mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Integration with Infinity (#2894)
### What problem does this PR solve? Integration with Infinity - Replaced ELASTICSEARCH with dataStoreConn - Renamed deleteByQuery with delete - Renamed bulk to upsertBulk - getHighlight, getAggregation - Fix KGSearch.search - Moved Dealer.sql_retrieval to es_conn.py ### Type of change - [x] Refactoring
This commit is contained in:
@ -31,7 +31,6 @@ from timeit import default_timer as timer
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from elasticsearch_dsl import Q
|
||||
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.services.dialog_service import keyword_extraction, question_proposal
|
||||
@ -39,8 +38,7 @@ from api.db.services.document_service import DocumentService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.task_service import TaskService
|
||||
from api.db.services.file2document_service import File2DocumentService
|
||||
from api.settings import retrievaler
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from api.settings import retrievaler, docStoreConn
|
||||
from api.db.db_models import close_connection
|
||||
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, knowledge_graph, email
|
||||
from rag.nlp import search, rag_tokenizer
|
||||
@ -48,7 +46,6 @@ from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as
|
||||
from rag.settings import database_logger, SVR_QUEUE_NAME
|
||||
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
|
||||
from rag.utils import rmSpace, num_tokens_from_string
|
||||
from rag.utils.es_conn import ELASTICSEARCH
|
||||
from rag.utils.redis_conn import REDIS_CONN, Payload
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
|
||||
@ -126,7 +123,7 @@ def collect():
|
||||
return pd.DataFrame()
|
||||
tasks = TaskService.get_tasks(msg["id"])
|
||||
if not tasks:
|
||||
cron_logger.warn("{} empty task!".format(msg["id"]))
|
||||
cron_logger.warning("{} empty task!".format(msg["id"]))
|
||||
return []
|
||||
|
||||
tasks = pd.DataFrame(tasks)
|
||||
@ -187,7 +184,7 @@ def build(row):
|
||||
docs = []
|
||||
doc = {
|
||||
"doc_id": row["doc_id"],
|
||||
"kb_id": [str(row["kb_id"])]
|
||||
"kb_id": str(row["kb_id"])
|
||||
}
|
||||
el = 0
|
||||
for ck in cks:
|
||||
@ -196,10 +193,14 @@ def build(row):
|
||||
md5 = hashlib.md5()
|
||||
md5.update((ck["content_with_weight"] +
|
||||
str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
d["id"] = md5.hexdigest()
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
||||
if not d.get("image"):
|
||||
d["img_id"] = ""
|
||||
d["page_num_list"] = json.dumps([])
|
||||
d["position_list"] = json.dumps([])
|
||||
d["top_list"] = json.dumps([])
|
||||
docs.append(d)
|
||||
continue
|
||||
|
||||
@ -211,13 +212,13 @@ def build(row):
|
||||
d["image"].save(output_buffer, format='JPEG')
|
||||
|
||||
st = timer()
|
||||
STORAGE_IMPL.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
||||
STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
|
||||
el += timer() - st
|
||||
except Exception as e:
|
||||
cron_logger.error(str(e))
|
||||
traceback.print_exc()
|
||||
|
||||
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
||||
d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
|
||||
del d["image"]
|
||||
docs.append(d)
|
||||
cron_logger.info("MINIO PUT({}):{}".format(row["name"], el))
|
||||
@ -245,12 +246,9 @@ def build(row):
|
||||
return docs
|
||||
|
||||
|
||||
def init_kb(row):
|
||||
def init_kb(row, vector_size: int):
|
||||
idxnm = search.index_name(row["tenant_id"])
|
||||
if ELASTICSEARCH.indexExist(idxnm):
|
||||
return
|
||||
return ELASTICSEARCH.createIdx(idxnm, json.load(
|
||||
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
|
||||
return docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
|
||||
|
||||
|
||||
def embedding(docs, mdl, parser_config=None, callback=None):
|
||||
