.Hnsw,
|
||||
{
|
||||
"M": "16",
|
||||
"ef_construction": "50",
|
||||
"metric": "cosine",
|
||||
"encode": "lvq",
|
||||
},
|
||||
),
|
||||
ConflictType.Ignore,
|
||||
)
|
||||
text_suffix = ["_tks", "_ltks", "_kwd"]
|
||||
for field_name, field_info in schema.items():
|
||||
if field_info["type"] != "varchar":
|
||||
continue
|
||||
for suffix in text_suffix:
|
||||
if field_name.endswith(suffix):
|
||||
inf_table.create_index(
|
||||
f"text_idx_{field_name}",
|
||||
IndexInfo(
|
||||
field_name, IndexType.FullText, {"ANALYZER": "standard"}
|
||||
),
|
||||
ConflictType.Ignore,
|
||||
)
|
||||
break
|
||||
self.connPool.release_conn(inf_conn)
|
||||
doc_store_logger.info(
|
||||
f"INFINITY created table {table_name}, vector size {vectorSize}"
|
||||
)
|
||||
|
||||
def deleteIdx(self, indexName: str, knowledgebaseId: str):
|
||||
table_name = f"{indexName}_{knowledgebaseId}"
|
||||
inf_conn = self.connPool.get_conn()
|
||||
db_instance = inf_conn.get_database(self.dbName)
|
||||
db_instance.drop_table(table_name, ConflictType.Ignore)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
doc_store_logger.info(f"INFINITY dropped table {table_name}")
|
||||
|
||||
def indexExist(self, indexName: str, knowledgebaseId: str) -> bool:
|
||||
table_name = f"{indexName}_{knowledgebaseId}"
|
||||
try:
|
||||
inf_conn = self.connPool.get_conn()
|
||||
db_instance = inf_conn.get_database(self.dbName)
|
||||
_ = db_instance.get_table(table_name)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
return True
|
||||
except Exception as e:
|
||||
doc_store_logger.error("INFINITY indexExist: " + str(e))
|
||||
return False
|
||||
|
||||
"""
|
||||
CRUD operations
|
||||
"""
|
||||
|
||||
def search(
|
||||
self,
|
||||
selectFields: list[str],
|
||||
highlightFields: list[str],
|
||||
condition: dict,
|
||||
matchExprs: list[MatchExpr],
|
||||
orderBy: OrderByExpr,
|
||||
offset: int,
|
||||
limit: int,
|
||||
indexNames: str|list[str],
|
||||
knowledgebaseIds: list[str],
|
||||
) -> list[dict] | pl.DataFrame:
|
||||
"""
|
||||
TODO: Infinity doesn't provide highlight
|
||||
"""
|
||||
if isinstance(indexNames, str):
|
||||
indexNames = indexNames.split(",")
|
||||
assert isinstance(indexNames, list) and len(indexNames) > 0
|
||||
inf_conn = self.connPool.get_conn()
|
||||
db_instance = inf_conn.get_database(self.dbName)
|
||||
df_list = list()
|
||||
table_list = list()
|
||||
if "id" not in selectFields:
|
||||
selectFields.append("id")
|
||||
|
||||
# Prepare expressions common to all tables
|
||||
filter_cond = ""
|
||||
filter_fulltext = ""
|
||||
if condition:
|
||||
filter_cond = equivalent_condition_to_str(condition)
|
||||
for matchExpr in matchExprs:
|
||||
if isinstance(matchExpr, MatchTextExpr):
|
||||
if len(filter_cond) != 0 and "filter" not in matchExpr.extra_options:
|
||||
matchExpr.extra_options.update({"filter": filter_cond})
|
||||
fields = ",".join(matchExpr.fields)
|
||||
filter_fulltext = (
|
||||
f"filter_fulltext('{fields}', '{matchExpr.matching_text}')"
|
||||
)
|
||||
if len(filter_cond) != 0:
|
||||
filter_fulltext = f"({filter_cond}) AND {filter_fulltext}"
|
||||
# doc_store_logger.info(f"filter_fulltext: {filter_fulltext}")
|
||||
minimum_should_match = "0%"
|
||||
if "minimum_should_match" in matchExpr.extra_options:
|
||||
minimum_should_match = (
|
||||
str(int(matchExpr.extra_options["minimum_should_match"] * 100))
|
||||
+ "%"
|
||||
)
|
||||
matchExpr.extra_options.update(
|
||||
{"minimum_should_match": minimum_should_match}
|
||||
)
|
||||
for k, v in matchExpr.extra_options.items():
|
||||
if not isinstance(v, str):
|
||||
matchExpr.extra_options[k] = str(v)
|
||||
elif isinstance(matchExpr, MatchDenseExpr):
|
||||
if len(filter_cond) != 0 and "filter" not in matchExpr.extra_options:
|
||||
matchExpr.extra_options.update({"filter": filter_fulltext})
|
||||
for k, v in matchExpr.extra_options.items():
|
||||
if not isinstance(v, str):
|
||||
matchExpr.extra_options[k] = str(v)
|
||||
