Integration with Infinity (#2894)

### What problem does this PR solve?

Integration with Infinity

- Replaced ELASTICSEARCH with dataStoreConn
- Renamed deleteByQuery with delete
- Renamed bulk to upsertBulk
- getHighlight, getAggregation
- Fix KGSearch.search
- Moved Dealer.sql_retrieval to es_conn.py


### Type of change

- [x] Refactoring
This commit is contained in:
Zhichang Yu
2024-11-12 14:59:41 +08:00
committed by GitHub
parent 00b6000b76
commit f4c52371ab
42 changed files with 2647 additions and 1878 deletions

View File

@ -31,7 +31,6 @@ from timeit import default_timer as timer
import numpy as np
import pandas as pd
from elasticsearch_dsl import Q
from api.db import LLMType, ParserType
from api.db.services.dialog_service import keyword_extraction, question_proposal
@ -39,8 +38,7 @@ from api.db.services.document_service import DocumentService
from api.db.services.llm_service import LLMBundle
from api.db.services.task_service import TaskService
from api.db.services.file2document_service import File2DocumentService
from api.settings import retrievaler
from api.utils.file_utils import get_project_base_directory
from api.settings import retrievaler, docStoreConn
from api.db.db_models import close_connection
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, knowledge_graph, email
from rag.nlp import search, rag_tokenizer
@ -48,7 +46,6 @@ from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as
from rag.settings import database_logger, SVR_QUEUE_NAME
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
from rag.utils import rmSpace, num_tokens_from_string
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.redis_conn import REDIS_CONN, Payload
from rag.utils.storage_factory import STORAGE_IMPL
@ -126,7 +123,7 @@ def collect():
return pd.DataFrame()
tasks = TaskService.get_tasks(msg["id"])
if not tasks:
cron_logger.warn("{} empty task!".format(msg["id"]))
cron_logger.warning("{} empty task!".format(msg["id"]))
return []
tasks = pd.DataFrame(tasks)
@ -187,7 +184,7 @@ def build(row):
docs = []
doc = {
"doc_id": row["doc_id"],
"kb_id": [str(row["kb_id"])]
"kb_id": str(row["kb_id"])
}
el = 0
for ck in cks:
@ -196,10 +193,14 @@ def build(row):
md5 = hashlib.md5()
md5.update((ck["content_with_weight"] +
str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["id"] = md5.hexdigest()
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
if not d.get("image"):
d["img_id"] = ""
d["page_num_list"] = json.dumps([])
d["position_list"] = json.dumps([])
d["top_list"] = json.dumps([])
docs.append(d)
continue
@ -211,13 +212,13 @@ def build(row):
d["image"].save(output_buffer, format='JPEG')
st = timer()
STORAGE_IMPL.put(row["kb_id"], d["_id"], output_buffer.getvalue())
STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
el += timer() - st
except Exception as e:
cron_logger.error(str(e))
traceback.print_exc()
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
del d["image"]
docs.append(d)
cron_logger.info("MINIO PUT({}):{}".format(row["name"], el))
@ -245,12 +246,9 @@ def build(row):
return docs
def init_kb(row):
def init_kb(row, vector_size: int):
idxnm = search.index_name(row["tenant_id"])
if ELASTICSEARCH.indexExist(idxnm):
return
return ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
return docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
def embedding(docs, mdl, parser_config=None, callback=None):
@ -288,17 +286,20 @@ def embedding(docs, mdl, parser_config=None, callback=None):
cnts) if len(tts) == len(cnts) else cnts
assert len(vects) == len(docs)
vector_size = 0
for i, d in enumerate(docs):
v = vects[i].tolist()
vector_size = len(v)
d["q_%d_vec" % len(v)] = v
return tk_count
return tk_count, vector_size
def run_raptor(row, chat_mdl, embd_mdl, callback=None):
vts, _ = embd_mdl.encode(["ok"])
vctr_nm = "q_%d_vec" % len(vts[0])
vector_size = len(vts[0])
vctr_nm = "q_%d_vec" % vector_size
chunks = []
for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], fields=["content_with_weight", vctr_nm]):
for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])], fields=["content_with_weight", vctr_nm]):
chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
raptor = Raptor(
@ -323,7 +324,7 @@ def run_raptor(row, chat_mdl, embd_mdl, callback=None):
d = copy.deepcopy(doc)
md5 = hashlib.md5()
md5.update((content + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["id"] = md5.hexdigest()
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
d[vctr_nm] = vctr.tolist()
@ -332,7 +333,7 @@ def run_raptor(row, chat_mdl, embd_mdl, callback=None):
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
res.append(d)
tk_count += num_tokens_from_string(content)
return res, tk_count
return res, tk_count, vector_size
def main():
@ -352,7 +353,7 @@ def main():
if r.get("task_type", "") == "raptor":
try:
chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
cks, tk_count = run_raptor(r, chat_mdl, embd_mdl, callback)
cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
except Exception as e:
callback(-1, msg=str(e))
cron_logger.error(str(e))
@ -373,7 +374,7 @@ def main():
len(cks))
st = timer()
try:
tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
except Exception as e:
callback(-1, "Embedding error:{}".format(str(e)))
cron_logger.error(str(e))
@ -381,26 +382,25 @@ def main():
cron_logger.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer() - st))
init_kb(r)
chunk_count = len(set([c["_id"] for c in cks]))
# cron_logger.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
init_kb(r, vector_size)
chunk_count = len(set([c["id"] for c in cks]))
st = timer()
es_r = ""
es_bulk_size = 4
for b in range(0, len(cks), es_bulk_size):
es_r = ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]))
es_r = docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
if b % 128 == 0:
callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
cron_logger.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
if es_r:
callback(-1, "Insert chunk error, detail info please check ragflow-logs/api/cron_logger.log. Please also check ES status!")
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
cron_logger.error(str(es_r))
docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
cron_logger.error('Insert chunk error: ' + str(es_r))
else:
if TaskService.do_cancel(r["id"]):
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
continue
callback(1., "Done!")
DocumentService.increment_chunk_num(