@ -288,17 +286,20 @@ def embedding(docs, mdl, parser_config=None, callback=None):
|
||||
cnts) if len(tts) == len(cnts) else cnts
|
||||
|
||||
assert len(vects) == len(docs)
|
||||
vector_size = 0
|
||||
for i, d in enumerate(docs):
|
||||
v = vects[i].tolist()
|
||||
vector_size = len(v)
|
||||
d["q_%d_vec" % len(v)] = v
|
||||
return tk_count
|
||||
return tk_count, vector_size
|
||||
|
||||
|
||||
def run_raptor(row, chat_mdl, embd_mdl, callback=None):
|
||||
vts, _ = embd_mdl.encode(["ok"])
|
||||
vctr_nm = "q_%d_vec" % len(vts[0])
|
||||
vector_size = len(vts[0])
|
||||
vctr_nm = "q_%d_vec" % vector_size
|
||||
chunks = []
|
||||
for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], fields=["content_with_weight", vctr_nm]):
|
||||
for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])], fields=["content_with_weight", vctr_nm]):
|
||||
chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
|
||||
|
||||
raptor = Raptor(
|
||||
@ -323,7 +324,7 @@ def run_raptor(row, chat_mdl, embd_mdl, callback=None):
|
||||
d = copy.deepcopy(doc)
|
||||
md5 = hashlib.md5()
|
||||
md5.update((content + str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
d["id"] = md5.hexdigest()
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
||||
d[vctr_nm] = vctr.tolist()
|
||||
@ -332,7 +333,7 @@ def run_raptor(row, chat_mdl, embd_mdl, callback=None):
|
||||
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
||||
res.append(d)
|
||||
tk_count += num_tokens_from_string(content)
|
||||
return res, tk_count
|
||||
return res, tk_count, vector_size
|
||||
|
||||
|
||||
def main():
|
||||
@ -352,7 +353,7 @@ def main():
|
||||
if r.get("task_type", "") == "raptor":
|
||||
try:
|
||||
chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
|
||||
cks, tk_count = run_raptor(r, chat_mdl, embd_mdl, callback)
|
||||
cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
|
||||
except Exception as e:
|
||||
callback(-1, msg=str(e))
|
||||
cron_logger.error(str(e))
|
||||
@ -373,7 +374,7 @@ def main():
|
||||
len(cks))
|
||||
st = timer()
|
||||
try:
|
||||
tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
|
||||
tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
|
||||
except Exception as e:
|
||||
callback(-1, "Embedding error:{}".format(str(e)))
|
||||
cron_logger.error(str(e))
|
||||
@ -381,26 +382,25 @@ def main():
|
||||
cron_logger.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
|
||||
callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer() - st))
|
||||
|
||||
init_kb(r)
|
||||
chunk_count = len(set([c["_id"] for c in cks]))
|
||||
# cron_logger.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
|
||||
init_kb(r, vector_size)
|
||||
chunk_count = len(set([c["id"] for c in cks]))
|
||||
st = timer()
|
||||
es_r = ""
|
||||
es_bulk_size = 4
|
||||
for b in range(0, len(cks), es_bulk_size):
|
||||
es_r = ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]))
|
||||
es_r = docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
|
||||
if b % 128 == 0:
|
||||
callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
|
||||
|
||||
cron_logger.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
|
||||
if es_r:
|
||||
callback(-1, "Insert chunk error, detail info please check ragflow-logs/api/cron_logger.log. Please also check ES status!")
|
||||
ELASTICSEARCH.deleteByQuery(
|
||||
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
|
||||
cron_logger.error(str(es_r))
|
||||
docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
|
||||
cron_logger.error('Insert chunk error: ' + str(es_r))
|
||||
else:
|
||||
if TaskService.do_cancel(r["id"]):
|
||||
ELASTICSEARCH.deleteByQuery(
|
||||
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
|
||||
docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
|
||||
continue
|
||||
callback(1., "Done!")
|
||||
DocumentService.increment_chunk_num(
|
||||
|
||||
Reference in New Issue
Block a user