if orderBy.fields:
|
||||
order_by_expr_list = list()
|
||||
for order_field in orderBy.fields:
|
||||
order_by_expr_list.append((order_field[0], order_field[1] == 0))
|
||||
|
||||
# Scatter search tables and gather the results
|
||||
for indexName in indexNames:
|
||||
for knowledgebaseId in knowledgebaseIds:
|
||||
table_name = f"{indexName}_{knowledgebaseId}"
|
||||
try:
|
||||
table_instance = db_instance.get_table(table_name)
|
||||
except Exception:
|
||||
continue
|
||||
table_list.append(table_name)
|
||||
builder = table_instance.output(selectFields)
|
||||
for matchExpr in matchExprs:
|
||||
if isinstance(matchExpr, MatchTextExpr):
|
||||
fields = ",".join(matchExpr.fields)
|
||||
builder = builder.match_text(
|
||||
fields,
|
||||
matchExpr.matching_text,
|
||||
matchExpr.topn,
|
||||
matchExpr.extra_options,
|
||||
)
|
||||
elif isinstance(matchExpr, MatchDenseExpr):
|
||||
builder = builder.match_dense(
|
||||
matchExpr.vector_column_name,
|
||||
matchExpr.embedding_data,
|
||||
matchExpr.embedding_data_type,
|
||||
matchExpr.distance_type,
|
||||
matchExpr.topn,
|
||||
matchExpr.extra_options,
|
||||
)
|
||||
elif isinstance(matchExpr, FusionExpr):
|
||||
builder = builder.fusion(
|
||||
matchExpr.method, matchExpr.topn, matchExpr.fusion_params
|
||||
)
|
||||
if orderBy.fields:
|
||||
builder.sort(order_by_expr_list)
|
||||
builder.offset(offset).limit(limit)
|
||||
kb_res = builder.to_pl()
|
||||
df_list.append(kb_res)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
res = pl.concat(df_list)
|
||||
doc_store_logger.info("INFINITY search tables: " + str(table_list))
|
||||
return res
|
||||
|
||||
def get(
|
||||
self, chunkId: str, indexName: str, knowledgebaseIds: list[str]
|
||||
) -> dict | None:
|
||||
inf_conn = self.connPool.get_conn()
|
||||
db_instance = inf_conn.get_database(self.dbName)
|
||||
df_list = list()
|
||||
assert isinstance(knowledgebaseIds, list)
|
||||
for knowledgebaseId in knowledgebaseIds:
|
||||
table_name = f"{indexName}_{knowledgebaseId}"
|
||||
table_instance = db_instance.get_table(table_name)
|
||||
kb_res = table_instance.output(["*"]).filter(f"id = '{chunkId}'").to_pl()
|
||||
df_list.append(kb_res)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
res = pl.concat(df_list)
|
||||
res_fields = self.getFields(res, res.columns)
|
||||
return res_fields.get(chunkId, None)
|
||||
|
||||
def insert(
|
||||
self, documents: list[dict], indexName: str, knowledgebaseId: str
|
||||
) -> list[str]:
|
||||
inf_conn = self.connPool.get_conn()
|
||||
db_instance = inf_conn.get_database(self.dbName)
|
||||
table_name = f"{indexName}_{knowledgebaseId}"
|
||||
try:
|
||||
table_instance = db_instance.get_table(table_name)
|
||||
except InfinityException as e:
|
||||
# src/common/status.cppm, kTableNotExist = 3022
|
||||
if e.error_code != 3022:
|
||||
raise
|
||||
vector_size = 0
|
||||
patt = re.compile(r"q_(?P<vector_size>\d+)_vec")
|
||||
for k in documents[0].keys():
|
||||
m = patt.match(k)
|
||||
if m:
|
||||
vector_size = int(m.group("vector_size"))
|
||||
break
|
||||
if vector_size == 0:
|
||||
raise ValueError("Cannot infer vector size from documents")
|
||||
self.createIdx(indexName, knowledgebaseId, vector_size)
|
||||
table_instance = db_instance.get_table(table_name)
|
||||
|
||||
for d in documents:
|
||||
assert "_id" not in d
|
||||
assert "id" in d
|
||||
for k, v in d.items():
|
||||
if k.endswith("_kwd") and isinstance(v, list):
|
||||
d[k] = " ".join(v)
|
||||
ids = [f"'{d["id"]}'" for d in documents]
|
||||
str_ids = ", ".join(ids)
|
||||
str_filter = f"id IN ({str_ids})"
|
||||
table_instance.delete(str_filter)
|
||||
# for doc in documents:
|
||||
# doc_store_logger.info(f"insert position_list: {doc['position_list']}")
|
||||
# doc_store_logger.info(f"InfinityConnection.insert {json.dumps(documents)}")
|
||||
table_instance.insert(documents)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
doc_store_logger.info(f"inserted into {table_name} {str_ids}.")
|
||||
return []
|
||||
|
||||
def update(
|
||||
self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str
|
||||
) -> bool:
|
||||
# if 'position_list' in newValue:
|
||||
# doc_store_logger.info(f"update position_list: {newValue['position_list']}")
|
||||
inf_conn = self.connPool.get_conn()
|
||||
db_instance = inf_conn.get_database(self.dbName)
|
||||
table_name = f"{indexName}_{knowledgebaseId}"
|
||||
table_instance = db_instance.get_table(table_name)
|
||||
filter = equivalent_condition_to_str(condition)
|
||||
for k, v in newValue.items():
|
||||
if k.endswith("_kwd") and isinstance(v, list):
|
||||
newValue[k] = " ".join(v)
|
||||
table_instance.update(filter, newValue)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
return True
|
||||
|
||||
def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int:
|
||||
inf_conn = self.connPool.get_conn()
|
||||
db_instance = inf_conn.get_database(self.dbName)
|
||||
table_name = f"{indexName}_{knowledgebaseId}"
|
||||
filter = equivalent_condition_to_str(condition)
|
||||
try:
|
||||
table_instance = db_instance.get_table(table_name)
|
||||
except Exception:
|
||||
doc_store_logger.warning(
|
||||
f"Skipped deleting `{filter}` from table {table_name} since the table doesn't exist."
|
||||
)
|
||||
return 0
|
||||
res = table_instance.delete(filter)
|
||||
self.connPool.release_conn(inf_conn)
|
||||
return res.deleted_rows
|
||||
|
||||
"""
|
||||
Helper functions for search result
|
||||
"""
|
||||
|
||||
def getTotal(self, res):
|
||||
return len(res)
|
||||
|
||||
def getChunkIds(self, res):
|
||||
return list(res["id"])
|
||||
|
||||
def getFields(self, res, fields: List[str]) -> Dict[str, dict]:
|
||||
res_fields = {}
|
||||
if not fields:
|
||||
return {}
|
||||
num_rows = len(res)
|
||||
column_id = res["id"]
|
||||
for i in range(num_rows):
|
||||
id = column_id[i]
|
||||
m = {"id": id}
|
||||
for fieldnm in fields:
|
||||
if fieldnm not in res:
|
||||
m[fieldnm] = None
|
||||
continue
|
||||
v = res[fieldnm][i]
|
||||
if isinstance(v, Series):
|
||||
v = list(v)
|
||||
elif fieldnm == "important_kwd":
|
||||
assert isinstance(v, str)
|
||||
v = v.split(" ")
|
||||
else:
|
||||
if not isinstance(v, str):
|
||||
v = str(v)
|
||||
# if fieldnm.endswith("_tks"):
|
||||
# v = rmSpace(v)
|
||||
m[fieldnm] = v
|
||||
res_fields[id] = m
|
||||
return res_fields
|
||||
|
||||
def getHighlight(self, res, keywords: List[str], fieldnm: str):
|
||||
ans = {}
|
||||
num_rows = len(res)
|
||||
column_id = res["id"]
|
||||
for i in range(num_rows):
|
||||
id = column_id[i]
|
||||
txt = res[fieldnm][i]
|
||||
txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE)
|
||||
txts = []
|
||||
for t in re.split(r"[.?!;\n]", txt):
|
||||
for w in keywords:
|
||||
t = re.sub(
|
||||
r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])"
|
||||
% re.escape(w),
|
||||
r"\1<em>\2</em>\3",
|
||||
t,
|
||||
flags=re.IGNORECASE | re.MULTILINE,
|
||||
)
|
||||
if not re.search(
|
||||
r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE
|
||||
):
|
||||
continue
|
||||
txts.append(t)
|
||||
ans[id] = "...".join(txts)
|
||||
return ans
|
||||
|
||||
def getAggregation(self, res, fieldnm: str):
|
||||
"""
|
||||
TODO: Infinity doesn't provide aggregation
|
||||
"""
|
||||
return list()
|
||||
|
||||
"""
|
||||
SQL
|
||||
"""
|
||||
|
||||
def sql(sql: str, fetch_size: int, format: str):
|
||||
raise NotImplementedError("Not implemented")
|
||||
Reference in New Issue
Block a user